
Citation: Song, C.; Yu, H.; Lee, E. CSS:

Container Resource Manager Using

System Call Pattern for Scientific

Workflow. Appl. Sci. 2022, 12, 8228.

https://doi.org/10.3390/app12168228

Academic Editors: Vassilios

V. Dimakopoulos and Spiridoula

V. Margariti

Received: 22 June 2022

Accepted: 10 August 2022

Published: 17 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Technical Note

CSS: Container Resource Manager Using System Call Pattern
for Scientific Workflow
Chunggeon Song 1, Heonchang Yu 1 and Eunyoung Lee 2,*

1 Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea
2 Department of Computer Science, Dongduk Women’s University, Seoul 02748, Korea
* Correspondence: elee@dongduk.ac.kr; Tel.: +82-2-940-4588

Abstract: Multiple containers running scientific workflows in SMP-based high-performance comput-
ers generate some bottlenecks due to workload flexibility. To improve system resource utilization by
minimizing these bottlenecks, vertical resource management is required to determine an appropriate
resource usage policy according to the resource usage type of the container. However, the traditional
methods have additional overhead for collecting monitoring metrics, and the structure of the resource
manager is complex. In this paper, in order to compensate for these shortcomings, we propose CSS, a
dynamic resource manager utilizing system call data collected for security purposes. The CSS utilizes
the SBCC algorithm, which uses the number of futex system calls as a heuristic measure to determine
the number of IO-intensive workload occurrences. In addition, the CTBRA algorithm is used to
determine the range of resources to be allocated for each container and to perform actual resource
allocation. We implemented a prototype of CSS and conducted experiments on NPB to analyze the
performance of CSS with various types of large-scale tasks of a scientific workflow. As a result of
the experiment, it showed a performance improvement of up to 7% compared with the environment
where Linux cgroups were not applied. In addition, CANU performance analysis was performed to
verify the effectiveness of applications used in the real world, and performance improvement of up
to 4.5% was shown.

Keywords: container; dynamic resource manager; scientific workflow; system call

1. Introduction

Container technology helps to agilely deploy an independent lightweight execution
environment for tasks dependent on a certain library (lib) and a certain command (bin).
There is a growing demand for applying these container techniques to scientific workflow
applications. In a scientific workflow, various types of tasks have dependencies on each
other, and the tasks are processed through several stages. Since the tasks in each stage
differ in the types and requirements of computing resources used, the competition rate for
preempting a specific resource may increase, or excessive resources may be preempted. This
condition causes system performance degradation. Accordingly, resource management of
multiple containers running concurrently within a single server is an important factor in
determining overall system performance. Accordingly, resource management of multiple
containers running concurrently within a single server is an important factor in determining
overall system performance, and various related studies have been proposed [1–3].

One of the major challenges in container resource management research is the problem
of minimizing bottlenecks arising from competition for resources in a high-performance
system in which multiple containers operate. Existing studies on container resource man-
agement have disadvantages such as causing additional overhead for collecting monitoring
metrics or complicating the system structure [1–5]. In addition, existing studies have
focused on the scheduling technique that selects cluster nodes at the time of container
deployment but neglected resource competition that occurs after deployment [4–6].

Appl. Sci. 2022, 12, 8228. https://doi.org/10.3390/app12168228 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12168228
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168228?type=check_update&version=2

Appl. Sci. 2022, 12, 8228 2 of 15

Our study began with the idea of using the system call pattern that occurs in tasks
executed in the container as heuristic information for the resource management technique.
For the security of the operating system kernel, all the recent container runtime systems
include a function to collect system calls [7]. Through the runtime systems’ filtering
technique, only the authorized system calls are allowed to proceed after comparison with
the white list of system calls. We focused on minimizing the overhead generated during
collecting the resource usage of containers and simplifying the internal structure of the
container resource manager. We also designed a resource management technique for
minimizing resource competition that occurs after container distribution through vertical
resource management using Linux cgroups (cgroups) [8].

As a result of these ideas, we propose CSS (Container resource manager using System
call pattern for Scientific workflow) to perform lightweight resource management for
Singularity containers based on the MAPE-K model in a high-performance computing
system. We compared CSS with the default cgroups policy of Singularity; we conducted
experiments and analyzed the result to confirm the degree of performance improvement.
The main contributions of our research are as follows:

• We developed a technique, SBCC, to classify the types of containers’ resource us-
age by using the number of futex system calls of tasks executed in the Singularity
container runtime.

• We developed a technique, CTBRA, that allocates minimum resources to containers
performing IO-intensive tasks and distributes isolated resources equally to containers
performing CPU-intensive tasks.

• We developed CSS, a prototype research manager that implements the proposed dy-
namic resource management technique and demonstrated its effectiveness by perform-
ing experiments with NPB (NAS Parallel Benchmark) and CANU framework work.

We will organize the rest of the paper as follows. Section 2 describes the implemen-
tation that motivated us to come up with the idea of using system call information for
container resource management. Section 3 describes the structure, components, and core
algorithm of the proposed CSS. The implementation method of CSS, performance experi-
ments, and analysis of the results are given in Section 4. Section 5 introduces related studies,
and, finally, we summarize the contribution of the study and discuss the future research
direction in Section 6.

2. Motivation
2.1. System Call Pattern

In order to assess the feasibility of the idea of using system call information for
container resource management, a typical scientific workflow task was repeatedly executed,
and an experiment was conducted to determine whether a consistent system call pattern
appears. We selected the Linux kernel build task for observation. System call data generated
in the OS kernel were collected using the Strace tool while performing the Linux kernel
build task. The task was executed in the Singularity container runtime environment [9].
The task was run five times, and the same result was obtained. Figure 1 shows the name
and number of system calls that were generated by the Linux kernel build task.

As a result of execution, we observed that a consistent system call pattern is shown in
the Linux kernel build task, and some system calls occur much higher than other system
calls. In the next step, an experiment was conducted to check whether it was possible to
collect the information on the type of resources in use from the system call data while the
scientific workflow was in progress. In the experiment, NPB, one of the benchmarks used
for performance analysis of high-performance computing systems, was used [10]. The
execution was performed using the MG workload with the highest ratio of IO-intensive
tasks among various workloads of NPB. Table 1 describes the problem size and parameter
values for the MG workload of NPB-OMP3.4 used in the experiment.

Appl. Sci. 2022, 12, 8228 3 of 15
Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 16

Figure 1. Number of system calls for Linux kernel build task.

As a result of execution, we observed that a consistent system call pattern is shown
in the Linux kernel build task, and some system calls occur much higher than other system
calls. In the next step, an experiment was conducted to check whether it was possible to
collect the information on the type of resources in use from the system call data while the
scientific workflow was in progress. In the experiment, NPB, one of the benchmarks used
for performance analysis of high-performance computing systems, was used [10]. The ex-
ecution was performed using the MG workload with the highest ratio of IO-intensive
tasks among various workloads of NPB. Table 1 describes the problem size and parameter
values for the MG workload of NPB-OMP3.4 used in the experiment.

Table 1. MG workload problem size and parameters.

Class Grid Size Number of Iterations
S 32 × 32 × 32 4
A 256 × 256 × 256 4
B 256 × 256 × 256 20
C 512 × 512 × 512 20
D 1024 × 1024 × 1024 50

As shown in Figure 2, we observed that the futex system calls increased in proportion
to the size of the IO-intensive task and showed a consistent pattern. In particular, a large
change in the number of system calls occurred in the section where the number of iteration
operations of MG work was changed. Consequently, we confirmed that the ratio of the
IO-intensive operation of the task executed in the container runtime can be derived using
the number of occurrences of the futex system call.

Figure 1. Number of system calls for Linux kernel build task.

Table 1. MG workload problem size and parameters.

Class Grid Size Number of Iterations

S 32 × 32 × 32 4
A 256 × 256 × 256 4
B 256 × 256 × 256 20
C 512 × 512 × 512 20
D 1024 × 1024 × 1024 50

As shown in Figure 2, we observed that the futex system calls increased in proportion
to the size of the IO-intensive task and showed a consistent pattern. In particular, a large
change in the number of system calls occurred in the section where the number of iteration
operations of MG work was changed. Consequently, we confirmed that the ratio of the
IO-intensive operation of the task executed in the container runtime can be derived using
the number of occurrences of the futex system call.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 16

Figure 2. Number of system calls for different IO workload sizes.

2.2. Resource Management Using Linux Cgroups
We performed three experiments that confirm the performance of static resource

management using cgroups in an environment where multiple containers are simultane-
ously operated on a single computer. In these experiments, we measured the execution
time that varies according to changes in the number of containers, the size of the IO work-
load, and the type of workload.

Our previous study showed that the performance improvement of a container can be
obtained from a framework that detects cgroups policy for CPU cores and automatically
adjusts the number of user-level threads to the cgroups policy [11]. Based on our previous
study, we conducted an experiment using the MG of the NPB-OMP3.4 benchmark, which
dynamically adjusts the number of threads. In the experiment, the number of Singularity
containers was varied, and 16 CPU cores were divided by the number of containers and
evenly allocated to prepare an environment to run the MG workload. In such an environ-
ment, some workloads were executed in the situation where cgroups were applied, but the
others were executed in the situation where cgroups were not applied.

As shown in Figure 3, we observed that the performance improvement rate through
cgroups was constant even when the number of containers running the MG workload in-
creased. As a result, we confirmed that cgroups-based resource management can achieve con-
sistent performance improvement regardless of the number of containers. The next experi-
ment was conducted to determine the performance improvement rate through cgroups-based
resource management for various IO workload sizes in the same workload type. In the exper-
iment, several classes with different sizes of the MG workload were constructed, and the exe-
cution time of cgroups-applied cases and nonapplied cases was compared.

Figure 2. Number of system calls for different IO workload sizes.

2.2. Resource Management Using Linux Cgroups

We performed three experiments that confirm the performance of static resource
management using cgroups in an environment where multiple containers are simultaneously

Appl. Sci. 2022, 12, 8228 4 of 15

operated on a single computer. In these experiments, we measured the execution time that
varies according to changes in the number of containers, the size of the IO workload, and
the type of workload.

Our previous study showed that the performance improvement of a container can be
obtained from a framework that detects cgroups policy for CPU cores and automatically
adjusts the number of user-level threads to the cgroups policy [11]. Based on our previous
study, we conducted an experiment using the MG of the NPB-OMP3.4 benchmark, which
dynamically adjusts the number of threads. In the experiment, the number of Singularity
containers was varied, and 16 CPU cores were divided by the number of containers
and evenly allocated to prepare an environment to run the MG workload. In such an
environment, some workloads were executed in the situation where cgroups were applied,
but the others were executed in the situation where cgroups were not applied.

As shown in Figure 3, we observed that the performance improvement rate through
cgroups was constant even when the number of containers running the MG workload
increased. As a result, we confirmed that cgroups-based resource management can achieve
consistent performance improvement regardless of the number of containers. The next ex-
periment was conducted to determine the performance improvement rate through cgroups-
based resource management for various IO workload sizes in the same workload type. In
the experiment, several classes with different sizes of the MG workload were constructed,
and the execution time of cgroups-applied cases and nonapplied cases was compared.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 16

Figure 3. Performance of cgroups-based resource management for different numbers of containers.

Figure 4 shows that a constant performance improvement rate was confirmed re-
gardless of the increase in the amount of MG workload. Finally, an experiment was con-
ducted to assess the performance improvement rate of cgroups-based resource manage-
ment according to the IO task ratio.

Figure 4. Performance of cgroups-based resource management for various IO workload sizes.

In general, when IO operations are performed in user-level threads, they are
preempted by the kernel thread, increasing context switches and leading to performance
degradation [12]. Accordingly, if containers are isolated using cgroups, the amount of con-
text switches due to IO operations is expected to be reduced. In the experiment, various
types of workloads of the NPB benchmark were run in the containers with or without
applied cgroups, respectively, and the context switch occurrence information was col-
lected. In Table 2, BT stands for a block tridiagonal solver task and IS stands for an integer
sort task. Since each type of work has a different workload size, the context switch is used
as a performance metric.

Figure 3. Performance of cgroups-based resource management for different numbers of containers.

Figure 4 shows that a constant performance improvement rate was confirmed regard-
less of the increase in the amount of MG workload. Finally, an experiment was conducted to
assess the performance improvement rate of cgroups-based resource management according
to the IO task ratio.

In general, when IO operations are performed in user-level threads, they are pre-
empted by the kernel thread, increasing context switches and leading to performance
degradation [12]. Accordingly, if containers are isolated using cgroups, the amount of
context switches due to IO operations is expected to be reduced. In the experiment, various
types of workloads of the NPB benchmark were run in the containers with or without
applied cgroups, respectively, and the context switch occurrence information was collected.
In Table 2, BT stands for a block tridiagonal solver task and IS stands for an integer sort
task. Since each type of work has a different workload size, the context switch is used as a
performance metric.

Appl. Sci. 2022, 12, 8228 5 of 15

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 16

Figure 3. Performance of cgroups-based resource management for different numbers of containers.

Figure 4 shows that a constant performance improvement rate was confirmed re-
gardless of the increase in the amount of MG workload. Finally, an experiment was con-
ducted to assess the performance improvement rate of cgroups-based resource manage-
ment according to the IO task ratio.

Figure 4. Performance of cgroups-based resource management for various IO workload sizes.

In general, when IO operations are performed in user-level threads, they are
preempted by the kernel thread, increasing context switches and leading to performance
degradation [12]. Accordingly, if containers are isolated using cgroups, the amount of con-
text switches due to IO operations is expected to be reduced. In the experiment, various
types of workloads of the NPB benchmark were run in the containers with or without
applied cgroups, respectively, and the context switch occurrence information was col-
lected. In Table 2, BT stands for a block tridiagonal solver task and IS stands for an integer
sort task. Since each type of work has a different workload size, the context switch is used
as a performance metric.

Figure 4. Performance of cgroups-based resource management for various IO workload sizes.

Table 2. Number of context switches for different workload types.

Task Non-Cgroup Cgroup Ratio

BT 782 245 3.13
IS 919 380 2.42

MG 50,513 28,878 1.75

As shown in Table 2, the higher the proportion of IO tasks in the workload, the higher
the ratio of performance improvement achieved when cgroups were applied. In particular,
BT, which has a high proportion of IO to memory, was able to obtain significantly higher
performance improvement. Through the preliminary experiments, we confirmed that the
number of IO-intensive operations of the task can be determined through the number of
futex system calls and that effective resource management can be performed using cgroups.

3. Our Solution: CSS
3.1. Design Principle

We designed CSS, a resource manager that minimizes resource contention between
multiple containers, to improve system resource utilization in Singularity container runtime.
The CSS was designed considering the following three principles.

1. Transparent resource management. The resource manager runs as a background
service on the host operating system and has a container-independent life cycle. Users
can freely use the resource manager without modifying the source code or building
a new container. For this purpose, CSS collects the currently running container
information based on the namespace information of the host operating system.

2. Minimized monitoring overhead. CSS is designed to minimize the overhead of
collecting monitoring metrics required for container resource management. When an
additional monitoring tool is introduced to measure the resource usage of a container,
some overhead is added. In order to eliminate the resource management overhead
and have a simple structure, CSS uses the system call log collected for the purpose of
strengthening the existing security level.

3. Minimized resource coordination overhead. The cgroups technique is used for giving
a policy of using computing resources to one process. When resource management is
performed for all processes that are hierarchically created inside multiple containers,
resource coordination overhead is caused. Therefore, to simplify the management
operation, the resource management policy is copied in each container, and the copied
resource management policy is applied to each container’s child processes collectively.
In addition, if resource management is performed very frequently, the overhead

Appl. Sci. 2022, 12, 8228 6 of 15

for resource adjustment is proportionally increased. Since the appropriate resource
management interval is determined according to the specifications of the computing
system, an interface with which the administrator can set the resource management
interval is provided.

3.2. Architecture

This section describes the structure and core components of CSS. CSS is implemented
as an independent daemon in the Linux environment and operates directly on top of
the operating system of the host machine; CSS has been designed based on the MAPE-
K model [13]. CSS has a system call monitor, a task analyzer, and container controller
modules. Figure 5 shows the structure of CSS and system components related to resource
management operations in detail.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 16

Figure 5. Architecture and resource management operation of CSS.

In the MAPE-K cycle of CSS, three modules operate sequentially. The Bpftrace [14]
delivers the system call log collected from the Linux kernel to the system call monitor, and
the system call monitor transforms the system call log into a system call pattern and trans-
mits it to the task analyzer. Next, the task analyzer creates a resource limit policy by ana-
lyzing the type of resource used by the container and the system resource information
together. The container controller creates a cgroups policy for the container based on the
resource limit policy and applies the cgroups policy to tasks inside a Singularity container.
A detailed description of the CSS core components is as follows.
1. System call monitor. It is a component with the role of collecting futex system calls

to derive the resource usage type of the container. It collects the PIDs of running con-
tainers through the namespace and manages them in a tree structure. It also monitors
system calls that occur in subprocesses created inside the container. The number of
collected system calls is stored in the PID tree for the container. The number of oc-
currences of system calls is accumulated for each resource management interval, and
it is initialized for each cleaning interval. The system administrator sets the resource
management interval according to the physical system specification and the cleaning
interval according to the size of one job.

2. Task analyzer. It analyzes monitoring data, creates resource management policies,
and performs functions corresponding to the Analysis and Plan stages in the MAPE-
K model. It analyzes data stored in the PID tree created by the system call monitor at
each resource management interval; based on the analysis, the task analyzer creates
a cgroups policy that determines CPU quota. Specific techniques for resource man-
agement are described in detail in the next section.

3. Container controller. It has the role of applying the resource management policy
created by the task analyzer to the container. The cgroups policy, created by the task
analyzer, starts the Singularity container runtime process as root and applies to all
processes under it. The cgroups policy applied to the container is changed when the
container type is changed, or a new container is added.

3.3. Resource Management
This section describes the detailed operation of the resource management techniques

performed in the task analyzer. The proposed resource management scheme consists of
SBCC and CTBRA algorithms. The SBCC algorithm classifies containers based on the
number of occurrences of the futex system sampled through Bpftrace, and the CTBRA

Figure 5. Architecture and resource management operation of CSS.

In the MAPE-K cycle of CSS, three modules operate sequentially. The Bpftrace [14]
delivers the system call log collected from the Linux kernel to the system call monitor,
and the system call monitor transforms the system call log into a system call pattern and
transmits it to the task analyzer. Next, the task analyzer creates a resource limit policy by
analyzing the type of resource used by the container and the system resource information
together. The container controller creates a cgroups policy for the container based on the
resource limit policy and applies the cgroups policy to tasks inside a Singularity container.
A detailed description of the CSS core components is as follows.

1. System call monitor. It is a component with the role of collecting futex system calls
to derive the resource usage type of the container. It collects the PIDs of running
containers through the namespace and manages them in a tree structure. It also
monitors system calls that occur in subprocesses created inside the container. The
number of collected system calls is stored in the PID tree for the container. The number
of occurrences of system calls is accumulated for each resource management interval,
and it is initialized for each cleaning interval. The system administrator sets the
resource management interval according to the physical system specification and the
cleaning interval according to the size of one job.

2. Task analyzer. It analyzes monitoring data, creates resource management policies,
and performs functions corresponding to the Analysis and Plan stages in the MAPE-K
model. It analyzes data stored in the PID tree created by the system call monitor
at each resource management interval; based on the analysis, the task analyzer cre-
ates a cgroups policy that determines CPU quota. Specific techniques for resource
management are described in detail in the next section.

Appl. Sci. 2022, 12, 8228 7 of 15

3. Container controller. It has the role of applying the resource management policy
created by the task analyzer to the container. The cgroups policy, created by the task
analyzer, starts the Singularity container runtime process as root and applies to all
processes under it. The cgroups policy applied to the container is changed when the
container type is changed, or a new container is added.

3.3. Resource Management

This section describes the detailed operation of the resource management techniques
performed in the task analyzer. The proposed resource management scheme consists of
SBCC and CTBRA algorithms. The SBCC algorithm classifies containers based on the
number of occurrences of the futex system sampled through Bpftrace, and the CTBRA
algorithm creates and applies a resource management policy based on the analysis results.
Table 3 shows notations to explain the proposed technique.

Table 3. Notations.

Symbol Description

C {ci | ci is ith container, 1 ≤ i ≤ M}

R {ri | ri is ith CPU core, 1 ≤ i ≤ N}

Cio IO-intensive container set

Ccpu CPU-intensive container set

λ Threshold of number of system calls

µ Number of CPU resources allocated to Cio-type containers

sumSystemcall(ci) A function that calculates the sum of the system calls of subprocesses created in ci

allocResource(ci , start, end) A function that allocates CPU cores from rstart to rend to the ci container

3.3.1. SBCC (System Call-Based Container Classifier)

The set of all child processes of container ci is defined as ci.Children, and the inner
process is defined as pj. The number of futex system calls of pj collected at the sampling
time is defined as pj.NumO f Futex. Based on this model, the sumSystemcall(ci) function is
defined in Equation (1).

sumSystemcall(ci) = ∑
pj∈ ci .Children

pj.NumO f Futex (1)

As shown in Algorithm 1, SBCC classifies task types for containers recognized by
the monitoring module. C, a set of containers running on the host, and λ, the system call
threshold set by the system administrator, are the input.

Algorithm 1 SBCC

Input: C, λ
Output: Cio , Ccpu

01: Collect Singularity container information and assign it to C
02: Collect system calls that occur inside the container
03: for ci in C
04: sumi ← sumSystemcall(ci)
05: if sumi ≥ λ then
06: add ci to Cio

07: else
08: add ci to Ccpu

09: end if
10: end for
11: return Cio , Ccpu

Lines 1 and 2 of Algorithm 1 are to collect information on the currently running
container and sample the system calls generated by each container. The meaning of lines

Appl. Sci. 2022, 12, 8228 8 of 15

5 to 9 is to analyze the currently running container in order to classify containers into a
group of IO-intensive tasks and a group of CPU-intensive tasks.

3.3.2. CTBRA (Container Type-Based Resource Allocator)

Algorithm 2 shows the CTBRA algorithm that calculates the range of resources to
be allocated for each container type and performs resource allocation. It takes as input R,
Cio, Ccpu, which is the result of the SBCC algorithm collected by the system call monitor,
and µ, which determines the size of the minimum resource allocated to Cio. The result of
the allocResource(ci, start, end) function is transmitted to the container controller, leading
to the operation of updating the cgroups policy.

Algorithm 2 CTBRA

Input: R, Cio , Ccpu, µ
Output: null
01: for ci in Cio

02: if |ccpu| != 0 then
03: allocResource(ci , 1, µ)
04: else
05: EqualAllocation(R, ci)
06: end if
07: end for
08: for ci in Ccpu

09: EqualAllocation(R, ci)
10: end for
11: return null

From line 2 to line 4, the algorithm allocates the minimum resource for all containers
of Cio. If there is no CPU-intensive container, equal resource distribution is performed.
However, if the CPU-intensive container and the IO-intensive container are executed at the
same time, the operation of allocating the minimum resource to the IO-intensive container
is performed. The algorithm between line 5 and line 9 evenly divides and allocates all
CPU resources of the host machine to all containers of Ccpu; the equal allocation algorithm
is shown in Algorithm 3. The amount of CPU resources allocated to each container is
determined by the number of CPUs that the host machine has and the number of currently
running containers in Ccpu.

Algorithm 3 Equal Allocation

Input: ci , M, N
Output: null
01: if N > M then
02: part bN/ Mc
03: start ← i * part
04: end ← start + part
05: else
06: start ← i mod N
07: end ← start
08: end if
09: allocResource(ci , start, end)
10: return null

This algorithm takes as inputs ci, the ith container; M, the number of containers;
and N, the number of CPU cores in the host system. Lines 1 to 4 of Algorithm 3 indicate the
situation in which the number of CPU resources is greater than the number of containers,
and lines 5 to 7 indicate the situation in which countless containers are simultaneously
executed. i in line 3 is the index of the ci.

Appl. Sci. 2022, 12, 8228 9 of 15

4. Evaluation
4.1. Experimental Environment

We implemented the CSS in the prototype form using the 1.16 version of the go lan-
guage. The CSS operates as a daemon in the Linux OS and performs resource management
by automatically recognizing Singularity containers based on namespace information. The
feature of controlling resources through cgroups was implemented using the source code
of the containerd project [15]. The system call monitoring function collects data through
Bpftrace, and the collected data is processed in the monitoring module. The system used
in the experiment was an IBM System x3500 M4 server. It has an Intel(R) Xeon(R) CPU
E5-2650 CPU, 62 GB of memory, and 1 TB of storage. CentOS 7 with Linux 4.15 kernel was
used as the operating system for the experiment. Table 4 shows the CSS parameters used in
the experiment. The resource management interval and the cleaning interval are specified
in seconds.

Table 4. CSS parameters used in the experiment.

Parameter Value

λ 30

µ 2

Resource Management Interval 5

Cleaning Interval 30

Four experiments were conducted to verify the performance of the proposed CSS.
The experiment was divided into two parts. The first part consisted of an experiment on
NPB to verify the performance of CSS determined according to the characteristics of the
task, and the second part involved an experiment on CANU to verify the effectiveness
of the actually used scientific workflow task. In the NPB experiment, the workload size,
the number of containers, and the heterogeneity of the concurrently performed tasks were
variously configured. In addition, in the CANU experiment, the CSS parameters were set
to 3 and 5, and each experiment was performed. In the experiment, the workload was run
five times, and the average execution time was calculated after the execution time of each
run was measured.

4.2. Performance Analysis for Various Workload Sizes

We now consider the first experiment to analyze the performance of CSS for various
sizes of workloads. Among the NPB benchmark workloads, the MG workload with the
highest ratio of IO operations was run, and the execution time was measured. In the
experiment, the non-cgroups environment to which cgroups were not applied and cgroups
environment in which CSS was internally executed were compared as baseline. The MG
workload was subdivided into several classes based on size. Among all classes, A, B, C,
and D were executed, and the execution time was compared. In order to generate some
resource contention, two containers processing the MG workload were run simultaneously.
Figure 6 shows the results of these experiments.

Appl. Sci. 2022, 12, 8228 10 of 15Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 16

Figure 6. Performance of CSS for IO workload size.

As a result of the experiment, CSS in class A and class B took more execution time
than in the non-cgroups environment, and class C showed a similar execution time. How-
ever, class D showed a 3% performance improvement. Through these results, we observed
that CSS only achieves performance improvement in an environment where a certain level
of workload size is executed.

4.3. Performance Analysis for Different Numbers of Containers
The performance was analyzed according to the resource contention level by increas-

ing the number of containers running the workload of the same size in various ways. In
the experiment, all the containers in the experiments ran the identical MG C-class work-
load of the NPB benchmark. The number of containers doubled from 2 to 16. Figure 7
shows the results of these experiments.

Figure 7. Performance of CSS for different numbers of containers.

As a result of the experiment, we observed that the performance increased sequentially
in 2, 4, and 8 containers and decreased again in 16 containers. As a result, we confirmed that
the highest performance improvement rate was observed when the number of containers
and the number of CPU cores were the same. The performance improvement rate decreased
in 16 containers because the CPU resources of the tasks finished relatively early are not uti-
lized for other tasks; it causes the overall utilization rate of the system to drop.

4.4. Performance Analysis for Heterogeneity of Concurrent Tasks

Figure 6. Performance of CSS for IO workload size.

As a result of the experiment, CSS in class A and class B took more execution time than
in the non-cgroups environment, and class C showed a similar execution time. However,
class D showed a 3% performance improvement. Through these results, we observed that
CSS only achieves performance improvement in an environment where a certain level of
workload size is executed.

4.3. Performance Analysis for Different Numbers of Containers

The performance was analyzed according to the resource contention level by increasing
the number of containers running the workload of the same size in various ways. In the
experiment, all the containers in the experiments ran the identical MG C-class workload of
the NPB benchmark. The number of containers doubled from 2 to 16. Figure 7 shows the
results of these experiments.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 16

Figure 6. Performance of CSS for IO workload size.

As a result of the experiment, CSS in class A and class B took more execution time
than in the non-cgroups environment, and class C showed a similar execution time. How-
ever, class D showed a 3% performance improvement. Through these results, we observed
that CSS only achieves performance improvement in an environment where a certain level
of workload size is executed.

4.3. Performance Analysis for Different Numbers of Containers
The performance was analyzed according to the resource contention level by increas-

ing the number of containers running the workload of the same size in various ways. In
the experiment, all the containers in the experiments ran the identical MG C-class work-
load of the NPB benchmark. The number of containers doubled from 2 to 16. Figure 7
shows the results of these experiments.

Figure 7. Performance of CSS for different numbers of containers.

As a result of the experiment, we observed that the performance increased sequentially
in 2, 4, and 8 containers and decreased again in 16 containers. As a result, we confirmed that
the highest performance improvement rate was observed when the number of containers
and the number of CPU cores were the same. The performance improvement rate decreased
in 16 containers because the CPU resources of the tasks finished relatively early are not uti-
lized for other tasks; it causes the overall utilization rate of the system to drop.

4.4. Performance Analysis for Heterogeneity of Concurrent Tasks

Figure 7. Performance of CSS for different numbers of containers.

As a result of the experiment, we observed that the performance increased sequentially
in 2, 4, and 8 containers and decreased again in 16 containers. As a result, we confirmed that
the highest performance improvement rate was observed when the number of containers
and the number of CPU cores were the same. The performance improvement rate decreased
in 16 containers because the CPU resources of the tasks finished relatively early are not
utilized for other tasks; it causes the overall utilization rate of the system to drop.

4.4. Performance Analysis for Heterogeneity of Concurrent Tasks

In the third experiment, the performance of CSS was measured in a situation in which
workloads with various types of work were executed simultaneously. Three different

Appl. Sci. 2022, 12, 8228 11 of 15

environments were built for comparison; the environments in which the MG workload of
the NPB benchmark was run together with CG and EP, respectively, and the environment
in which CG and EP were run simultaneously. Each task was executed in an independent
container environment, and the workload size was C class.

The experiment was carried out in an environment where the number of concurrently
executed containers was 2 or 3, and, accordingly, CSS showed lower performance than the
non-cgroups environment. As shown in Figure 8, we observed that the types of tasks of
containers running at the same time did not affect the performance of containers.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 16

In the third experiment, the performance of CSS was measured in a situation in which
workloads with various types of work were executed simultaneously. Three different en-
vironments were built for comparison; the environments in which the MG workload of
the NPB benchmark was run together with CG and EP, respectively, and the environment
in which CG and EP were run simultaneously. Each task was executed in an independent
container environment, and the workload size was C class.

The experiment was carried out in an environment where the number of concurrently
executed containers was 2 or 3, and, accordingly, CSS showed lower performance than
the non-cgroups environment. As shown in Figure 8, we observed that the types of tasks
of containers running at the same time did not affect the performance of containers.

Figure 8. Performance of CSS for heterogeneity of concurrent tasks.

4.5. Validation of Scientific Workflow
An experiment was conducted to determine whether CSS was effective in the scien-

tific workflow type application used in the actual research field. In the experiment, an
open-source framework designed for the purpose of assembling high-noise single-mole-
cule arrays called CANU was used. The experiment was conducted based on P6-C4 mol-
ecule data published by Pacific Biosciences for Escherichia coli K12 Interpretation [16]. In
order to reproduce the container environment with a high resource contention level, the
MG C-class workload was executed together in a minute unit during CANU execution. In
the experiment, the execution time was measured by configuring a non-cgroups environ-
ment in which cgroups were not set as a baseline, and the resource management interval
options were set to 5 or 3. Figure 9 shows the form of a scientific workflow job running on
the CANU framework. In the figure, the circle means the process being created, and the
label inside the circle means the number of futex system calls occurring in the process. t
means the time in seconds since CANU was executed.

Figure 8. Performance of CSS for heterogeneity of concurrent tasks.

4.5. Validation of Scientific Workflow

An experiment was conducted to determine whether CSS was effective in the scientific
workflow type application used in the actual research field. In the experiment, an open-
source framework designed for the purpose of assembling high-noise single-molecule
arrays called CANU was used. The experiment was conducted based on P6-C4 molecule
data published by Pacific Biosciences for Escherichia coli K12 Interpretation [16]. In order
to reproduce the container environment with a high resource contention level, the MG
C-class workload was executed together in a minute unit during CANU execution. In the
experiment, the execution time was measured by configuring a non-cgroups environment
in which cgroups were not set as a baseline, and the resource management interval options
were set to 5 or 3. Figure 9 shows the form of a scientific workflow job running on the
CANU framework. In the figure, the circle means the process being created, and the label
inside the circle means the number of futex system calls occurring in the process. t means
the time in seconds since CANU was executed.

Figure 9 shows that the process structure of CANU changes flexibly at runtime and
that futex system calls occur overall in processes with multiple layers. These results indicate
that CANU is suitable for validating the effectiveness of CSS.

As shown in Figure 10, a performance improvement of 3.4% was obtained when the
CSS interval parameter was 5, and a performance improvement of 4.5% was obtained when
the interval parameter was 3. Through these experimental results, it was verified that
performance improvement could be obtained without source code modification or manual
resource management for scientific workflow applications used in actual scientific fields.

Appl. Sci. 2022, 12, 8228 12 of 15Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 16

(a)

(b)

(c)

Figure 9. Forms of CANU framework work. (a) t = 100 (b) t = 200 (c) t = 300.

Figure 9 shows that the process structure of CANU changes flexibly at runtime and
that futex system calls occur overall in processes with multiple layers. These results indi-
cate that CANU is suitable for validating the effectiveness of CSS.

As shown in Figure 10, a performance improvement of 3.4% was obtained when the
CSS interval parameter was 5, and a performance improvement of 4.5% was obtained
when the interval parameter was 3. Through these experimental results, it was verified that
performance improvement could be obtained without source code modification or manual
resource management for scientific workflow applications used in actual scientific fields.

Figure 9. Forms of CANU framework work. (a) t = 100 (b) t = 200 (c) t = 300.

Appl. Sci. 2022, 12, 8228 13 of 15
Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 16

Figure 10. Performance of CCS according to interval parameters.

5. Related Works
5.1. System Call Monitoring for Container

A technology that monitors system calls made in containers has been used to track
malicious attacks on the containers’ runtime. Ghavamnia et al. [17], Wang et al. [18], and
Kim et al. [19] proposed a technique to collect and analyze system call information that
occurs in normal container operation to derive a policy and to compare the newly gener-
ated system call with the policy to block malicious attacks. When performing vertical re-
source management for containers in such an environment, additional monitoring over-
head occurs, and the structure becomes complex.

5.2. Container Resource Management
Runsewe et al. [3] proposed a technique for performing horizontal resource manage-

ment targeting data-intensive containers. This improves service availability but has a dis-
advantage in terms of overall system resource utilization. Al-Dhuraibi et al. [2] and Russo
et al. [20] proposed a scale-up resource manager using the MAKE-K model based on the
resource usage of containers. However, this resource management has a disadvantage in
that additional monitoring overhead occurs. Hobson et al. [21] proposed a library that can
be used to improve data communication in applications that perform scientific workflows
based on containers. Such technology has a disadvantage of convenience of use because
it is cumbersome to modify existing applications. Table 5 shows the result of comparing
the characteristics of various container resource management techniques.

Table 5. Comparison of characteristics for different container resource management techniques.

Type of Technique Monitoring
Overhead

Complexity of
System Architecture

Container
Runtime

[3] High High Docker
[2,20] Middle Middle Docker
[21] Middle Middle Singularity
CSS Low Low Singularity

6. Conclusions
In this study, we proposed a dynamic resource manager for containers performing sci-

entific workflows, called CSS, that performs simple resource management using a lightweight
monitoring technique. The CSS performs MAPE-K-based resource management by applying
the SBCC algorithm that classifies the resource types of containers using the system call log
and the CTBRA algorithm that determines the resource usage policy for each container type
in a single high-performance system. In future work, we will address the container

Figure 10. Performance of CCS according to interval parameters.

5. Related Works
5.1. System Call Monitoring for Container

A technology that monitors system calls made in containers has been used to track
malicious attacks on the containers’ runtime. Ghavamnia et al. [17], Wang et al. [18], and
Kim et al. [19] proposed a technique to collect and analyze system call information that
occurs in normal container operation to derive a policy and to compare the newly generated
system call with the policy to block malicious attacks. When performing vertical resource
management for containers in such an environment, additional monitoring overhead
occurs, and the structure becomes complex.

5.2. Container Resource Management

Runsewe et al. [3] proposed a technique for performing horizontal resource man-
agement targeting data-intensive containers. This improves service availability but has
a disadvantage in terms of overall system resource utilization. Al-Dhuraibi et al. [2] and
Russo et al. [20] proposed a scale-up resource manager using the MAKE-K model based
on the resource usage of containers. However, this resource management has a disadvan-
tage in that additional monitoring overhead occurs. Hobson et al. [21] proposed a library
that can be used to improve data communication in applications that perform scientific
workflows based on containers. Such technology has a disadvantage of convenience of
use because it is cumbersome to modify existing applications. Table 5 shows the result of
comparing the characteristics of various container resource management techniques.

Table 5. Comparison of characteristics for different container resource management techniques.

Type of Technique Monitoring
Overhead

Complexity of
System

Architecture

Container
Runtime

[3] High High Docker
[2,20] Middle Middle Docker
[21] Middle Middle Singularity
CSS Low Low Singularity

6. Conclusions

In this study, we proposed a dynamic resource manager for containers perform-
ing scientific workflows, called CSS, that performs simple resource management using

Appl. Sci. 2022, 12, 8228 14 of 15

a lightweight monitoring technique. The CSS performs MAPE-K-based resource man-
agement by applying the SBCC algorithm that classifies the resource types of containers
using the system call log and the CTBRA algorithm that determines the resource usage
policy for each container type in a single high-performance system. In future work, we
will address the container redistribution problem by extending the system scope of CSS
from one machine to a cluster. Then, in addition to the futex system call, we will find
a new system call that can be used for resource management and develop an intelligent
resource management technique. We will fork Singularity source code and develop new
container runtime technology by implementing resource management technology utilizing
seccomp technology.

Author Contributions: All the authors contributed equally to work. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government(MSIT) (No. NRF-2019R1A2C1006754).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rao, V.; Singh, V.; Goutham, K.S.; Kempaiah, B.U.; Mampilli, R.J.; Kalambur, S.; Sitaram, D. Scheduling Microservice Containers

on Large Core Machines Through Placement and Coalescing. In Proceedings of the Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP), Virtual, 21 May 2021; pp. 80–100.

2. Al-Dhuraibi, Y.; Paraiso, F.; Djarallah, N.; Merle, P. Autonomic vertical elasticity of docker containers with elasticdocker.
In Proceedings of the 10th International Conference on Cloud Computing (CLOUD), Honolulu, HI, USA, 25–30 June 2017;
pp. 472–479.

3. Runsewe, O.; Samaan, N. CRAM: A container resource allocation mechanism for big data streaming applications. In Proceedings
of the International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Larnaca, Cyprus, 14–17 May 2019; pp. 312–320.

4. Hu, Y.; de Laat, C.D.; Zhao, Z. Multi-objective container deployment on heterogeneous clusters. In Proceedings of the International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), Larnaca, Cyprus, 14–17 May 2019; pp. 592–599.

5. Tan, B.; Ma, H.; Mei, Y. A NSGA-II-based Approach for Multi-objective Micro-service Allocation in Container-based Clouds.
In Proceedings of the International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, Australia,
11–14 May 2020; pp. 282–289.

6. Nikkhah, S.T.; Geilen, M.; Goswami, D.; Koedam, M.; Nelson, A.; Goossens, K. A Deployment Framework for Quality-Sensitive
Applications in Resource-Constrained Dynamic Environments. In Proceedings of the 24th Euromicro Conference on Digital
System Design (DSD), Palermo, Italy, 1–3 September 2021; pp. 212–220.

7. Skarlatos, D.; Chen, Q.; Chen, J.; Xu, T.; Torrellas, J. Draco: Architectural and operating system support for system call security. In
Proceedings of the International Symposium on Microarchitecture (MICRO), Athens, Greece, 17–21 October 2020; pp. 42–57.

8. Cgroups Web Documentation. Available online: https://www.kernel.org/doc/documentation/cgroup-v1/cgroups.txt (accessed
on 22 June 2022).

9. Kurtzer, G.M.; Sochat, V.; Bauer, M.W. Singularity: Scientific containers for mobility of compute. PLoS ONE 2017, 12, e0177459.
[CrossRef] [PubMed]

10. Npb Website. Available online: https://www.nas.nasa.gov/software/npb.html (accessed on 22 June 2022).
11. Song, C.; Gil, J.; Lim, J. A Performance Analysis on HPC Task Using cgroups in Singularity Container Runtime Environment. In

Proceedings of the KIPS Annual Spring Conference, Seoul, Korea, 19–21 May 2022; pp. 25–27.
12. Feeley, M.J.; Chase, J.S.; Lazowska, E.D. User-Level Threads and Interprocess Communication; Technical Report 93-02-03; University

of Washington, Department of Computer Science and Engineering: Seattle, WA, USA, 1993.
13. Kephart, J.O.; Chess, D.M. The vision of autonomic computing. Computer 2003, 36, 41–50. [CrossRef]
14. Bpftrace Github Repository. Available online: https://github.com/iovisor/bpftrace (accessed on 22 June 2022).
15. Containerd Website. Available online: https://containerd.io (accessed on 22 June 2022).
16. PacBio DevNet Website. Available online: http://pacbiodevnet.com (accessed on 22 June 2022).
17. Ghavamnia, S.; Palit, T.; Benameur, A. Confine: Automated system call policy generation for container attack surface reduction.

In Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID), San Sebastian,
Spain, 14–15 October 2020; pp. 443–458.

18. Wang, X.; Shen, Q.; Luo, W.; Wu, P. RSDS: Getting System Call Whitelist for Container Through Dynamic and Static Analysis.
In Proceedings of the 13th IEEE International Conference on Cloud Computing (CLOUD), Virtual Event, 18–24 October 2020;
pp. 600–608.

https://www.kernel.org/doc/documentation/cgroup-v1/cgroups.txt
http://doi.org/10.1371/journal.pone.0177459
http://www.ncbi.nlm.nih.gov/pubmed/28494014
https://www.nas.nasa.gov/software/npb.html
http://doi.org/10.1109/MC.2003.1160055
https://github.com/iovisor/bpftrace
https://containerd.io
http://pacbiodevnet.com

Appl. Sci. 2022, 12, 8228 15 of 15

19. Kim, S.; Kim, B.; Lee, D. Prof-gen: Practical Study on System Call Whitelist Generation for Container Attack Surface Reduction.
In Proceedings of the 14th IEEE International Conference on Cloud Computing, (CLOUD), Chicago, IL, USA, 5–10 September
2021; pp. 278–287.

20. Russo, G.R.; Cardellini, V.; Casale, G.; Presti, F.L. MEAD: Model-Based Vertical Auto-Scaling for Data Stream Processing. In
Proceedings of the International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, Australia, 10–13
May 2021; pp. 314–323.

21. Hobson, T.; Yildiz, O.; Nicolae, B.; Huang, J.; Peterka, T. Shared-Memory Communication for Containerized Workflows. In
Proceedings of the International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, Australia, 10–13
May 2021; pp. 123–132.

	Introduction
	Motivation
	System Call Pattern
	Resource Management Using Linux Cgroups

	Our Solution: CSS
	Design Principle
	Architecture
	Resource Management
	SBCC (System Call-Based Container Classifier)
	CTBRA (Container Type-Based Resource Allocator)

	Evaluation
	Experimental Environment
	Performance Analysis for Various Workload Sizes
	Performance Analysis for Different Numbers of Containers
	Performance Analysis for Heterogeneity of Concurrent Tasks
	Validation of Scientific Workflow

	Related Works
	System Call Monitoring for Container
	Container Resource Management

	Conclusions
	References

