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CSS-like Constructions
of Asymmetric Quantum Codes

Martianus Frederic Ezerman, Member, IEEE, Somphong Jitman, San Ling, and Dmitrii V. Pasechnik

Abstract—Asymmetric quantum error-correcting codes
(AQCs) may offer some advantage over their symmetric
counterparts by providing better error-correction for the more
frequent error types. The well-known CSS construction of q-ary
AQCs is extended by removing the Fq-linearity requirement as
well as the limitation on the type of inner product used. The
proposed constructions are called CSS-like constructions and
utilize pairs of nested subfield linear codes under one of the
Euclidean, trace Euclidean, Hermitian, and trace Hermitian
inner products.

After establishing some theoretical foundations, best-
performing CSS-like AQCs are constructed. Combining some
constructions of nested pairs of classical codes and linear pro-
gramming, many optimal and good pure q-ary CSS-like codes
for q ∈ {2, 3, 4, 5, 7, 8, 9} up to reasonable lengths are found. In
many instances, removing the Fq-linearity and using alternative
inner products give us pure AQCs with improved parameters
than relying solely on the standard CSS construction.

Index Terms—asymmetric quantum codes, best-known linear
codes, Delsarte bound, group character codes, cyclic codes, inner
products, linear programming bound, quantum Singleton bound,
subfield linear codes

I. INTRODUCTION

Most of the work to date on quantum error-correcting

codes (quantum codes) assumes that the quantum channel is

symmetric, i.e., the different types of errors are assumed to

occur equiprobably. However, recent papers (see [13] and [20],

for instance) argue that in many qubit systems, phase-flips (or

Z-errors) occur more frequently than bit-flips (or X-errors).

This leads to the idea of adjusting the error-correction to the

particular characteristics of the quantum channel and codes
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that take advantage of the asymmetry are called asymmetric
quantum codes (AQCs).

Steane first hinted at this concept in [31]. Some results on

mostly binary AQCs can be found in [1] and in [30]. While

at the moment there is no general agreement on the most

appropriate error models for non-qubit asymmetric channels,

the most established mathematical model in the general qudit

systems available is that of Wang et al. [33].

In the symmetric framework, Steane’s seminal work [31]

and that of Calderbank and Shor [7] provided the connection

between a pair of classical codes and a class of quantum

stabilizer codes. The construction is now known as the CSS

construction which extends naturally to the asymmetric case.

In [2] Aly and Ashikhmin supply a proof by modifying

Steane’s original proof.

Using a functional approach, a general mathematical char-

acterization and some constructions of AQCs from which the

CSS construction for AQCs can be derived are given in [33].

The results have been extended to include constructions from

Fr-linear codes over its quadratic extension Fr2 in [11] under

the trace Hermitian inner product.

This present work provides the following contributions:

1) We extend the functional approach to include the so-

called CSS-like constructions based on pairs of nested

Fr-linear codes over Fq where Fr is any subfield of Fq . At

the same time we relax the condition on the inner product

used. It is shown that given the appropriate context, the

Hermitian, trace Hermitian, and trace Euclidean inner

products can be utilized as well.

2) The extensions lead to pure AQCs with better parameters

than relying solely on the best ones obtainable from the

standard CSS construction. This justifies the effort of

considering Fr-linear pairs of nested codes over Fq and

their duals under various inner products.

3) Of purely mathematical interest, our investigation leads

to a better structural understanding of the functional

approach to AQCs. A diagram detailing the relationships

among different CSS-like constructions is given in Sec-

tion III.

4) Lists of good pure CSS-like AQCs up to some computa-

tionally reasonable lengths for q ∈ {2, 3, 4, 5, 7, 8, 9} are

given.

The paper is organized into seven sections and four ap-

pendices. After this introductory section, some preliminary

notions from classical coding theory and some basics on

the AQC error model are given in Section II. Section III

accomplishes several important tasks. First, a brief review of
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both the standard CSS construction and the functional charac-

terization of AQCs is supplied for convenience. The CSS-like

constructions are then proved and their interconnections are

shown.

Three systematic constructions of nested pairs of linear and

subfield linear codes are presented in Section IV as main ingre-

dients for the CSS-like constructions. A linear programming

bound as a measure of the optimality of AQCs is derived

in Section V. Combining the results of these two sections,

good pure CSS-like codes are listed explicitly with their

corresponding pair of nested classical codes in Section VI. The

last section contains some conclusion and open problems. The

appendices establish results needed in the paper whose detailed

justifications may distract us from the paper’s main lines of

thought.

II. PRELIMINARIES

Throughout this work, let p be a prime number and let Fp ⊆
Fr ⊆ Fq with r = pl and q = rm be finite fields. The trace

mapping Trq/r : Fq → Fr is given by Trq/r(β) = β + βr +

βr2+. . .+βrm−1

. The subscript q/r is omitted whenever r = p
and q is clear. Important properties of the trace mapping can

be found in [23, Th. 2.23].

If q = r2, let a denote ar for all a ∈ Fq . For u =
(u1, u2, . . . , un) ∈ F

n
q , u stands for (u1, u2, . . . , un). Hence,

for any nonempty set C ⊆ F
n
q , C := {c : c ∈ C}.

A. Coding Theory

Given u,v ∈ F
n
q , let wtH(v) denote the Hamming weight

of v and dist(u,v) denote their Hamming distance. A code C
of length n over Fq is a nonempty subset of Fn

q . The minimum
distance d(C) is given by

d(C) = min{dist(u,v) : u,v ∈ C,u �= v}.

For two distinct codes C and D, wtH(C \ D) denotes

min{wtH(u) : u ∈ C \D,u �= 0}.

An [n, k, d]q-linear code C is a k-dimensional Fq-subspace

of Fn
q with minimum distance d. For a general, not necessarily

Fq-linear, code C ⊆ F
n
q , the notation (n,M = |C|, d)q is

commonly used. A code C is an Fr-linear code over Fq if C
is a subspace of the Fr-vector space F

n
q . When r is clear from

the context, C is said to be a subfield linear code over Fq .

For u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) in F
n
q ,

we define the following inner products:

1) 〈u,v〉E :=
∑n

i=1 uivi is the Euclidean inner product of

u and v.

2) 〈u,v〉Trq/r E := Trq/r (〈u,v〉E) is the trace Euclidean
inner product of u and v valued in Fr.

3) When Fq is a quadratic extension of Fr, 〈u,v〉H :=∑n
i=1 uivi = 〈u,v〉E is the Hermitian inner product of

u and v.

4) Let q = r2. Then there are two cases of trace Hermitian
inner product depending on the field characteristic:

a) For even q, 〈u,v〉Tr q/rH := Trq/r(〈u,v〉H).
b) For odd q, 〈u,v〉Tr q/rH := Trq/r(α〈u,v〉H) where

α ∈ Fq \ {0} is such that α = −α.

Let C ⊆ F
n
q be a code. Let ∗ represent one of the Euclidean,

trace Euclidean, Hermitian and trace Hermitian inner products,

the dual code C⊥∗ of C is given by

C⊥∗ :=
{
u ∈ F

n
q : 〈u,v〉∗ = 0 for all v ∈ C

}
while the dual distance d⊥∗ is defined to be d(C⊥∗).

If C ⊆ C⊥∗ , then C is said to be self-orthogonal. C is

self-dual when equality holds.

A code C is closed under ∗ if (C⊥∗)⊥∗ = C. The closure

property of linear codes under the Euclidean and Hermitian

inner products and of subfield linear codes under the trace

Hermitian is well known from [26, Ch. 3]. The said property

of subfield linear codes under the trace Euclidean inner product

will be established in Theorem 2.2.

Definition 2.1: The weight enumerator WC(X,Y ) of an

(n,M, d)q-code C is the polynomial

WC(X,Y ) =
n∑

i=0

AiX
n−iY i, (II.1)

where Ai := |{c ∈ C : wtH(c) = i}|.
Theorem 2.2: Let C be an Fr-linear code over Fq . Then,

under the trace Euclidean inner product,

W
C

⊥Trq/r E (X,Y ) =
1

|C|WC(X + (q − 1)Y,X − Y ). (II.2)

Moreover, (C
⊥Trq/r E)

⊥Trq/r E = C.

Proof: The proof can be found in Appendix A.

In light of Theorem 2.2, under ∗, the weight enumerator of

the dual code of a linear or subfield linear (n,M = |C|, d)q-

code C is connected to the weight enumerator of the code C
via the MacWilliams Equation

WC⊥∗ (X,Y ) =
1

|C|WC(X + (q − 1)Y,X − Y ). (II.3)

For 0 ≤ j ≤ n, let A⊥∗
j denote the number of codewords

of weight j in C⊥∗ . Then

A⊥∗
j =

1

|C|
n∑

i=0

AiK
n,q
j (i) (II.4)

where Kn,q
j (i), the Krawtchouk polynomial of degree j in

variable i, is given by

Kn,q
j (i) :=

j∑
l=0

(−1)l(q − 1)j−l

Ç
i

l

åÇ
n− i

j − l

å
. (II.5)

The last two equations will feature prominently in the linear

programming set-up in Section VI.

B. Asymmetric Quantum Codes

Let C be the field of complex numbers and η = e
2π

√
−1

p ∈
C. We fix an orthonormal basis of Cq

{|ϕ〉 : ϕ ∈ Fq}
with respect to the Hermitian inner product on C

q . For n ∈ N,

let Vn = (Cq)⊗n be the n fold tensor product of Cq . Then we

can choose the following orthonormal basis for Vn{|c〉 = |c1c2 . . . cn〉 : c = (c1, . . . , cn) ∈ F
n
q

}
,
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where |c1c2 . . . cn〉 abbreviates |c1〉 ⊗ |c2〉 ⊗ · · · ⊗ |cn〉.
For two quantum states |ϕ〉 and |ψ〉 in Vn with

|ϕ〉 =
∑
c∈Fn

q

α(c)|c〉 and |ψ〉 =
∑
c∈Fn

q

β(c)|c〉,

where α(c), β(c) ∈ C, the Hermitian inner product of |ϕ〉 and

|ψ〉 is given by

〈ϕ|ψ〉 =
∑
c∈Fn

q

fiα(c)β(c) ∈ C,

where fiα(c) is the complex conjugate of α(c). We say |ϕ〉 and

|ψ〉 are orthogonal if 〈ϕ|ψ〉 = 0.

To measure the performance of a quantum code, an appro-

priate error model must be chosen (see [33] for instance). In

defining an AQC Q, one considers the set of error operators

that Q can handle. First, a good basis En of the vector space

of complex qn × qn matrices Mqn(C) needs to be chosen.

Let a, b ∈ Fq . The unitary operators X(a) and Z(b) on C
q

are defined by

X(a)|ϕ〉 = |ϕ+ a〉 and Z(b)|ϕ〉 = η(〈b,ϕ〉TrE)|ϕ〉. (II.6)

Based on (II.6), for a = (a1, . . . , an) ∈ F
n
q , we can write

X(a) = X(a1)⊗. . .⊗X(an) and Z(a) = Z(a1)⊗. . .⊗Z(an)
for the tensor product of n error operators. The set En :=
{X(a)Z(b) : a,b ∈ F

n
q } can be taken as a good error basis.

The error group Gn of order pq2n is generated by the

matrices in En

Gn := {ηcX(a)Z(b) : a,b ∈ F
n
q , c ∈ Fp}.

Let E = ηcX(a)Z(b) ∈ Gn. Then the quantum weight
wtQ(E) of E is given by |{1 ≤ i ≤ n : (ai, bi) �= (0, 0)}|.
The number of X-errors wtX(E) and the number of Z-errors

wtZ(E) in the error operator E are given, respectively, by

wtH(a) and wtH(b). A formal definition of q-ary AQC can

now be given.

Definition 2.3: A q-ary quantum code of length n is a

subspace Q of Vn with dimension K ≥ 1. Let dx and dz
be positive integers. A quantum code Q in Vn is called an

asymmetric quantum code with parameters ((n,K, dz/dx))q
or [[n, k, dz/dx]]q , where k = logq K, if Q detects dx − 1
qudits of X-errors and, at the same time, dz − 1 qudits of Z-

errors, i.e., if 〈ϕ|ψ〉 = 0 for |ϕ〉, |ψ〉 ∈ Q, then |ϕ〉 and E|ψ〉
are orthogonal for any E ∈ Gn such that wtX(E) ≤ dx − 1
and wtZ(E) ≤ dz − 1. Such an asymmetric quantum code Q
with dimension K ≥ 2 is called pure if |ϕ〉 and E|ψ〉 are

orthogonal for any |ϕ〉, |ψ〉 ∈ Q and any E ∈ Gn such that

wtQ(E) ≥ 1 and E satisfies®
wtX(E) ≤ dx − 1

wtZ(E) ≤ dz − 1
.

By convention, an asymmetric quantum code Q with K = 1
is assumed to be pure.

III. CSS-LIKE CONSTRUCTIONS

This section constitutes the most technical part of the

paper. Note that a main tool in the derivation of the standard

CSS construction from the functional approach in [33] is the

connection between codes and orthogonal arrays (OAs) due to

Delsarte (see [9, Th. 4.5] or [18, Th. 4.9]). The codewords in a

general code C can be seen as the rows of an OA A and vice

versa. Since in the construction of the OA Fq-linearity is not

strictly required and the duality can be defined over any valid

bilinear form, it is of mathematical interest to investigate if

the CSS construction can be extended by relaxing the linearity

requirement and including other types of inner products.

First, we derive a construction of pure AQCs based on

nested pairs of codes over Fq under the trace Euclidean inner

product. Then, we show how this construction is related to

other known extensions of the CSS construction discussed

in [33] and in [11].

Recall the following characterization of AQCs presented

in [33].

Theorem 3.1: [33, Th. 3.1]

1) There exists an asymmetric quantum code with param-

eters ((n,K, dz/dx))q with K ≥ 2 if and only if there

exist K nonzero mappings

ϕi : F
n
q → C for 1 ≤ i ≤ K (III.1)

satisfying the following conditions: for each d such that

1 ≤ d ≤ min {dx, dz} and partition of {1, 2, . . . , n},⎧⎪⎨
⎪⎩
{1, 2, . . . , n} = A ∪X ∪ Z ∪B

|A| = d− 1, |B| = n+ d− dx − dz + 1

|X| = dx − d, |Z| = dz − d

,

(III.2)

and each cA, c
′
A ∈ F

|A|
q , cZ ∈ F

|Z|
q and aX ∈ F

|X|
q , we

have the equality

∑
cX∈F

|X|
q ,

cB∈F
|B|
q

Â�ϕi(cA, cX , cZ , cB)ϕj(c
′
A, cX − aX , cZ , cB)

=

®
0 for i �= j

I(cA, c
′
A, cZ ,aX) for i = j

, (III.3)

where I(cA, c
′
A, cZ ,aX) is an element of C which is in-

dependent of i. The notation (cA, cX , cZ , cB) represents

the rearrangement of the entries of the vector c ∈ F
n
q

according to the partition of {1, 2, . . . , n} given in (III.2).

2) Let (ϕi, ϕj) stand for
∑

c∈Fn
q

flϕi(c)ϕj(c). There exists a

pure asymmetric quantum code with parameters ((n,K ≥
1, dz/dx))q if and only if there exist K nonzero mappings

ϕi as shown in (III.1) such that

• ϕi are linearly independent for 1 ≤ i ≤ K, i.e., the

rank of the K × qn matrix (ϕi(c))1≤i≤K,c∈Fn
q

is K;

and

• for each d with 1 ≤ d ≤ min {dx, dz}, a partition in

(III.2) and cA,aA ∈ F
|A|
q , cZ ∈ F

|Z|
q and aX ∈ F

|X|
q ,

we have the equality
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∑
cX∈F

|X|
q ,

cB∈F
|B|
q

Â�ϕi(cA, cX , cZ , cB)ϕj(cA+aA, cX +aX , cZ , cB)

=

®
0 for (aA,aX) �= (0,0)
(ϕi,ϕj)
qdz−1 for (aA,aX) = (0,0)

. (III.4)

Remark 3.2: It is important to note that the values dx and

dz are in fact interchangeable [11, Prop. 4.2]. Physically, such

an interchange can be effected by applying the Hadamard

transform. In the presentation of the parameters of a particular

AQC, it is customary to write dz ≥ dx since phase-flip errors

are taken to be more frequent.

Theorem 3.3: Let dx, dz ∈ N. Let C be an Fr-linear code

over Fq of length n. Assume that d
⊥Trq/r E = d(C

⊥Trq/r E)

is the minimum distance of the dual code C
⊥Trq/r E of

C under the trace Euclidean inner product. For a set

V := {vi : 1 ≤ i ≤ K} of K distinct vectors in F
n
q , let

dv := min {wtH(vi − vj + c) : 1 ≤ i �= j ≤ K, c ∈ C}. If

d
⊥Trq/r E ≥ dz and dv ≥ dx, then there exists an asymmetric

quantum code Q with parameters ((n,K, dz/dx))q .

Proof: The proof follows the same line of argument as

the proof of [11, Th. 4.4], substituting the trace Euclidean

inner product for the trace Hermitian inner product. The key

reason why the same argument works lies in the usage of the

close connection between codes and orthogonal arrays [18,

Th. 4.9] under any valid bilinear form. Furthermore, the

said connection guarantees that the conditions in Part 2) of

Theorem 3.1 are satisfied, making the resulting AQCs pure.

Theorem 3.4: For i = 1, 2, let Ci be an Fr-linear code

with parameters (n,Ki, di)q . If C
⊥Trq/r E

1 ⊆ C2, then there

exists an asymmetric quantum code Q with parametersÄÄ
n, K1·K2

qn , d2/d1
ää

q
= [[n, logq K1+logq K2−n, d2/d1]]q .

Proof: We take C = C
⊥Trq/r E

1 in Theorem 3.3 above.

Since C
⊥Trq/r E

1 ⊆ C2, we have C2 = C
⊥Trq/r E

1 ⊕ C ′, where

C ′ is an Fr-subspace of C2 and ⊕ is the direct sum so that

|C ′| = |C2|∣∣∣C⊥Trq/r E

1

∣∣∣ . Let C ′ = {v1, . . . ,vK}, where K =

|C2|∣∣∣C⊥Trq/r E

1

∣∣∣ = K1·K2

qn by Theorem 2.2. Then

d
⊥Trq/r E = d(C

⊥Trq/r E) = d(C1) = d1 and

dv = min {wtH(vi − vj + c) : 1 ≤ i �= j ≤ K, c ∈ C}
= min

{
wtH(v + c) : 0 �= v ∈ C ′, c ∈ C

⊥Trq/r E

1

}
≥ d2.

The standard CSS construction for pure asymmetric q-ary

quantum codes employs the pair C⊥E
1 ⊆ C2 of Fq-linear codes

of length n.

Theorem 3.5: (Standard CSS Construction for AQC) Let Ci

be Fq-linear codes with parameters [n, ki, di]q for i = 1, 2 with

C⊥E
1 ⊆ C2. Let

dz := wtH(C2 \ C⊥E
1 ) and dx := wtH(C1 \ C⊥E

2 ).

Then there exists an AQC Q with parameters [[n, k1 + k2 −
n, dz/dx]]q . The code Q is pure whenever dz = d2 and dx =
d1.

A proof for this construction for the pure case using the

functional approach is given in [33, Cor. 3.3]. When q = r2,

we can use either the Euclidean or the Hermitian inner product

in the statement of Theorem 3.5.

Noting that the trace Euclidean inner product is just the

Euclidean inner product when the codes involved are Fq-

linear, [33, Cor. 3.3] follows immediately from Theorem 3.4.

Let Fq be a quadratic extension of Fr. Let the codes in the

nested pair be Fr-linear codes in F
n
q . Under the trace Hermitian

inner product, we can derive AQCs according to [11, Th.

4.5]. When the codes are Fq-linear, the trace Hermitian duals

become the Hermitian duals. Hence, the construction with

respect to the Hermitian inner product follows.

In summary, the standard CSS construction for pure AQCs

can be extended to include the constructions of pure AQCs

from nested pairs of classical codes under the Hermitian, trace

Hermitian, and trace Euclidean inner products. We call all of

the above constructions CSS-like.

To show the generality of Theorem 3.4, we demonstrate

how to derive [11, Th. 4.5] when q = r2 from it. Given

a nested pair C
⊥Trq/r E

1 ⊆ C2 of codes yielding a quantum

code of parameters ((n,K, dz/dx))q we construct a nested

pair D
⊥Tr q/rH

1 ⊆ D2 of codes yielding a quantum code of

equal parameters and vice versa.

Theorem 3.6: Let q = r2. Then an ((n,K, dz/dx))q-CSS-

like quantum code with respect to the trace Euclidean inner

product exists if and only if there exists an ((n,K, dz/dx))q-

CSS-like quantum code with respect to the trace Hermitian

inner product.

Proof: See Appendix B.

If, in Theorem 3.6, the codes in the nested pairs are Fq-

linear, then we get the link between AQCs based on the CSS-

like constructions under the Hermitian and Euclidean inner

products.

The mathematical structures investigated above reveal that

for a pair of nested Fq-linear codes it suffices to consider the

Euclidean inner product. In all other cases, it suffices to use

the trace Euclidean inner product.

The relationships among different CSS-like constructions is

summarized in Fig. 1 with the horizontal arrow signifying that

the resulting AQCs have the same parameters.

Trace Euclidean
q=r2←→ Trace Hermitian

Theorem 3.6����Fq−linearity q=r2,

����Fq−linearity

Euclidean Hermitian

Fig. 1. Relationships among CSS-like Constructions

Applying a suitable CSS-like construction to the pair C ⊆
C⊥∗ gives us the following proposition.
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Proposition 3.7: Let C be a self-orthogonal (n, |C|, d)q-

code. Then there exists an AQC Q with parameters [[n, n −
2 logq(|C|), d⊥∗/d⊥∗ ]]q .

The existence of some pure CSS-like AQCs with specified

parameters can often be ruled out by examining the parameters

of the component codes in the nested pair used.

Example 3.8: There does not exist a pure [[5, 1, 3/2]]2-CSS

code.

Proof: First, note that there is no codeword v of weight

5 in any [5, 2, 3]2-code C. Let c ∈ C such that wtH(c) = 3. If

such a codeword v exists, then c+v is a codeword of weight

2 in C, a contradiction. Another possibility is a nested pair

[5, 1, d]2 ⊂ [5, 2, 3]2 with d⊥E = 2. But this forces d = 5,

which has been shown to be impossible above. Since k ≤
n − d + 1 by the Singleton bound, the remaining candidates

of nested pairs, namely [5, 1, d]2 ⊂ [5, 2, 2]2 with d⊥E = 3,

[5, 2, d]2 ⊂ [5, 3, 2]2 with d⊥E = 3, and [5, 3, d]2 ⊂ [5, 4, 2]2
with d⊥E = 3, can all be shown to be impossible.

The next example provides a partial answer to a question

raised in [30, p. 1652].

Example 3.9: A pure [[12, 1, 5/3]]2-CSS code does not ex-

ist.

Proof: For a contradiction, assume that such a code exists.

Then we have a pair of binary classical codes C1 with param-

eters [12, k1, d1]2 and C2 with parameters [12, k2, d2]2, such

that C⊥E
1 ⊂ C2 with k1 + k2 − 12 = 1 and {d1, d2} = {3, 5}.

Case 1: d1 = 3 and d2 = 5: From [15], 2 ≤ k2 ≤ 4.

This forces 9 ≤ k1 ≤ 11. However, for [12, k1, d1]2 with

9 ≤ k1 ≤ 11, d1 ≤ 2 < 3.

Case 2: d1 = 5 and d2 = 3: From [15], 2 ≤ k2 ≤ 8.

This forces 5 ≤ k1 ≤ 11. However, for [12, k1, d1]2 with

5 ≤ k1 ≤ 11, d1 ≤ 4 < 5.

Now that the theoretical foundations on the CSS-like con-

structions have been established, we next show that there are

indeed gains on the parameters of the resulting AQCs. A two-

directional approach is employed in coming up with such

AQCs. First, we directly construct nested pairs of classical

codes and derive the parameters of the resulting AQCs in the

next section. Linear programming is then used to derive the

upper bound for logq(K) in the section after next.

IV. THREE CONSTRUCTIONS OF NESTED PAIRS OF CODES

In this section, we derive pairs of linear and subfield linear

codes which can be used to construct AQCs. Three construc-

tions are considered, namely a construction based on nested

cyclic Fr-linear codes over Fq , a construction from nested

group character codes, and a construction based on best-known

linear codes (BKLC) of length n having a codeword v such

that wtH(v) = n. This last construction yields AQCs with

dx = 2. All computations are done in MAGMA [5] version

V2.16-5.

A. Cyclic Construction

An obvious choice for the construction of nested pairs of

Fq-linear codes is the cyclic construction. Earlier construction

of AQCs based on F2-cyclic codes has been done in [2].

Any Fq-linear cyclic codes in F
n
q is an ideal in the residue

class ring Fq[x]/〈xn − 1〉 (see [19, Ch. 4] or [25, Ch. 7]). A

cyclic code D is a subset of a cyclic code C of equal length

over Fq if and only if the generator polynomial of C divides

the generator polynomial of D. Both polynomials divide xn−
1.

Since we are also interested in nested pairs of Fr-linear

codes over Fq , a generalization to the construction of Fr-linear

nested cyclic codes over Fq is provided here. Our construction

is a further generalization of [6, Th. 14].

Definition 4.1: An (n, rl)q-code C is said to be cyclic

Fr-linear over Fq if C is a subspace of the Fr-vector

space F
n
q which is closed under one cyclic shift, i.e., if

(c0, c1, . . . , cn−1) ∈ C, then so is (cn−1, c0, . . . , cn−2).
Let Fq be the field extension of Fr of degree m such that

Fq = Fr(ω). Every polynomial in Fq[x] can be uniquely

written as

f0(x) + ωf1(x) + · · ·+ ωm−1fm−1(x),

where fi(x) ∈ Fr[x] for all i.
Given a cyclic Fr-linear code C of length n over Fq , we

can view the codewords of C as polynomials in Fq[x]. It is

often convenient to refer to C as the set

{v(x) = v0+v1x+. . .+vn−1x
n−1 : (v0, v1, . . . , vn−1) ∈ C}.

Note that, for all Fr ⊆ Fq , both C and Fq[x]/〈xn − 1〉
are Fr[x]-modules under the usual polynomial multiplication

together with the rule xn = 1.

Theorem 4.2: Let Fq = Fr(ω) be an extension of degree

m over Fr. Any (n, rl)q-cyclic Fr-linear code C over Fq has

m generators, and can be represented as an Fr[x]-module

C = 〈a0,0(x) + ωa0,1(x) + . . .+ ωm−1a0,m−1(x),

a1,0(x) + ωa1,1(x) + . . .+ ωm−2a1,m−2(x),

...
... . .

.

am−2,0(x) + ωam−2,1(x),

am−1,0(x)〉,
where ai,j(x) ∈ Fr[x] for all 0 ≤ i ≤ m − 1 and 0 ≤ j ≤
i − 1. Moreover, these polynomials can be chosen such that

the following properties hold:

i) ai,m−1−i(x)|(xn − 1) in Fr[x] for all 0 ≤ i ≤ m− 1.

ii) ai,m−1−i(x)| (ai−1,m−1−i(x)(x
n − 1)/ai−1,m−i(x)) in

Fr[x] for all 1 ≤ i ≤ m− 1.

iii) l = mn−
m−1∑
i=0

deg(ai,m−1−i(x)).

iv) The sets

{ai,m−1−i(x) : 0 ≤ i ≤ m− 1} and

{ai,j(x)mod (am−j,j(x)) : 0 ≤ i ≤ m− 1− j}
are unique for all 1 ≤ j ≤ m− 1.

Proof: See Appendix C.

To construct an AQC, from a given cyclic Fr-linear code C
over Fq with representation

C = 〈g0(x) = a0,0(x) + ωa0,1(x) + . . .+ ωm−1a0,m−1(x),

g1(x) = a1,0(x) + ωa1,1(x) + . . .+ ωm−2a1,m−2(x),
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...
... . .

.

gm−2(x) = am−2,0(x) + ωam−2,1(x),

gm−1(x) = am−1,0(x)〉,
define D to be the code generated by

{g0(x)b0(x), g1(x)b1(x), . . . , gm−1(x)bm−1(x)} ,

where bi(x) is a divisor of (xn − 1)/ai,m−1−i(x) for all 0 ≤
i ≤ m− 1. D is a cyclic Fr-linear subcode of C.

B. Construction from Group Character Codes

Group character (GC) codes were introduced in [10] based

on elementary abelian 2-groups and were further generalized

in [24] to include the case where the group is (Z/tZ)
l

for l, t ∈
N. We use the definitions and results in [24] for generality.

The elements of (Z/tZ)
l

can be written as (a1, . . . , al)
where 0 ≤ ai ≤ t− 1 for 1 ≤ i ≤ l. Let ||a|| = ∑l

i=1 ai ∈ Z.

Note that 0 ≤ ||a|| ≤ (t− 1)l for all a ∈ (Z/tZ)
l
.

Let r be an integer such that 0 ≤ r < l(t − 1) and let the

set X (r, l; t) be given by

X (r, l; t) = {a ∈ (Z/tZ)
l
: ||a|| > r}. (IV.1)

Definition 4.3: Let Fq be a finite field with t|(q − 1) and

let f0, f1, . . . ftl−1 be the group characters from (Z/tZ)
l

to

Fq \ {0}. Let c = (c0, c1, . . . , ctl−1) be a vector in F
tl

q . Let

Cq(r, l; t) denote the q-ary code

Cq(r, l; t) =

⎧⎨
⎩c :

tl−1∑
j=0

cjfj(x) = 0 for all x ∈ X (r, l; t)

⎫⎬
⎭ .

(IV.2)

The properties of Cq(r, l; t) are known.

Theorem 4.4: [24, Th. 8] Writing r = a(t− 1) + b, where

0 ≤ b ≤ t− 2, the code Cq(r, l; t) has parameters

[tl, kl(r), (t− b)tl−1−a]q , (IV.3)

where

kl(r) =
r∑

i=0

l∑
j=0

(−1)j
Ç
l

j

åÇ
l − 1 + i− jt

t− 1

å
.

The nestedness condition can be deduced directly from

(IV.1) and (IV.2).

Lemma 4.5: If 0 ≤ r1 ≤ r2 < l(t− 1), then Cq(r1, l; t) ⊆
Cq(r2, l; t).

Theorem 4.6: [24, Th. 10] The Euclidean dual

(Cq(r, l; t))
⊥E of Cq(r, l; t) is monomially equivalent1

to Cq(l(t− 1)− 1− r, l; t).
Hence, d

(
(Cq(r, l; t))

⊥E
)

can be computed explicitly.

Theorem 4.7: Let 0 ≤ r1 ≤ r2 < l(t − 1). Let

a, b, γ, δ, k, d1 and d2 be nonnegative integers satisfying

r2 = a(t− 1) + b where 0 ≤ b < t− 1,

l(t− 1)− 1− r1 = γ(t− 1) + δ with 0 ≤ δ < t− 1,

k = kl(r2)− kl(r1),

d1 = (t− δ)tl−1−γ , and

1A discussion on code equivalence can be found in [19, Sects. 1.6 and 1.7].

d2 = (t− b)tl−1−a.

Then there exists an asymmetric stabilizer code Q with pa-

rameters [[tl, k, d2/d1]]q .

Proof: Use the nested pair Cq(r1, l; t) ⊆ Cq(r2, l; t) in

Theorem 3.5. Combining Theorem 4.6 and (IV.3), we get

d
(
(Cq(r1, l; t))

⊥E
)
= (t− δ)tl−1−γ = d1,

if we write l(t−1)−1−r1 = γ(t−1)+δ with 0 ≤ δ < t−1.

The other values are clear.

C. BKLC construction

Let us start with the following result.

Theorem 4.8: Let C be a linear [n, k, d]q-code. If C has

a codeword v such that wtH(v) = n, then there exists an

[[n, k − 1, d/2]]q-code Q.

Proof: Construct a code D := {λv : λ ∈ Fq} ⊂ C. Since

D is MDS, D⊥ is also MDS with parameters [n, n − 1, 2]q .

Setting C1 = D⊥ and C2 = C in Theorem 3.5 completes the

proof.

An obvious strategy is to identify the best-known linear

codes stored in the database of MAGMA that contain a

codeword of weight equal to the length n for small fields

q ∈ {2, 3, 4, 5, 7, 8, 9}. We call this construction the BKLC
construction.

Note that sometimes the database does not contain a linear

code of specified length n and dimension k satisfying the

required condition since this specific requirement has not been

recognized as important before. This in no way excludes the

possibility of the existence of a linear code that has a codeword

of weight n.

V. LINEAR PROGRAMMING BOUNDS

This section details the set-up and the implementation of

the linear programming (LP) bounds (more precisely, systems

of linear inequalities) that we use to derive the upper bound

for k = logq(K) (see [30] for an earlier attempt in the binary

case). Again, let ∗ stand for any one of the Euclidean, trace

Euclidean, Hermitian, and trace Hermitian inner products. In

fact, without loss of generality, ∗ can be taken as the trace

Euclidean inner product based on Fig. 1.

From Section III, given q = rm, n, k, dx, dz , a pure CSS-

like [[n, k, dz/dx]]q code exists if and only if there exists a

pair C1, C2 of Fr-linear codes over Fq such that C⊥∗
1 ⊂ C2,

k = logq

(
|C2|
|C⊥∗

1 |

)
with dx = d1 and dz = d2.

If LP rules out the existence of such a pair, a negative

certificate is issued. Otherwise, the process indicates the

values of k which cannot be ruled out and the parameters

of the (hypothetical) pair C1 and C2 giving such k. This

information is useful when we try to come up with some ad
hoc constructions yielding good codes as illustrated, e.g., in

Subsection VI-C

For 0 ≤ j ≤ n, let Aj and Bj be, respectively, the number

of codewords of weight j in C2 and C1. The corresponding

numbers A⊥∗
j and B⊥∗

j of their respective duals are given by

(II.4). One can write column vectors B,A,B⊥∗ , and A⊥∗ ,

each having n+1 entries to represent the weight distributions
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of C1, C2, and of their duals, respectively. Introduce the matrix

K in the space of real (n+ 1)× (n+ 1) matrices Mn+1(R)
with Kj,i = Kn,q

j (i) ∈ Z from (II.5).

Since C⊥∗
1 ⊂ C2, we obtain C⊥∗

2 ⊂ C1 by taking their

duals. Given these two pairs of nested codes one can follow

Delsarte’s approach [8] to derive bounds for |Ci| and |C⊥∗
i | for

i = 1, 2. For an arbitrary code C ⊆ F
n
q of minimum distance d

having W as a feasible column vector representing its weight

distribution,

|C| ≤ max
W≥0

n∑
i=0

Wi such that D := KW ≥ 0 (V.1)

provided that W0 = 1 and Ws = 0 for 1 ≤ s ≤ d− 1.

If C is Fr-linear, let d⊥∗ be the minimum distance of C⊥∗

and W⊥∗ be a feasible vector representation of its weight

distribution. One can then write, for |C| = ql,

KW = qlW⊥∗ ≥ 0

given that W⊥∗
0 = 1 and W⊥∗

t = 0 for 1 ≤ t ≤ d⊥∗ −1. This

means that (V.1) can be improved by adding the constraints

that Di = 0 for 1 ≤ i ≤ d⊥∗ − 1.

From here on we assume that C is Fr-linear. Let

D(d) := �logr (max |C| in (V.1))� be the largest possible Fr-

dimension of C under Delsarte’s bound. Then any such code

C of minimum distance d satisfies |C| ≤ rD(d). In a similar

fashion, let D(d, d⊥∗) denote �logr (max |C|)� when C has

minimum distance d and C⊥∗ has minimum distance d⊥∗ .

Under this improved bound, as |C| = rml ≤ rD(d,d⊥∗ ), one

has |C⊥∗ | ≥ rmn−D(d,d⊥∗ ). Thus,2

D(d⊥∗ , d) ≥ dimFr(C
⊥∗) ≥ mn−D(d, d⊥∗).

Dually, we get

D(d, d⊥∗) ≥ dimFr(C) ≥ mn−D(d⊥∗ , d).

To limit our search space, we need to establish feasible

values for the pair (k, k′) to be used as part of the input to

establish the LP bound. Let |C1| = qk+k′
and |C2| = qn−k′

for mk,mk′ ∈ Z. Let dx = d(C1) and dz = d(C2) be given.

Let α := D(dx, dz) and β := D(dz, dx). Since C⊥∗
1 ⊂ C2, the

pair of codes
Ä
C1, C

⊥∗
1

ä
satisfies d(C1) = dx and d(C⊥∗

1 ) ≥
dz . This gives

α ≥ dimFr
(C1) = m(k + k′) ≥ mn− β and

β ≥ dimFr
(C1⊥∗ ) = m(n− k − k′) ≥ mn− α.

Looking at the duals, since C⊥∗
2 ⊂ C1, one has d(C⊥∗

2 ) ≥
dx. The pair of codes

Ä
C2, C

⊥∗
2

ä
satisfies d(C2) = dz and

d(C⊥∗
2 ) ≥ dx. Hence,

β ≥ dimFr(C2) = m(n− k′) ≥ mn− α and

α ≥ dimFr
(C⊥∗

2 ) = mk′ ≥ mn− β.

These sets of inequalities are equivalent to the system®
m(k + k′) ≤ α

mk′ ≥ mn− β
. (V.2)

2The above and what follows do not depend on the particular nature of the
bound D(d, d⊥∗ ).

We add mk ≥ 1 since C⊥∗
2 is a strict subset of C1 and

0 < k′ < n−k to ensure dz, dx > 1 since our AQC Q should

have both X-error and Z-error detection capability.

Drawing the picture for feasible (mk,mk′), the possible

pairs must correspond to the integer points in the gray triangle.

mk

mk′

mn− β

α

1 α

While many tuples (n, q, dx, dz) are ruled out this way, there

are situations when there will be feasible (mk,mk′).
Example 5.1: Consider (n, q, dx, dz) = (7, 4, 5, 2) for m =

2. By Delsarte’s bound, it is known (see [4] for more details)

that the largest sizes of F4-codes with d = 5 and d = 2 are

bounded above by, respectively, 40 and 4096. In this case,

α = 5 = �log2(40)� and β = 12 = log2(4096). Thus, the

gray triangle containing all six possible (mk,mk′) values has

vertices (1, 2), (1, 4), and (3, 2).
Once feasible (mk,mk′) values are found, one can prepare

the input tuple (n, q, k, k′, dx, dz) for the formal LP whose

objective function3 is to maximize

dz−1∑
j=1

Aj ,

subject to the following constraints:

1) A0 = B0 = A⊥∗
0 = B⊥∗

0 = 1,

2) Aj = 0 for 1 ≤ j < d(C2) and Aj ≥ 0 for j ≥ d(C2),
3) Bj = 0 for 1 ≤ j < d(C1) and Bj ≥ 0 for j ≥ d(C1),
4) A⊥∗

j = 0 for 1 ≤ j < d(C⊥∗
2 ) and A⊥∗

j ≥ 0 for j ≥
d(C⊥∗

2 ),
5) B⊥∗

j = 0 for 1 ≤ j < d(C⊥∗
1 ) and B⊥∗

j ≥ 0 for j ≥
d(C⊥∗

1 ),
6) KA⊥∗ = qk

′
A,

7) KB⊥∗ = qn−k−k′
B,

8) Aj = B⊥∗
j for 0 ≤ j ≤ dz − 1, Adz

> B⊥∗
dz

, and Aj ≥
B⊥∗

j for all dz < j ≤ n,

9) Bj = A⊥∗
j for 0 ≤ j ≤ dx − 1, Bdx > A⊥∗

dx
, and Bj ≥

A⊥∗
j for all dx < j ≤ n.

Constraints 6 and 7 come from combining (II.4) and the fact

that K2 = qnI where I is the identity matrix. The last two

constraints take care of the purity assumption that wtH(C2 \
C⊥∗

1 ) = d(C2) and wtH(C1 \ C⊥∗
2 ) = d(C1).

The latter LP rules out, for instance, the tuple

(n, q, k, k′, dx, dz) = (6, 2, 2, 1, 3, 2), which is not ruled out by

3In fact, any linear function can be chosen.
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the gray triangle above. Indeed, for (n, q, dx, dz) = (6, 2, 3, 2),
the integer points (k, k′) in the triangle are (1, 1), (1, 2), and

(2, 1). For the first two tuples, the LP is feasible. For the

third, one can compute a Farkas-like certificate of infeasibility

for the system 1)–9) as follows.

After reordering the constraints and multiplying some of

them, if necessary, by −1, the system can be rewritten as

M1 ·
Ç
A

B

å
= r ≥ 0, M2 ·

Ç
A

B

å
≥ 0, (V.3)

where M1, M2 are matrices with 2n + 2 columns each and

0 �= r is a nonnegative vector.

One then tries to find a vector s = (s1s2) satisfying

(Mᵀ
1 M

ᵀ
2 )

(
s1
s2

) ≤ 0 such that s2 ≥ 0 and sᵀ1r > 0. It follows

from an appropriate form of the Farkas Lemma that such an

s exists if and only if the system 1)–9) is infeasible. To see

sufficiency, note that sᵀ
(
M1

M2

)(
A
B

) ≤ 0, whereas sᵀ
(
r
0

)
> 0, a

contradiction.

The vector s certifying infeasibility can be found by lin-

ear programming. The details of such a computation for

(n, q, k, k′, dx, dz) = (6, 2, 2, 1, 3, 2) is in Appendix D.

VI. GOOD PURE CSS-LIKE AQCS BASED ON LINEAR

PROGRAMMING BOUND

Based on the LP bound, this section presents good AQCs

derived from the nested pairs of classical codes constructed

by the methods outlined in Section IV.

By Proposition 3.7, good AQCs with K = 1 and dz = dx
can be derived from self-dual codes having the largest possible

minimum distance. Lists of extremal and optimal self-dual

codes over various finite fields can be found in [26, Ch.

11]. More recent results are available in [16], [17] as well

as prominent references therein. The parameters of the AQCs

that can be derived from these extremal or optimal self-dual

codes via CSS-like constructions can be computed easily. In

the case of q = 4, for example, [11, Table I] provides the most

updated list. Henceforth, we consider AQCs with K > 1.

Among the best pure AQCs is of course the class of

codes reaching the equality of the quantum Singleton bound

K ≤ qn−dz−dx+2. Such codes are referred to as AQMDS

codes whose full treatment can be found in [12]. Assuming

the validity of the classical MDS conjecture, the lengths of

pure AQMDS codes are bounded above roughly by q. It is of

interest, therefore, to identify the best possible pure CSS-like

AQCs for lengths beyond the possible values for the MDS

type.

According to the LP bound, Table I gives a criterion for the

goodness of the constructed AQCs.

To present our findings in as concise a manner as possible,

we separate the tables of good pure AQCs according to the

fields. When q is a prime, only Fq-linear pairs are possible.

The results are presented in Subsection VI-A.

When Fq is a nontrivial extension of Fp, then we need

to consider also the case where the pairs consist of subfield

linear codes. For q ∈ {4, 8, 9}, we differentiate between the

strictly Fq-linear cases and the Fr-linear cases. AQCs from Fr-

linear construction beating the best that the strictly Fq-linear

TABLE I
MEASURE OF GOODNESS

Label Description
Optimal The LP bound for k is reached.

BeOpLin The pair of nested subfield linear codes yields better k
than the LP bound value when Fq-linearity is imposed.

OpLin The LP bound with Fq-linearity required is attained.

ROpLin The pair of nested subfield linear codes yields the LP
bound value when Fq-linearity is imposed.

construction can achieve are listed as well to highlight the

gain that we get from going non-Fq-linear. Subsection VI-B

presents the tables.

In both subsections, the tables are ordered according to n, dx
and dz . The following shorthands are used to distinguish the

types of construction:

1) ACC stands for Fr-linear but not Fq-linear nested cyclic

pair of codes where at least one of the codes in the pair

is not Fq-linear.

2) AH stands for an ad hoc pair of codes. Their explicit con-

struction will be provided in detail in Subsection VI-C.

3) BC stands for a nested pair of codes where the supercode

is taken from the MAGMA’s database of best-known

linear codes having a codeword v with wtH(v) = n.

4) CC stands for Fq-linear nested cyclic pair of codes.

5) GC stands for Fq-linear nested pair of group character

codes.

6) For q = 4, the type SO refers to an AQC which is derived

from a self-orthogonal code C discussed in [11, Table II,

Sect. VII].

A. Tables of Optimal Pure Asymmetric CSS Codes for q ∈
{2, 3, 5, 7}

The lists of optimal pure AQCs for q ∈ {2, 3, 5, 7} are

given, respectively for each q, in Tables II, IV, VI, and VIII.

For each q, the table is then followed by the table giving the

explicit pairs of cyclic codes D ⊂ C yielding them. To save

space, the generator polynomials of the codes C and D are

presented in an abbreviated form. The generator polynomial

g(x) of the [n, kC ]q-code C is written as g = (c0c1 . . . cn−kC
)

instead of as the polynomial g(x) = c0 + c1x + . . . +
cn−kC

xn−kC . Since g(x) divides the generator polynomial of

D, we write the latter as (d0d1 . . . dkC−kD
)g where kD is the

dimension of D. The details on the explicit cyclic pairs can

be found in Tables III, V, VII, and IX.

The list of best-known linear codes from the database of

MAGMA yielding good AQCs will not be presented here

since they can be searched and checked easily. For AQCs from

group character codes, we simply enumerate them in Table X

according to the notations used in Theorem 4.7.

B. Tables of Good Pure Asymmetric CSS-like Codes for q ∈
{4, 8, 9}

In this subsection we list down good AQCs for q ∈ {4, 8, 9}
based on Table I. To qualify the goodness of a specific code

under consideration, the theoretical LP bound for k = logq K
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TABLE II
OPTIMAL PURE ASYMMETRIC CSS CODES OVER F2

No. AQC Q Type No. AQC Q Type No. AQC Q Type No. AQC Q Type
1 [[4, 1, 2/2]]2 AH 22 [[15, 4, 4/4]]2 CC 43 [[24, 18, 3/2]]2 BC 64 [[31, 15, 6/3]]2 CC
2 [[5, 2, 2/2]]2 AH 23 [[15, 2, 5/4]]2 CC 44 [[24, 17, 4/2]]2 BC 65 [[31, 6, 11/3]]2 CC
3 [[6, 1, 3/2]]2 CC 24 [[16, 10, 4/2]]2 BC 45 [[24, 13, 6/2]]2 BC 66 [[31, 5, 12/3]]2 CC
4 [[7, 3, 3/2]]2 CC 25 [[16, 4, 8/2]]2 BC 46 [[24, 11, 8/2]]2 BC 67 [[31, 1, 15/3]]2 CC
5 [[7, 1, 3/3]]2 CC 26 [[17, 8, 5/2]]2 CC 47 [[26, 1, 13/2]]2 CC 68 [[31, 15, 5/4]]2 CC
6 [[8, 3, 4/2]]2 BC 27 [[17, 1, 5/5]]2 CC 48 [[27, 13, 7/2]]2 BC 69 [[31, 5, 11/4]]2 CC
7 [[10, 1, 5/2]]2 CC 28 [[18, 8, 6/2]]2 BC 49 [[28, 22, 3/2]]2 BC 70 [[31, 11, 5/5]]2 CC
8 [[11, 6, 3/2]]2 BC 29 [[18, 1, 9/2]]2 CC 50 [[28, 21, 4/2]]2 CC 71 [[31, 10, 6/5]]2 CC
9 [[12, 6, 4/2]]2 CC 30 [[20, 14, 3/2]]2 BC 51 [[28, 13, 8/2]]2 BC 72 [[31, 1, 11/5]]2 CC

10 [[13, 1, 5/3]]2 AH 31 [[20, 13, 4/2]]2 BC 52 [[29, 5, 13/2]]2 BC 73 [[32, 25, 4/2]]2 BC
11 [[14, 4, 6/2]]2 CC 32 [[21, 15, 3/2]]2 CC 53 [[30, 22, 4/2]]2 CC 74 [[32, 16, 8/2]]2 BC
12 [[14, 1, 7/2]]2 CC 33 [[21, 11, 5/2]]2 CC 54 [[30, 5, 14/2]]2 BC 75 [[32, 10, 12/2]]2 BC
13 [[15, 10, 3/2]]2 CC 34 [[21, 7, 5/3]]2 CC 55 [[30, 1, 15/2]]2 CC 76 [[32, 5, 16/2]]2 BC
14 [[15, 8, 4/2]]2 CC 35 [[21, 6, 6/3]]2 CC 56 [[31, 25, 3/2]]2 CC 77 [[33, 22, 5/2]]2 BC
15 [[15, 6, 5/2]]2 CC 36 [[21, 6, 5/4]]2 CC 57 [[31, 20, 5/2]]2 CC 78 [[34, 22, 6/2]]2 BC
16 [[15, 4, 7/2]]2 CC 37 [[21, 3, 5/5]]2 CC 58 [[31, 16, 7/2]]2 BC 79 [[35, 27, 4/2]]2 CC
17 [[15, 7, 3/3]]2 CC 38 [[21, 2, 6/5]]2 CC 59 [[31, 10, 11/2]]2 CC 80 [[36, 29, 3/2]]2 BC
18 [[15, 6, 4/3]]2 CC 39 [[22, 1, 11/2]]2 CC 60 [[31, 5, 15/2]]2 CC 81 [[36, 28, 4/2]]2 BC
19 [[15, 3, 5/3]]2 CC 40 [[23, 13, 5/2]]2 BC 61 [[31, 21, 3/3]]2 CC 82 [[40, 33, 3/2]]2 BC
20 [[15, 2, 6/3]]2 CC 41 [[23, 11, 7/2]]2 CC 62 [[31, 20, 4/3]]2 CC 83 [[40, 32, 4/2]]2 BC
21 [[15, 1, 7/3]]2 CC 42 [[23, 1, 7/7]]2 CC 63 [[31, 16, 5/3]]2 CC

TABLE X
NESTED PAIRS OF GROUP CHARACTER CODES YIELDING OPTIMAL

ASYMMETRIC CSS CODES IN TABLES IV, VI, AND VIII

q (r1, r2, l, t) AQC Q
3 (1, 2, 3, 2) [[8, 3, 4/2]]3

(1, 3, 4, 2) [[16, 10, 4/2]]3
(1, 4, 5, 2) [[32, 25, 4/2]]3

5 (1, 2, 3, 2) [[8, 3, 4/2]]5
7 (1, 3, 2, 3) [[9, 5, 3/2]]7

(2, 3, 2, 3) [[9, 2, 6/2]]7

is explicitly provided. The defect Def is measured by subtract-

ing the actual value of k from the theoretical LP value.

Up to reasonable lengths, Tables XI, XIV, and XVII contain

good codes for q ∈ {4, 8, 9}. For brevity, in Table XI the

convention that F4 = F2(w) where w is a primitive root of an

irreducible degree 2 polynomial in F2[x] is followed. Similarly,

in Table XIV we use the convention that F8 = F2(w) where

w is a primitive root of an irreducible polynomial of degree

3 in F2[x]. In Table XVII we let F9 = F3(w) where w is a

primitive root of a monic irreducible polynomial of degree 2
in F3[x].

In Tables XII, XV, and XVIII, nested subfield linear

cyclic codes yielding good codes are listed down while Ta-

bles XIII, XVI, and XIX present the cyclic pairs. We use

the notations indicated in Theorem 4.2 and the abbreviation

already mentioned above to write the generator polynomials.

C. Some Ad Hoc Constructions

In some cases, an ad hoc construction of suitable nested

pairs of classical codes indicated by the linear programming

output yields AQCs with optimal k.

We show an explicit construction for codes Q with param-

eters [[4, 1, 2/2]]2 and [[5, 2, 2/2]]2 by exhibiting a generator

matrix for each of [4, 2, 2]2 and [5, 3, 2]2-codes containing a

codeword of weight 4 and 5, respectively. The matrices areÅ
1 0 1 0
0 1 0 1

ã
and

Ñ
1 0 0 0 1
0 1 0 1 1
0 0 1 0 1

é
.

A [[13, 1, 5/3]]2-code alluded to by a referee of [30] can

also be constructed as shown below. It is rather surprising that

this CSS code is optimal, given that it is far from reaching

the quantum Singleton bound. It is of interest to know if the

construction here is essentially the only one possible, up to

code equivalence.

Consider the best-known [13, 9, 3]2-linear code C2 from the

MAGMA database. Its dual C⊥E
2 is a [13, 4, 6]2-code. Next,

we add the row vector 1 := (1, 1, . . . , 1) to the generator

matrix of C⊥E
2 to get a [13, 5, 5]2-code C1. The dual of C1

is a [13, 8, 4]2-code which is a subcode of C2. Hence, we can

use C⊥E
1 ⊂ C2 to get a [[13, 1, 5/3]]2-quantum code Q.

Recently, some new best-known linear codes over F5 are

presented in [21, Sec. 5]. The first one is of parameters

[36, 28, 6]5 and is labeled C36 in the said reference. By

shortening this code at the first position a [35, 27, 6]5-code

is derived. If we shorten C36 at the first two positions,

we get a [34, 26, 6]5-code. It can be easily checked, start-

ing with the generator matrix of C36, that each of these

three codes contains a codeword v of weight equal to its

length. By Theorem 4.8, we get CSS codes with parame-

ters [[36, 27, 6/2]]5, [[35, 26, 6/2]]5, and [[34, 25, 6/2]]5, all of

which are optimal.

VII. CONCLUSION AND OPEN PROBLEMS

It is instructive to consider, by way of simple examples

presented in Table XX, the difference between the best

performing symmetric quantum codes and their asymmetric

counterparts. AQCs allow us to tailor the process of error-

correction better once the ratio of asymmetry in the channel

is known or can be approximated properly. Extensive data on
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TABLE III
NESTED PAIRS OF CYCLIC CODES OVER F2 YIELDING OPTIMAL ASYMMETRIC CSS CODES IN TABLE II

C and D Generator Polynomials AQC Q C and D Generator Polynomials AQC Q
[6, 5, 2]2 g = (11) [[6, 1, 3/2]]2 [21, 12, 5]2 g = (1110110011) [[21, 3, 5/5]]2
[6, 4, 2]2 (11)g [21, 9, 8]2 (1001)g
[7, 4, 3]2 g = (1011) [[7, 3, 3/2]]2 [21, 12, 5]2 g = (1110110011) [[21, 2, 6/5]]2
[7, 1, 7]2 (1101)g [21, 10, 5]2 (111)g
[7, 4, 3]2 g = (1011) [[7, 1, 3/3]]2 [22, 21, 2]2 g = (11) [[22, 1, 11/2]]2
[7, 3, 4]2 (11)g [22, 20, 2]2 (11)g
[10, 9, 2]2 g = (11) [[10, 1, 5/2]]2 [23, 12, 7]2 g = (110001110101) [[23, 11, 7/2]]2
[10, 8, 2]2 (11)g [23, 1, 23]2 (101011100011)g
[12, 11, 2]2 g = (11) [[12, 6, 4/2]]2 [23, 12, 7]2 g = (110001110101) [[23, 1, 7/7]]2
[12, 5, 4]2 (1101011)g [23, 11, 8]2 (11)g
[14, 13, 2]2 g = (11) [[14, 4, 6/2]]2 [26, 25, 2]2 g = (11) [[26, 1, 13/2]]2
[14, 9, 4]2 (11101)g [26, 24, 2]2 (11)g
[14, 2, 7]2 g = (1010101010101) [[14, 1, 7/2]]2 [28, 22, 4]2 g = (1001011) [[28, 21, 4/2]]2
[14, 1, 14]2 (11)g [28, 1, 28]2 (1110011110101001001101)g
[15, 11, 3]2 g = (10011) [[15, 10, 3/2]]2 [30, 28, 2]2 g = (111) [[30, 22, 4/2]]2
[15, 1, 15]2 (11101100101)g [30, 6, 14]2 (11110010111111100001101)g
[15, 13, 2]2 g = (111) [[15, 8, 4/2]]2 [30, 29, 2]2 g = (11) [[30, 1, 15/2]]2
[15, 5, 7]2 (111010001)g [30, 28, 2]2 (11)g
[15, 7, 5]2 g = (100010111) [[15, 6, 5/2]]2 [31, 26, 3]2 g = (111101) [[31, 25, 3/2]]2
[15, 1, 15]2 (1111001)g [31, 1, 31]2 (10001110101001011110011011)g
[15, 14, 2]2 g = (11) [[15, 4, 7/2]]2 [31, 21, 5]2 g = (10001110001) [[31, 20, 5/2]]2
[15, 10, 4]2 (10011)g [31, 1, 31]2 (111101001111100101111)g
[15, 10, 4]2 g = (101011) [[15, 6, 4/3]]2 [31, 11, 11]2 g = (111001110001010011001) [[31, 10, 11/2]]2
[15, 4, 8]2 (1011101)g [31, 1, 31]2 (10010110111)g
[15, 6, 6]2 g = (1100111001) [[15, 2, 6/3]]2 [31, 6, 15]2 g = (11001011011110101000100111) [[31, 5, 15/2]]2
[15, 4, 8]2 (111)g [31, 1, 31]2 (101001)g
[15, 10, 4]2 g = (101011) [[15, 4, 4/4]]2 [31, 26, 3]2 g = (111101) [[31, 21, 3/3]]2
[15, 6, 6]2 (10011)g [31, 5, 16]2 (1011001010111010100011)g
[15, 10, 4]2 g = (101011) [[15, 2, 5/4]]2 [31, 25, 4]2 g = (1000111) [[31, 20, 4/3]]2
[15, 8, 4]2 (111)g [31, 5, 16]2 (110111001101001100001)g
[15, 11, 3]2 g = (10011) [[15, 7, 3/3]]2 [31, 21, 5]2 g = (10001110001) [[31, 16, 5/3]]2
[15, 4, 8]2 (11100111)g [31, 5, 16]2 (10111001100000011)g
[15, 11, 3]2 g = (10011) [[15, 3, 5/3]]2 [31, 20, 6]2 g = (100110110001) [[31, 15, 6/3]]2
[15, 8, 4]2 (1001)g [31, 5, 16]2 (1101110101011101)g
[15, 11, 3]2 g = (10011) [[15, 1, 7/3]]2 [31, 11, 11]2 g = (111001110001010011001) [[31, 6, 11/3]]2
[15, 10, 4]2 (11)g [31, 5, 16]2 (1110001)g
[17, 9, 5]2 g = (111010111) [[17, 1, 5/5]]2 [31, 10, 12]2 g = (1010010010101101001111) [[31, 5, 12/3]]2
[17, 8, 6]2 (11)g [31, 5, 16]2 (100101)g
[17, 9, 5]2 g = (111010111) [[17, 8, 5/2]]2 [31, 26, 3]2 g = (111101) [[31, 1, 15/3]]2
[17, 1, 17]2 (100111001)g [31, 25, 4]2 (11)g
[18, 2, 9]2 g = (10101010101010101) [[18, 1, 9/2]]2 [31, 21, 5]2 g = (10001110001) [[31, 15, 5/4]]2
[18, 1, 18]2 (11)g [31, 6, 15]2 (1101000100000001)g
[21, 20, 2]2 g = (11) [[21, 15, 3/2]]2 [31, 11, 11]2 g = (111001110001010011001) [[31, 5, 11/4]]2
[21, 5, 10]2 (1111011100110101)g [31, 6, 15]2 (101001)g
[21, 20, 2]2 g = (11) [[21, 11, 5/2]]2 [31, 21, 5]2 g = (10001110001) [[31, 11, 5/5]]2
[21, 9, 8]2 (100110000101)g [31, 10, 12]2 (100110111011)g
[21, 12, 5]2 g = (1110110011) [[21, 7, 5/3]]2 [31, 20, 6]2 g = (100110110001) [[31, 10, 6/5]]2
[21, 5, 10]2 (10011111)g [31, 10, 12]2 (10111011111)g
[21, 11, 6]2 g = (10101011001) [[21, 6, 6/3]]2 [31, 11, 11]2 g = (111001110001010011001) [[31, 1, 11/5]]2
[21, 5, 10]2 (1010111)g [31, 10, 12]2 (11)g
[21, 12, 5]2 g = (1110110011) [[21, 6, 5/4]]2 [35, 34, 2]2 g = (11) [[35, 27, 4/2]]2
[21, 6, 7]2 (1110101)g [35, 7, 14]2 (1110111010100110100100111101)g

TABLE XX
SOME EXAMPLES COMPARING SYMMETRIC AND ASYMMETRIC

QUANTUM CODES FOR q = 2

n k Symmetric Asymmetric
d (dz , dx)

7 3 2 (3, 2)
8 3 3 (4, 2)
15 1 5 (7, 3)

the best-known symmetric quantum codes, given n and k for

q = 2, can be found in [15].

In this paper, the functional approach is used to establish

CSS-like constructions allowing us to use pairs of nested

subfield linear codes over Fq to construct pure AQCs. The

standard CSS construction is shown to be a special case.

Combining specific constructions of pairs of nested clas-

sical codes and linear programming, we show that CSS-

like constructions based on pairs of subfield linear codes

over Fq often give us optimal or good q-ary pure AQCs

with better parameters than the best that the standard CSS

construction can achieve. Lists of optimal or best known pure

CSS-like AQCs up to some computationally reasonable length

for q ∈ {2, 3, 4, 5, 7, 8, 9} are given in the hope of providing

a more comprehensive list of best performing AQCs.

While working on earlier versions of this paper, we found

out that the linear programming (LP) approach was sufficiently

effective for small values of q and n. At the same time, the loss

of precision due to the extremely large coefficients involved
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TABLE IV
OPTIMAL PURE ASYMMETRIC CSS CODES OVER F3

No. AQC Q Type No. AQC Q Type No. AQC Q Type No. AQC Q Type
1 [[6, 2, 3/2]]3 CC 49 [[17, 11, 4/2]]3 BC 97 [[24, 16, 5/2]]3 BC 145 [[30, 25, 3/2]]3 BC
2 [[6, 1, 4/2]]3 CC 50 [[17, 9, 5/2]]3 BC 98 [[24, 15, 6/2]]3 BC 146 [[30, 23, 4/2]]3 BC
3 [[7, 3, 3/2]]3 BC 51 [[17, 8, 6/2]]3 BC 99 [[24, 11, 9/2]]3 BC 147 [[30, 4, 18/2]]3 BC
4 [[7, 2, 4/2]]3 BC 52 [[17, 6, 7/2]]3 BC 100 [[24, 6, 12/2]]3 BC 148 [[30, 1, 22/2]]3 BC
5 [[8, 4, 3/2]]3 CC 53 [[17, 5, 8/2]]3 BC 101 [[24, 3, 15/2]]3 CC 149 [[31, 26, 3/2]]3 BC
6 [[8, 3, 4/2]]3 CC,GC 54 [[18, 13, 3/2]]3 BC 102 [[24, 16, 3/3]]3 CC 150 [[31, 24, 4/2]]3 BC
7 [[8, 2, 5/2]]3 CC 55 [[18, 12, 4/2]]3 BC 103 [[24, 14, 4/3]]3 CC 151 [[31, 1, 23/2]]3 BC
8 [[8, 2, 3/3]]3 CC 56 [[18, 10, 5/2]]3 BC 104 [[25, 20, 3/2]]3 BC 152 [[32, 27, 3/2]]3 BC
9 [[8, 1, 4/3]]3 CC 57 [[18, 9, 6/2]]3 BC 105 [[25, 18, 4/2]]3 BC 153 [[32, 25, 4/2]]3 BC,GC
10 [[9, 5, 3/2]]3 BC 58 [[19, 14, 3/2]]3 BC 106 [[25, 17, 5/2]]3 BC 154 [[32, 1, 24/2]]3 BC
11 [[9, 4, 4/2]]3 BC 59 [[19, 13, 4/2]]3 BC 107 [[25, 16, 6/2]]3 BC 155 [[33, 28, 3/2]]3 BC
12 [[9, 3, 5/2]]3 BC 60 [[19, 11, 5/2]]3 BC 108 [[25, 7, 12/2]]3 BC 156 [[33, 26, 4/2]]3 BC
13 [[9, 2, 6/2]]3 BC 61 [[19, 10, 6/2]]3 BC 109 [[25, 6, 13/2]]3 BC 157 [[33, 24, 5/2]]3 BC
14 [[10, 6, 3/2]]3 BC 62 [[19, 8, 7/2]]3 BC 110 [[25, 3, 16/2]]3 BC 158 [[33, 16, 10/2]]3 BC
15 [[10, 5, 4/2]]3 BC 63 [[20, 15, 3/2]]3 BC 111 [[26, 21, 3/2]]3 CC 159 [[33, 1, 24/2]]3 BC
16 [[11, 7, 3/2]]3 BC 64 [[20, 14, 4/2]]3 CC 112 [[26, 19, 4/2]]3 CC 160 [[34, 29, 3/2]]3 BC
17 [[11, 5, 5/2]]3 CC 65 [[20, 12, 5/2]]3 BC 113 [[26, 18, 5/2]]3 CC 161 [[34, 27, 4/2]]3 BC
18 [[11, 1, 5/5]]3 CC 66 [[20, 11, 6/2]]3 BC 114 [[26, 17, 6/2]]3 BC 162 [[34, 25, 5/2]]3 BC
19 [[12, 8, 3/2]]3 BC 67 [[20, 9, 7/2]]3 BC 115 [[26, 7, 13/2]]3 CC 163 [[34, 17, 10/2]]3 BC
20 [[12, 6, 4/2]]3 CC 68 [[20, 8, 8/2]]3 BC 116 [[26, 6, 14/2]]3 CC 164 [[34, 1, 25/2]]3 BC
21 [[12, 5, 6/2]]3 BC 69 [[20, 5, 10/2]]3 CC 117 [[26, 3, 17/2]]3 CC 165 [[35, 30, 3/2]]3 BC
22 [[12, 2, 4/4]]3 CC 70 [[20, 4, 11/2]]3 CC 118 [[26, 18, 3/3]]3 CC 166 [[35, 28, 4/2]]3 BC
23 [[13, 9, 3/2]]3 CC 71 [[20, 10, 4/4]]3 CC 119 [[26, 16, 4/3]]3 CC 167 [[35, 26, 5/2]]3 BC
24 [[13, 7, 4/2]]3 BC 72 [[20, 1, 10/4]]3 CC 120 [[26, 15, 5/3]]3 CC 168 [[35, 17, 11/2]]3 BC
25 [[13, 6, 5/2]]3 CC 73 [[21, 16, 3/2]]3 BC 121 [[26, 4, 13/3]]3 CC 169 [[35, 1, 26/2]]3 BC
26 [[13, 3, 7/2]]3 CC 74 [[21, 14, 4/2]]3 BC 122 [[26, 3, 14/3]]3 CC 170 [[36, 31, 3/2]]3 BC
27 [[13, 7, 3/3]]3 CC 75 [[21, 13, 5/2]]3 BC 123 [[26, 14, 4/4]]3 CC 171 [[36, 29, 4/2]]3 BC
28 [[13, 4, 5/3]]3 CC 76 [[21, 12, 6/2]]3 BC 124 [[26, 13, 5/4]]3 CC 172 [[36, 27, 5/2]]3 BC
29 [[13, 3, 6/3]]3 CC 77 [[21, 10, 7/2]]3 BC 125 [[26, 12, 6/4]]3 CC 173 [[36, 17, 12/2]]3 BC
30 [[13, 1, 7/3]]3 CC 78 [[21, 9, 8/2]]3 BC 126 [[26, 2, 13/4]]3 CC 174 [[36, 1, 27/2]]3 BC
31 [[13, 1, 5/5]]3 CC 79 [[21, 8, 9/2]]3 BC 127 [[26, 1, 14/4]]3 CC 175 [[37, 32, 3/2]]3 BC
32 [[14, 9, 3/2]]3 BC 80 [[22, 17, 3/2]]3 BC 128 [[26, 12, 5/5]]3 CC 176 [[37, 30, 4/2]]3 BC
33 [[14, 8, 4/2]]3 BC 81 [[22, 15, 4/2]]3 CC 129 [[26, 1, 13/5]]3 CC 177 [[37, 28, 5/2]]3 BC
34 [[14, 7, 5/2]]3 BC 82 [[22, 14, 5/2]]3 BC 130 [[27, 22, 3/2]]3 BC 178 [[37, 1, 27/2]]3 BC
35 [[14, 6, 6/2]]3 BC 83 [[22, 13, 6/2]]3 BC 131 [[27, 20, 4/2]]3 BC 179 [[38, 33, 3/2]]3 BC
36 [[14, 4, 7/2]]3 BC 84 [[22, 11, 7/2]]3 CC 132 [[27, 19, 5/2]]3 BC 180 [[38, 31, 4/2]]3 BC
37 [[15, 10, 3/2]]3 BC 85 [[22, 5, 12/2]]3 CC 133 [[27, 18, 6/2]]3 BC 181 [[38, 29, 5/2]]3 BC
38 [[15, 9, 4/2]]3 BC 86 [[22, 10, 4/4]]3 CC 134 [[27, 7, 14/2]]3 BC 182 [[38, 1, 28/2]]3 BC
39 [[15, 7, 5/2]]3 BC 87 [[22, 6, 7/4]]3 CC 135 [[27, 6, 15/2]]3 BC 183 [[39, 34, 3/2]]3 BC
40 [[15, 6, 6/2]]3 BC 88 [[22, 2, 7/7]]3 CC 136 [[27, 3, 18/2]]3 BC 184 [[39, 32, 4/2]]3 BC
41 [[16, 11, 3/2]]3 BC 89 [[23, 18, 3/2]]3 BC 137 [[27, 1, 20/2]]3 BC 185 [[39, 30, 5/2]]3 BC
42 [[16, 10, 4/2]]3 BC,GC 90 [[23, 16, 4/2]]3 BC 138 [[28, 23, 3/2]]3 BC 186 [[39, 1, 29/2]]3 BC
43 [[16, 8, 5/2]]3 BC 91 [[23, 15, 5/2]]3 BC 139 [[28, 21, 4/2]]3 BC 187 [[40, 35, 3/2]]3 BC
44 [[16, 7, 6/2]]3 BC 92 [[23, 14, 6/2]]3 BC 140 [[28, 19, 6/2]]3 BC 188 [[40, 33, 4/2]]3 BC
45 [[16, 5, 7/2]]3 BC 93 [[23, 11, 8/2]]3 BC 141 [[28, 1, 21/2]]3 BC 189 [[40, 31, 5/2]]3 BC
46 [[16, 2, 10/2]]3 CC 94 [[23, 1, 8/8]]3 CC 142 [[29, 24, 3/2]]3 BC 190 [[40, 1, 30/2]]3 BC
47 [[16, 2, 5/5]]3 CC 95 [[24, 19, 3/2]]3 CC 143 [[29, 22, 4/2]]3 BC 191 [[40, 28, 4/4]]3 CC
48 [[17, 12, 3/2]]3 BC 96 [[24, 17, 4/2]]3 CC 144 [[29, 1, 21/2]]3 BC

in the computation soon became very limiting as these values

grew larger, as long as traditional LP solvers such as CPLEX

were used.

To handle larger values of q and n, we started experimenting

with arbitrary precision LP solvers, such as PPL [3], which is

now equipped with Sage [32] interface, thanks largely to the

efforts of Risan, then an undergraduate student at Nanyang

Technological University, and the last author as presented

in [27] and in [29].

The initial results in this direction were extremely encour-

aging, and we are able to solve most, if not all, of the LP

instances we have previously encountered as intractable by

traditional LP solvers. More efforts still need to be exerted

in perfecting our software, in coming up with better upper

bounds, and in constructing AQCs meeting the bounds.

The stabilizer formalism of symmetric quantum codes can

be extended naturally to the asymmetric case. How the CSS-

like constructions are connected to stabilizer AQCs is an

interesting question to explore.

APPENDIX A: PROOF OF THEOREM 2.2

Given that Fp ⊆ Fr ⊆ Fq , we equip the space F
n
q with the

trace Euclidean inner product.

Lemma A.1: 〈u,v〉Trq/r E is a valid inner product on F
n
q .

Proof: The only property to check is non-degeneracy

since everything else follows immediately from 〈u,v〉E. We

show that if 〈u,v〉Trq/r E = 0 for all u ∈ F
n
q , then v = 0, the

converse being trivial.

Let us assume that v �= 0 and construct a vector u ∈ F
n
q

such that 〈u,v〉Trq/r E �= 0 to settle the claim. Since the trace

mapping is onto, there exists 0 �= a ∈ Fq such that Trq/r(a) �=
0. Let j be the first index for which vj �= 0. Define u ∈ F

n
q

as follows: uj = v−1
j a and ui = 0 for all i �= j.
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TABLE V
NESTED PAIRS OF CYCLIC CODES OVER F3 YIELDING OPTIMAL ASYMMETRIC CSS CODES IN TABLE IV

C and D Generator Polynomials AQC Q C and D Generator Polynomials AQC Q
[6, 5, 2]3 g = (21) [[6, 2, 3/2]]3 [22, 16, 4]3 g = (2100211) [[22, 10, 4/4]]3
[6, 3, 3]3 (121)g [22, 6, 12]3 (21221222111)g
[6, 5, 2]3 g = (21) [[6, 1, 4/2]]3 [22, 12, 7]3 g = (22211121121) [[22, 6, 7/4]]3
[6, 4, 2]3 (21)g [22, 6, 12]3 (2210021)g
[8, 7, 2]3 g = (11) [[8, 4, 3/2]]3 [22, 12, 7]3 g = (22211121121) [[22, 2, 7/7]]3
[8, 3, 5]3 (22021)g [22, 10, 9]3 (201)g
[8, 7, 2]3 g = (11) [[8, 3, 4/2]]3 [23, 12, 8]3 g = (222110202001) [[23, 1, 8/8]]3
[8, 4, 4]3 (1101)g [23, 11, 9]3 (21)g
[8, 7, 2]3 g = (11) [[8, 2, 5/2]]3 [24, 20, 3]3 g = (21201) [[24, 19, 3/2]]3
[8, 5, 3]3 (211)g [24, 1, 24]3 (21122012220202101211)g
[8, 5, 3]3 g = (1011) [[8, 2, 3/3]]3 [24, 18, 4]3 g = (1012011) [[24, 17, 4/2]]3
[8, 3, 5]3 (101)g [24, 1, 24]3 (110122101220021101)g
[8, 4, 4]3 g = (21011) [[8, 1, 4/3]]3 [24, 4, 15]3 g = (120101210022221221101) [[24, 3, 15/2]]3
[8, 3, 5]3 (21)g [24, 1, 24]3 (2021)g
[11, 10, 2]3 g = (21) [[11, 5, 5/2]]3 [24, 20, 3]3 g = (21201) [[24, 16, 3/3]]3
[11, 5, 6]3 (201211)g [24, 4, 15]3 (20101010002020201)g
[11, 6, 5]3 g = (201211) [[11, 1, 5/5]]3 [24, 20, 3]3 g = (21201) [[24, 14, 4/3]]3
[11, 5, 6]3 (21)g [24, 6, 8]3 (112221000221221)g
[12, 7, 4]3 g = (101101) [[12, 6, 4/2]]3 [26, 22, 3]3 g = (21211) [[26, 21, 3/2]]3
[12, 1, 12]3 (1102011)g [26, 1, 26]3 (2111221101212002001201)g
[12, 7, 4]3 g = (101101) [[12, 2, 4/4]]3 [26, 20, 4]3 g = (2120111) [[26, 19, 4/2]]3
[12, 5, 4]3 (101)g [26, 1, 26]3 (21122201201010111001)g
[13, 10, 3]3 g = (2201) [[13, 9, 3/2]]3 [26, 19, 5]3 g = (20012011) [[26, 18, 5/2]]3
[13, 1, 13]3 (2022010211)g [26, 1, 26]3 (2221220100021021101)g
[13, 7, 5]3 g = (1120211) [[13, 6, 5/2]]3 [26, 8, 13]3 g = (2220200112210010121) [[26, 7, 13/2]]3
[13, 1, 13]3 (1022201)g [26, 1, 26]3 (20021221)g
[13, 4, 7]3 g = (2001102121) [[13, 3, 7/2]]3 [26, 7, 14]3 g = (11102200221112020201) [[26, 6, 14/2]]3
[13, 1, 13]3 (2221)g [26, 1, 26]3 (2211221)g
[13, 10, 3]3 g = (2201) [[13, 7, 3/3]]3 [26, 4, 17]3 g = (10212112201110120200221) [[26, 3, 17/2]]3
[13, 3, 9]3 (20102121)g [26, 1, 26]3 (1121)g
[13, 7, 5]3 g = (1120211) [[13, 4, 5/3]]3 [26, 22, 3]3 g = (21211) [[26, 18, 3/3]]3
[13, 3, 9]3 (10011)g [26, 4, 17]3 (2210102112021111211)g
[13, 6, 6]3 g = (21210201) [[13, 3, 6/3]]3 [26, 22, 3]3 g = (21211) [[26, 16, 4/3]]3
[13, 3, 9]3 (2221)g [26, 6, 15]3 (21212100100021011)g
[13, 4, 7]3 g = (2001102121) [[13, 1, 7/3]]3 [26, 22, 3]3 g = (21211) [[26, 15, 5/3]]3
[13, 3, 9]3 (21)g [26, 7, 14]3 (1110010120102021)g
[13, 7, 5]3 g = (1120211) [[13, 1, 5/5]]3 [26, 22, 3]3 g = (21211) [[26, 4, 13/3]]3
[13, 6, 6]3 (21)g [26, 18, 6]3 (21111)g
[16, 3, 10]3 g = (20112100201121) [[16, 2, 10/2]]3 [26, 22, 3]3 g = (21211) [[26, 3, 14/3]]3
[16, 1, 16]3 (221)g [26, 19, 5]3 (1021)g
[16, 9, 5]3 g = (10021121) [[16, 2, 5/5]]3 [26, 20, 4]3 g = (2120111) [[26, 14, 4/4]]3
[16, 7, 6]3 (101)g [26, 6, 15]3 (202122201211101)g
[20, 15, 4]3 g = (201111) [[20, 14, 4/2]]3 [26, 19, 5]3 g = (20012011) [[26, 13, 5/4]]3
[20, 1, 20]3 (122200101001211)g [26, 6, 15]3 (22221022102101)g
[20, 6, 10]3 g = (112100101002221) [[20, 5, 10/2]]3 [26, 18, 6]3 g = (120112011) [[26, 12, 6/4]]3
[20, 1, 20]3 (102121)g [26, 6, 15]3 (1022001001201)g
[20, 5, 11]3 g = (1200101111021101) [[20, 4, 11/2]]3 [26, 20, 4]3 g = (2120111) [[26, 2, 13/4]]3
[20, 1, 20]3 (12011)g [26, 18, 6]3 (201)g
[20, 15, 4]3 g = (201111) [[20, 10, 4/4]]3 [26, 7, 14]3 g = (11102200221112020201) [[26, 1, 14/4]]3
[20, 5, 11]3 (10202020201)g [26, 6, 15]3 (11)g
[20, 6, 10]3 g = (112100101002221) [[20, 1, 10/4]]3 [26, 19, 5]3 g = (20012011) [[26, 12, 5/5]]3
[20, 5, 11]3 (21)g [26, 7, 14]3 (1211001221021)g
[22, 21, 2]3 g = (11) [[22, 15, 4/2]]3 [26, 19, 5]3 g = (21020101) [[26, 1, 13/5]]3
[22, 6, 12]3 (1102122222211201)g [26, 18, 6]3 (21)g
[22, 21, 2]3 g = (11) [[22, 11, 7/2]]3 [40, 34, 4]3 g = (1021211) [[40, 28, 4/4]]3
[22, 10, 9]3 (100100210211)g [40, 6, 24]3 (12210120100111122010200120201)g
[22, 21, 2]3 g = (11) [[22, 5, 12/2]]3
[22, 16, 4]3 (201211)g
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TABLE VI
OPTIMAL PURE ASYMMETRIC CSS CODES OVER F5

No. AQC Q Type No. AQC Q Type No. AQC Q Type No. AQC Q Type
1 [[6, 2, 4/2]]5 CC 48 [[13, 5, 4/4]]5 CC 95 [[19, 2, 14/2]]5 BC 142 [[26, 21, 4/2]]5 BC
2 [[7, 2, 4/2]]5 BC 49 [[13, 1, 7/4]]5 CC 96 [[20, 16, 3/2]]5 CC 143 [[26, 19, 5/2]]5 BC
3 [[7, 3, 3/2]]5 BC 50 [[14, 10, 3/2]]5 BC 97 [[20, 15, 4/2]]5 BC 144 [[26, 18, 6/2]]5 BC
4 [[8, 4, 3/2]]5 CC 51 [[14, 9, 4/2]]5 BC 98 [[20, 13, 5/2]]5 BC 145 [[26, 6, 16/2]]5 BC
5 [[8, 3, 4/2]]5 BC,GC 52 [[14, 7, 5/2]]5 BC 99 [[20, 12, 6/2]]5 BC 146 [[27, 23, 3/2]]5 BC
6 [[8, 2, 5/2]]5 BC 53 [[14, 6, 6/2]]5 BC 100 [[20, 5, 12/2]]5 BC 147 [[27, 21, 4/2]]5 BC
7 [[8, 1, 6/2]]5 CC 54 [[14, 5, 7/2]]5 BC 101 [[20, 4, 13/2]]5 BC 148 [[27, 20, 5/2]]5 BC
8 [[8, 2, 3/3]]5 CC 55 [[14, 4, 8/2]]5 BC 102 [[20, 3, 14/2]]5 BC 149 [[27, 19, 6/2]]5 BC
9 [[8, 1, 4/3]]5 CC 56 [[14, 3, 9/2]]5 BC 103 [[20, 2, 15/2]]5 CC 150 [[28, 24, 3/2]]5 BC
10 [[9, 5, 3/2]]5 BC 57 [[14, 2, 10/2]]5 BC 104 [[20, 1, 16/2]]5 CC 151 [[28, 22, 4/2]]5 BC
11 [[9, 4, 4/2]]5 BC 58 [[14, 1, 11/2]]5 BC 105 [[20, 14, 3/3]]5 CC 152 [[28, 21, 5/2]]5 BC
12 [[9, 3, 5/2]]5 BC 59 [[15, 11, 3/2]]5 BC 106 [[21, 17, 3/2]]5 BC 153 [[28, 20, 6/2]]5 BC
13 [[9, 2, 6/2]]5 BC 60 [[15, 10, 4/2]]5 BC 107 [[21, 16, 4/2]]5 BC 154 [[29, 25, 3/2]]5 BC
14 [[9, 1, 7/2]]5 BC 61 [[15, 8, 5/2]]5 BC 108 [[21, 14, 5/2]]5 BC 155 [[29, 23, 4/2]]5 BC
15 [[10, 6, 3/2]]5 CC 62 [[15, 7, 6/2]]5 BC 109 [[21, 13, 6/2]]5 BC 156 [[29, 22, 5/2]]5 BC
16 [[10, 5, 4/2]]5 CC 63 [[15, 6, 7/2]]5 BC 110 [[21, 3, 15/2]]5 BC 157 [[29, 13, 12/2]]5 BC
17 [[10, 4, 5/2]]5 BC 64 [[15, 5, 8/2]]5 BC 111 [[21, 2, 16/2]]5 BC 158 [[30, 26, 3/2]]5 BC
18 [[10, 3, 6/2]]5 BC 65 [[15, 4, 9/2]]5 BC 112 [[22, 18, 3/2]]5 BC 159 [[30, 24, 4/2]]5 CC
19 [[10, 2, 7/2]]5 BC 66 [[15, 3, 10/2]]5 BC 113 [[22, 17, 4/2]]5 BC 160 [[30, 23, 5/2]]5 BC
20 [[10, 1, 8/2]]5 CC 67 [[15, 2, 11/2]]5 BC 114 [[22, 15, 5/2]]5 BC 161 [[30, 14, 12/2]]5 BC
21 [[10, 4, 3/3]]5 CC 68 [[15, 1, 12/2]]5 CC 115 [[22, 14, 6/2]]5 BC 162 [[30, 20, 4/4]]5 CC
22 [[10, 3, 4/3]]5 CC 69 [[16, 12, 3/2]]5 BC 116 [[22, 3, 16/2]]5 BC 163 [[31, 27, 3/2]]5 CC
23 [[10, 2, 4/4]]5 CC 70 [[16, 11, 4/2]]5 BC 117 [[22, 2, 17/2]]5 BC 164 [[31, 25, 4/2]]5 BC
24 [[11, 7, 3/2]]5 BC 71 [[16, 9, 5/2]]5 BC 118 [[23, 19, 3/2]]5 BC 165 [[31, 25, 3/3]]5 CC
25 [[11, 6, 4/2]]5 BC 72 [[16, 8, 6/2]]5 BC 119 [[23, 18, 4/2]]5 BC 166 [[32, 26, 4/2]]5 BC
26 [[11, 5, 5/2]]5 CC 73 [[16, 7, 7/2]]5 BC 120 [[23, 16, 5/2]]5 BC 167 [[33, 28, 3/2]]5 BC
27 [[11, 4, 6/2]]5 BC 74 [[16, 3, 11/2]]5 BC 121 [[23, 15, 6/2]]5 BC 168 [[33, 27, 4/2]]5 BC
28 [[11, 3, 7/2]]5 BC 75 [[16, 2, 12/2]]5 BC 122 [[23, 3, 17/2]]5 BC 169 [[34, 29, 3/2]]5 BC
29 [[11, 2, 8/2]]5 BC 76 [[17, 13, 3/2]]5 BC 123 [[23, 2, 18/2]]5 BC 170 [[34, 28, 4/2]]5 BC
30 [[11, 1, 5/5]]5 CC 77 [[17, 12, 4/2]]5 BC 124 [[24, 20, 3/2]]5 CC 171 [[34, 25, 6/2]]5 AH
31 [[12, 8, 3/2]]5 CC 78 [[17, 10, 5/2]]5 BC 125 [[24, 19, 4/2]]5 CC 172 [[35, 30, 3/2]]5 BC
32 [[12, 7, 4/2]]5 CC 79 [[17, 9, 6/2]]5 BC 126 [[24, 4, 16/2]]5 BC 173 [[35, 29, 4/2]]5 BC
33 [[12, 6, 5/2]]5 BC 80 [[17, 8, 7/2]]5 BC 127 [[24, 3, 18/2]]5 CC 174 [[35, 26, 6/2]]5 AH
34 [[12, 5, 6/2]]5 BC 81 [[17, 3, 11/2]]5 BC 128 [[24, 2, 19/2]]5 CC 175 [[35, 1, 28/2]]5 CC
35 [[12, 3, 8/2]]5 BC 82 [[18, 14, 3/2]]5 BC 129 [[24, 18, 3/3]]5 CC 176 [[36, 31, 3/2]]5 BC
36 [[12, 1, 9/2]]5 CC 83 [[18, 13, 4/2]]5 BC 130 [[24, 17, 4/3]]5 CC 177 [[36, 30, 4/2]]5 BC
37 [[12, 6, 3/3]]5 CC 84 [[18, 11, 5/2]]5 BC 131 [[24, 1, 18/3]]5 CC 178 [[36, 27, 6/2]]5 AH
38 [[12, 5, 4/3]]5 CC 85 [[18, 10, 6/2]]5 BC 132 [[24, 16, 4/4]]5 CC 179 [[37, 32, 3/2]]5 BC
39 [[12, 1, 7/3]]5 CC 86 [[18, 4, 11/2]]5 BC 133 [[25, 21, 3/2]]5 BC 180 [[37, 31, 4/2]]5 BC
40 [[12, 4, 4/4]]5 CC 87 [[18, 3, 12/2]]5 BC 134 [[25, 20, 4/2]]5 BC 181 [[38, 33, 3/2]]5 BC
41 [[13, 9, 3/2]]5 BC 88 [[19, 15, 3/2]]5 BC 135 [[25, 18, 5/2]]5 BC 182 [[38, 32, 4/2]]5 BC
42 [[13, 8, 4/2]]5 CC 89 [[19, 14, 4/2]]5 BC 136 [[25, 17, 6/2]]5 BC 183 [[39, 34, 3/2]]5 CC
43 [[13, 6, 5/2]]5 BC 90 [[19, 12, 5/2]]5 BC 137 [[25, 8, 13/2]]5 BC 184 [[39, 33, 4/2]]5 BC
44 [[13, 4, 7/2]]5 CC 91 [[19, 11, 6/2]]5 BC 138 [[25, 5, 16/2]]5 BC 185 [[39, 31, 3/3]]5 CC
45 [[13, 3, 8/2]]5 BC 92 [[19, 5, 11/2]]5 BC 139 [[25, 3, 19/2]]5 BC 186 [[40, 35, 3/2]]5 CC
46 [[13, 2, 9/2]]5 BC 93 [[19, 4, 12/2]]5 BC 140 [[25, 2, 20/2]]5 BC 187 [[40, 34, 4/2]]5 BC
47 [[13, 1, 10/2]]5 BC 94 [[19, 3, 13/2]]5 BC 141 [[26, 22, 3/2]]5 BC 188 [[40, 1, 32/2]]5 CC

Proof of Theorem 2.2: Let A(Y ) :=
∑n

0 AjY
j and

B(Y ) :=
∑n

0 BjY
j be, respectively, the weight enumerators

of C and of C
⊥Trq/r E . We first prove the following identity

B(Y ) =
(1 + (q − 1)Y )

n

|C| ·A
Å

1− Y

1 + (q − 1)Y

ã
. (VII.1)

Let c = (c1, . . . , cn),d = (d1, . . . , dn) ∈ C. Let χ be a

nontrivial additive character of Fr. Since C is Fr-linear, we

can define for every b = (b1, . . . , bn) ∈ F
n
q a character χb of

the additive group C by substituting the trace Euclidean form

for the argument of the character χ, such that

χb(c) = χ
Ä
〈b, c〉Trq/r E

ä
= χ

(
n∑

i=1

Trq/r(bici)

)
∈ C.

The character χb is trivial if and only if b ∈ C
⊥Trq/r E . Thus,

we have the orthogonality relation of characters∑
c∈C

χb(c) =

®
|C| if b ∈ C

⊥Trq/r E

0 otherwise
. (VII.2)

By (VII.2),∑
c∈C

∑
b∈Fn

q

χb(c)Y
wtH(b) =

∑
b∈Fn

q

Y wtH(b)
∑
c∈C

χb(c)

= |C|
n∑

i=0

BiY
i = |C| ·B(Y ).

(VII.3)

Let us take a closer look at the inner sum on the left hand

side of (VII.3). By the property of the trace mapping, we can

distribute the trace mapping over each coordinate.∑
b∈Fn

q

χb(c)Y
wtH(b)
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TABLE VII
NESTED PAIRS OF CYCLIC CODES OVER F5 YIELDING OPTIMAL ASYMMETRIC CSS CODES IN TABLE VI

C and D Generator Polynomials AQC Q C and D Generator Polynomials AQC Q
[6, 3, 4]5 g = (1221) [[6, 2, 4/2]]5 [13, 9, 4]5 g = (11411) [[13, 1, 7/4]]5
[6, 1, 6]5 (141)g [13, 8, 4]5 (41)g
[8, 7, 2]5 g = (11) [[8, 4, 3/2]]5 [15, 2, 12]5 g = (43210432104321) [[15, 1, 12/2]]5
[8, 3, 4]5 (11021)g [15, 1, 15]5 (41)g
[8, 7, 2]5 g = (11) [[8, 3, 4/2]]5 [20, 17, 3]5 g = (4021) [[20, 16, 3/2]]5
[8, 4, 4]5 (4221)g [20, 1, 20]5 (14331311124411221)g
[8, 7, 2]5 g = (11) [[8, 1, 6/2]]5 [20, 3, 15]5 g = (333210144241242301) [[20, 2, 15/2]]5
[8, 6, 2]5 (21)g [20, 1, 20]5 (121)g
[8, 5, 3]5 g = (2211) [[8, 2, 3/3]]5 [20, 2, 16]5 g = (4321043210432104321) [[20, 1, 16/2]]5
[8, 3, 4]5 (311)g [20, 1, 20]5 (41)g
[8, 5, 3]5 g = (2211) [[8, 1, 4/3]]5 [20, 17, 3]5 g = (4021) [[20, 14, 3/3]]5
[8, 4, 4]5 (21)g [20, 3, 15]5 (104020303020401)g
[10, 7, 3]5 g = (4411) [[10, 6, 3/2]]5 [24, 23, 2]5 g = (11) [[24, 20, 3/2]]5
[10, 1, 10]5 (4030201)g [24, 3, 19]5 (311434221121401242041)g
[10, 6, 4]5 g = (42031) [[10, 5, 4/2]]5 [24, 23, 2]5 g = (11) [[24, 19, 4/2]]5
[10, 1, 10]5 (113311)g [24, 4, 18]5 (11022330241113140131)g
[10, 2, 8]5 g = (432104321) [[10, 1, 8/2]]5 [24, 4, 18]5 g = (142420213204333022331) [[24, 3, 18/2]]5
[10, 1, 10]5 (41)g [24, 1, 24]5 (2101)g
[10, 7, 3]5 g = (4411) [[10, 4, 3/3]]5 [24, 3, 19]5 g = (2034221230114132440431) [[24, 2, 19/2]]5
[10, 3, 5]5 (10301)g [24, 1, 24]5 (331)g
[10, 7, 3]5 g = (4411) [[10, 3, 4/3]]5 [24, 21, 3]5 g = (1041) [[24, 18, 3/3]]5
[10, 4, 5]5 (4411)g [24, 3, 19]5 (4241414203021111121)g
[10, 6, 4]5 g = (42031) [[10, 2, 4/4]]5 [24, 21, 3]5 g = (1041) [[24, 17, 4/3]]5
[10, 4, 5]5 (401)g [24, 4, 18]5 (124440331133044421)g
[11, 6, 5]5 g = (431441) [[11, 5, 5/2]]5 [24, 4, 18]5 g = (142420213204333022331) [[24, 1, 18/3]]5
[11, 1, 11]5 (411421)g [24, 3, 19]5 (21)g
[11, 6, 5]5 g = (431441) [[11, 1, 5/5]]5 [24, 20, 4]5 g = (41131) [[24, 16, 4/4]]5
[11, 5, 6]5 (41)g [24, 4, 18]5 (40204040004010201)g
[12, 9, 3]5 g = (2331) [[12, 8, 3/2]]5 [30, 25, 4]5 g = (142241) [[30, 24, 4/2]]5
[12, 1, 12]5 (411302441)g [30, 1, 30]5 (4014024424320321311301401)g
[12, 8, 4]5 g = (33301) [[12, 7, 4/2]]5 [30, 25, 4]5 g = (142241) [[30, 20, 4/4]]5
[12, 1, 12]5 (12144121)g [30, 5, 18]5 (102030002040200030201)g
[12, 11, 2]5 g = (11) [[12, 1, 9/2]]5 [31, 30, 2]5 g = (41) [[31, 27, 3/2]]5
[12, 10, 2]5 (21)g [31, 3, 25]5 (4131013234032212113312241021)g
[12, 9, 3]5 g = (2331) [[12, 6, 3/3]]5 [31, 28, 3]5 g = (4031) [[31, 25, 3/3]]5
[12, 3, 8]5 (2313311)g [31, 3, 25]5 (41200111423221200310021331)g
[12, 9, 3]5 g = (2331) [[12, 5, 4/3]]5 [35, 2, 28]5 g = (4321043210432104321043210432104321) [[35, 1, 28/2]]5
[12, 4, 6]5 (232141)g [35, 1, 35]5 (41)g
[12, 9, 3]5 g = (2331) [[12, 1, 7/3]]5 [39, 35, 3]5 g = (14101) [[39, 34, 3/2]]5
[12, 8, 4]5 (11)g [39, 1, 39]5 (12214220043030014412330141321411011)g
[12, 8, 4]5 g = (33301) [[12, 4, 4/4]]5 [39, 35, 3]5 g = (14101) [[39, 31, 3/3]]5
[12, 4, 7]5 (10401)g [39, 4, 28]5 (44111344333444200311122211244411)g
[13, 9, 4]5 g = (11411) [[13, 8, 4/2]]5 [40, 39, 2]5 g = (11) [[40, 35, 3/2]]5
[13, 1, 13]5 (102343201)g [40, 4, 20]5 (343224310313431222441243412031241001)g
[13, 12, 2]5 g = (41) [[13, 4, 7/2]]5 [40, 2, 32]5 g = (142202344041330321101422023440413303211) [[40, 1, 32/2]]5
[13, 8, 4]5 (13031)g [40, 1, 40]5 (21)g
[13, 9, 4]5 g = (11411) [[13, 5, 4/4]]5
[13, 4, 8]5 (441411)g

=
∑

(b1,b2,...,bn)∈Fn
q

Ö
Y

Å
n∑

i=1

wtH(bi)

ãè
χ

(
n∑

i=1

Trq/r(bici)

)

=
∑

(b1,b2,...,bn)∈Fn
q

(
n∏

i=1

Y wtH(bi) · χ (
Trq/r(bici)

))

=
n∏

i=1

∑
bi∈Fq

Y wtH(bi)χ
(
Trq/r(bici)

)
. (VII.4)

Note that if (ci, bi) = (0, 0), the contribution to the sum in

the right hand side is 1. If ci = 0 but bi �= 0, the contribution

to the sum is (q − 1)Y . Similarly, for ci �= 0, if bi = 0, we

get 1, while if bi �= 0, we get −Y . Therefore, the sum in the

right hand side of (VII.4) can be simplified to

∑
bi∈Fq

Y wtH(bi)χ
(
Trq/r(bici)

)
=

®
1 + (q − 1)Y if ci = 0

1− Y if ci �= 0
,

(VII.5)

yielding, after plugging this result back to (VII.3),

B(Y ) =
1

|C|
∑
c∈C

∑
b∈Fn

q

χb(c)Y
wtH(b)

=
1

|C|
∑
c∈C

(1 + (q − 1)Y )
n−wtH(c)

(1− Y )wtH(c)

=
1

|C| (1 + (q − 1)Y )
n
∑
c∈C

Å
(1− Y )

1 + (q − 1)Y

ãwtH(c)

=
(1 + (q − 1)Y )n

|C| ·A
Å

(1− Y )

1 + (q − 1)Y

ã
.
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TABLE VIII
OPTIMAL PURE ASYMMETRIC CSS CODES OVER F7

No. AQC Q Type No. AQC Q Type No. AQC Q Type No. AQC Q Type
1 [[9, 5, 3/2]]7 GC 39 [[14, 9, 4/2]]7 BC,CC 77 [[17, 5, 10/2]]7 BC 115 [[21, 15, 3/3]]7 CC
2 [[9, 4, 4/2]]7 BC 40 [[14, 8, 5/2]]7 BC 78 [[17, 4, 11/2]]7 BC 116 [[22, 18, 3/2]]7 BC
3 [[9, 3, 5/2]]7 BC 41 [[14, 7, 6/2]]7 BC 79 [[17, 3, 12/2]]7 BC 117 [[22, 17, 4/2]]7 BC
4 [[9, 2, 6/2]]7 BC,GC 42 [[14, 6, 7/2]]7 BC 80 [[17, 2, 13/2]]7 BC 118 [[22, 2, 18/2]]7 BC
5 [[9, 1, 7/2]]7 BC 43 [[14, 4, 8/2]]7 BC 81 [[17, 1, 14/2]]7 BC 119 [[23, 19, 3/2]]7 BC
6 [[10, 6, 3/2]]7 BC 44 [[14, 3, 10/2]]7 BC 82 [[18, 14, 3/2]]7 BC 120 [[23, 18, 4/2]]7 BC
7 [[10, 5, 4/2]]7 BC 45 [[14, 2, 11/2]]7 BC 83 [[18, 13, 4/2]]7 BC 121 [[24, 20, 3/2]]7 BC,CC
8 [[10, 4, 5/2]]7 BC 46 [[14, 1, 12/2]]7 CC 84 [[18, 12, 5/2]]7 BC 122 [[24, 19, 4/2]]7 BC
9 [[10, 3, 6/2]]7 BC 47 [[14, 8, 3/3]]7 CC 85 [[18, 8, 8/2]]7 BC 123 [[24, 2, 19/2]]7 BC
10 [[10, 2, 7/2]]7 BC 48 [[14, 7, 4/3]]7 CC 86 [[18, 7, 9/2]]7 BC 124 [[24, 1, 20/2]]7 CC
11 [[10, 1, 8/2]]7 BC 49 [[14, 6, 4/4]]7 CC 87 [[18, 5, 11/2]]7 BC 125 [[24, 18, 3/3]]7 CC
12 [[11, 7, 3/2]]7 BC 50 [[15, 11, 3/2]]7 BC 88 [[18, 4, 12/2]]7 BC 126 [[24, 17, 4/3]]7 CC
13 [[11, 6, 4/2]]7 BC 51 [[15, 10, 4/2]]7 BC 89 [[18, 3, 13/2]]7 BC 127 [[24, 16, 4/4]]7 CC
14 [[11, 5, 5/2]]7 BC 52 [[15, 9, 5/2]]7 BC 90 [[18, 2, 14/2]]7 BC 128 [[25, 21, 3/2]]7 BC
15 [[11, 4, 6/2]]7 BC 53 [[15, 8, 6/2]]7 BC 91 [[18, 1, 15/2]]7 BC,CC 129 [[25, 20, 4/2]]7 BC,CC
16 [[11, 3, 7/2]]7 BC 54 [[15, 5, 8/2]]7 BC 92 [[19, 15, 3/2]]7 BC,CC 130 [[25, 3, 19/2]]7 BC
17 [[11, 2, 8/2]]7 BC 55 [[15, 4, 9/2]]7 BC 93 [[19, 14, 4/2]]7 BC 131 [[25, 2, 20/2]]7 BC
18 [[11, 1, 9/2]]7 BC 56 [[15, 3, 10/2]]7 BC 94 [[19, 9, 8/2]]7 BC,CC 132 [[25, 17, 4/4]]7 CC
19 [[12, 8, 3/2]]7 BC,CC 57 [[15, 2, 12/2]]7 BC 95 [[19, 8, 9/2]]7 BC 133 [[26, 22, 3/2]]7 BC
20 [[12, 7, 4/2]]7 BC,CC 58 [[16, 12, 3/2]]7 BC,CC 96 [[19, 5, 12/2]]7 BC 134 [[26, 21, 4/2]]7 BC
21 [[12, 6, 5/2]]7 BC 59 [[16, 11, 4/2]]7 BC,CC 97 [[19, 4, 13/2]]7 BC 135 [[26, 3, 20/2]]7 BC
22 [[12, 5, 6/2]]7 BC 60 [[16, 10, 5/2]]7 BC 98 [[19, 3, 14/2]]7 BC 136 [[26, 2, 21/2]]7 BC
23 [[12, 4, 7/2]]7 BC 61 [[16, 6, 8/2]]7 BC,CC 99 [[19, 2, 15/2]]7 BC 137 [[27, 23, 3/2]]7 BC
24 [[12, 3, 8/2]]7 BC 62 [[16, 5, 9/2]]7 BC 100 [[19, 13, 3/3]]7 CC 138 [[27, 22, 4/2]]7 BC
25 [[12, 2, 9/2]]7 BC 63 [[16, 4, 10/2]]7 BC,CC 101 [[19, 7, 8/3]]7 CC 139 [[27, 2, 22/2]]7 BC
26 [[12, 1, 10/2]]7 BC,CC 64 [[16, 3, 11/2]]7 BC 102 [[19, 6, 9/3]]7 CC 140 [[28, 24, 3/2]]7 BC
27 [[12, 6, 3/3]]7 CC 65 [[16, 2, 12/2]]7 BC,CC 103 [[19, 3, 12/3]]7 CC 141 [[28, 23, 4/2]]7 BC
28 [[12, 5, 4/3]]7 CC 66 [[16, 10, 3/3]]7 CC 104 [[19, 1, 8/8]]7 CC 142 [[28, 2, 23/2]]7 BC
29 [[12, 4, 4/4]]7 CC 67 [[16, 9, 4/3]]7 CC 105 [[20, 16, 3/2]]7 BC 143 [[28, 1, 24/2]]7 CC
30 [[13, 9, 3/2]]7 BC 68 [[16, 4, 8/3]]7 CC 106 [[20, 15, 4/2]]7 BC 144 [[29, 25, 3/2]]7 BC
31 [[13, 8, 4/2]]7 BC 69 [[16, 2, 10/3]]7 CC 107 [[20, 9, 9/2]]7 BC 145 [[29, 24, 4/2]]7 BC
32 [[13, 7, 5/2]]7 BC 70 [[16, 8, 4/4]]7 CC 108 [[20, 4, 14/2]]7 BC 146 [[29, 22, 5/2]]7 BC
33 [[13, 6, 6/2]]7 BC 71 [[16, 3, 8/4]]7 CC 109 [[20, 3, 15/2]]7 BC 147 [[29, 2, 24/2]]7 BC
34 [[13, 5, 7/2]]7 BC 72 [[17, 13, 3/2]]7 BC 110 [[20, 2, 16/2]]7 BC 148 [[30, 26, 3/2]]7 BC
35 [[13, 4, 8/2]]7 BC 73 [[17, 12, 4/2]]7 BC 111 [[21, 17, 3/2]]7 BC,CC 149 [[30, 25, 4/2]]7 BC
36 [[13, 3, 9/2]]7 BC 74 [[17, 11, 5/2]]7 BC 112 [[21, 16, 4/2]]7 BC 150 [[30, 23, 5/2]]7 BC
37 [[13, 2, 10/2]]7 BC 75 [[17, 7, 8/2]]7 BC 113 [[21, 2, 17/2]]7 BC 151 [[30, 22, 6/2]]7 BC
38 [[14, 10, 3/2]]7 BC,CC 76 [[17, 6, 9/2]]7 BC 114 [[21, 1, 18/2]]7 CC 152 [[30, 1, 25/2]]7 CC

TABLE IX
NESTED PAIRS OF CYCLIC CODES OVER F7 YIELDING OPTIMAL ASYMMETRIC CSS CODES IN TABLE VIII

C and D Generator Polynomials AQC Q C and D Generator Polynomials AQC Q
[12, 9, 3]7 g = (2441) [[12, 6, 3/3]]7 [19, 10, 8]7 g = (6520313561) [[19, 7, 8/3]]7
[12, 3, 6]7 (5651121)g [19, 3, 15]7 (66666221)g
[12, 8, 4]7 g = (16261) [[12, 5, 4/3]]7 [19, 16, 3]7 g = (6331) [[19, 6, 9/3]]7
[12, 3, 6]7 (412621)g [19, 10, 8]7 (1203561)g
[12, 8, 4]7 g = (16261) [[12, 4, 4/4]]7 [19, 6, 12]7 g = (63116244011501) [[19, 3, 12/3]]7
[12, 4, 6]7 (21121)g [19, 3, 15]7 (6331)g
[14, 13, 2]7 g = (11) [[14, 1, 12/2]]7 [19, 10, 8]7 g = (6520313561) [[19, 1, 8/8]]7
[14, 12, 2]7 (11)g [19, 9, 9]7 (61)g
[14, 11, 3]7 g = (6611) [[14, 8, 3/3]]7 [21, 2, 18]7 g = (35152206323440564611) [[21, 1, 18/2]]7
[14, 3, 7]7 (622106551)g [21, 1, 21]7 (31)g
[14, 11, 3]7 g = (6611) [[14, 7, 4/3]]7 [21, 18, 3]7 g = (3121) [[21, 15, 3/3]]7
[14, 4, 7]7 (66334411)g [21, 3, 14]7 (3443550331556441)g
[14, 10, 4]7 g = (65021) [[14, 6, 4/4]]7 [24, 2, 20]7 g = (25641025641025641025641) [[24, 1, 20/2]]7
[14, 4, 7]7 (6030401)g [24, 1, 24]7 (61)g
[16, 13, 3]7 g = (1051) [[16, 10, 3/3]]7 [24, 21, 3]7 g = (2031) [[24, 18, 3/3]]7
[16, 3, 12]7 (13203030241)g [24, 3, 18]7 (5203204022050526551)g
[16, 12, 4]7 g = (63031) [[16, 9, 4/3]]7 [24, 20, 4]7 g = (65161) [[24, 17, 4/3]]7
[16, 3, 12]7 (1340044061)g [24, 3, 18]7 (300162464233164141)g
[16, 7, 8]7 g = (1265630161) [[16, 4, 8/3]]7 [24, 20, 4]7 g = (65161) [[24, 16, 4/4]]7
[16, 3, 12]7 (60211)g [24, 4, 16]7 (25340520601502331)g
[16, 5, 10]7 g = (611361010341) [[16, 2, 10/3]]7 [25, 21, 4]7 g = (14041) [[25, 17, 4/4]]7
[16, 3, 12]7 (131)g [25, 4, 19]7 (636241612561635141)g
[16, 12, 4]7 g = (16511) [[16, 8, 4/4]]7 [28, 27, 2]7 g = (11) [[28, 1, 24/2]]7
[16, 4, 8]7 (103020301)g [28, 26, 2]7 (11)g
[16, 7, 8]7 g = (1626554051) [[16, 3, 8/4]]7 [30, 29, 2]7 g = (11) [[30, 1, 25/2]]7
[16, 4, 8]7 (1551)g [30, 28, 2]7 (31)g
[19, 16, 3]7 g = (6331) [[19, 13, 3/3]]7
[19, 3, 15]7 (62600465666441)g
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TABLE XI
GOOD PURE ASYMMETRIC CSS-LIKE CODES OVER F4

No. AQC Q Type LP Def Remarks No. AQC Q Type LP Def Remarks
1 [[6, 2, 4/2]]4 ACC 2 0 Optimal 69 [[15, 6, 5/3]]4 CC 6.5 0.5 OpLin
2 [[6, 1, 3/3]]4 ACC 1 0 Optimal 70 [[15, 5, 6/3]]4 CC 5.5 0.5 OpLin
3 [[7, 3, 3/2]]4 BC 3.5 0.5 OpLin 71 [[15, 4, 7/3]]4 CC 4.5 0.5 OpLin
4 [[7, 2, 4/2]]4 BC 2.5 0.5 OpLin 72 [[15, 1, 10/3]]4 CC 1 0 Optimal
5 [[7, 1.5, 5/2]]4 ACC 1.5 0 Optimal,BeOpLin 73 [[15, 5, 5/4]]4 CC 5.5 0.5 OpLin
6 [[8, 4, 3/2]]4 BC 4.5 0.5 OpLin 74 [[15, 4, 6/4]]4 CC 4.5 0.5 OpLin
7 [[8, 3, 4/2]]4 BC 3.5 0.5 OpLin 75 [[16, 12, 3/2]]4 BC 12 0 Optimal
8 [[8, 2, 5/2]]4 BC 2.5 0.5 OpLin 76 [[16, 11, 4/2]]4 BC 11 0 Optimal
9 [[8, 1, 6/2]]4 BC 1.5 0.5 OpLin 77 [[16, 9, 5/2]]4 BC 9.5 0.5 OpLin
10 [[9, 5, 3/2]]4 BC 5.5 0.5 OpLin 78 [[16, 8, 6/2]]4 BC 8.5 0.5 OpLin
11 [[9, 4, 4/2]]4 BC 4.5 0.5 OpLin 79 [[16, 7, 7/2]]4 BC 7.5 0.5 OpLin
12 [[9, 3, 5/2]]4 BC 3.5 0.5 OpLin 80 [[16, 6, 8/2]]4 BC 6.5 0.5 OpLin
13 [[9, 2, 6/2]]4 BC 2.5 0.5 OpLin 81 [[16, 3, 11/2]]4 BC 3 0 Optimal
14 [[10, 6, 3/2]]4 BC 6 0 Optimal 82 [[16, 2, 12/2]]4 BC 2 0 Optimal
15 [[10, 5, 4/2]]4 BC 5.5 0.5 OpLin 83 [[16, 10, 3/3]]4 SO 10 0 Optimal
16 [[10, 4, 5/2]]4 BC 4.5 0.5 OpLin 84 [[17, 13, 3/2]]4 BC 13 0 Optimal
17 [[10, 3, 6/2]]4 BC 3.5 0.5 OpLin 85 [[17, 12, 4/2]]4 BC 12 0 Optimal
18 [[10, 4, 3/3]]4 SO 4 0 Optimal 86 [[17, 10, 5/2]]4 BC 10.5 0.5 OpLin
19 [[11, 7, 3/2]]4 BC 7 0 Optimal 87 [[17, 9, 6/2]]4 BC 9.5 0.5 OpLin
20 [[11, 6, 4/2]]4 BC 6 0 Optimal 88 [[17, 8, 7/2]]4 BC 8.5 0.5 OpLin
21 [[11, 5, 5/2]]4 BC 5 0 Optimal 89 [[17, 9, 4/4]]4 CC,SO 9 0 Optimal
22 [[11, 5, 3/3]]4 SO 5 0 Optimal 90 [[17, 5, 7/4]]4 CC 5.5 0.5 OpLin
23 [[11, 1, 5/5]]4 CC 1 0 Optimal 91 [[17, 4, 8/4]]4 CC 4.5 0.5 OpLin
24 [[12, 8, 3/2]]4 BC 8 0 Optimal 92 [[18, 14, 3/2]]4 BC 14 0 Optimal
25 [[12, 7, 4/2]]4 BC 7 0 Optimal 93 [[18, 12, 4/2]]4 BC 12.5 0.5 OpLin
26 [[12, 5.5, 5/2]]4 ACC 5.5 0 Optimal,BeOpLin 94 [[18, 11, 5/2]]4 BC 11.5 0.5 OpLin
27 [[12, 5, 6/2]]4 BC 5 0 Optimal 95 [[18, 10, 6/2]]4 BC 10.5 0.5 OpLin
28 [[12, 3, 7/2]]4 BC 3.5 0.5 OpLin 96 [[18, 8, 8/2]]4 BC 8.5 0.5 OpLin
29 [[12, 2, 8/2]]4 BC 2.5 0.5 OpLin 97 [[18, 5, 10/2]]4 BC 5.5 0.5 OpLin
30 [[12, 1, 9/2]]4 ACC 1.5 0.5 ROpLin 98 [[19, 15, 3/2]]4 BC 15 0 Optimal
31 [[12, 6, 3/3]]4 ACC,SO 6 0 Optimal 99 [[19, 13, 4/2]]4 BC 13.5 0.5 OpLin
32 [[12, 3.5, 5/3]]4 ACC 3.5 0 Optimal,BeOpLin 100 [[19, 12, 5/2]]4 BC 12.5 0.5 OpLin
33 [[12, 3, 6/3]]4 ACC 3 0 Optimal 101 [[19, 11, 6/2]]4 BC 11.5 0.5 OpLin
34 [[12, 4, 4/4]]4 ACC,SO 4 0 Optimal 102 [[20, 16, 3/2]]4 BC 16 0 Optimal
35 [[12, 2, 5/4]]4 ACC 2.5 0.5 ROpLin 103 [[20, 14, 4/2]]4 BC 14.5 0.5 OpLin
36 [[12, 1, 5/5]]4 ACC 1.5 0.5 ROpLin 104 [[20, 13, 5/2]]4 BC 13.5 0.5 OpLin
37 [[13, 9, 3/2]]4 BC 9 0 Optimal 105 [[20, 12, 6/2]]4 BC 12.5 0.5 OpLin
38 [[13, 8, 4/2]]4 BC 8 0 Optimal 106 [[20, 10, 7/2]]4 BC 10.5 0.5 OpLin
39 [[13, 6, 5/2]]4 BC 6.5 0.5 OpLin 107 [[21, 17, 3/2]]4 BC 17 0 Optimal
40 [[13, 5, 6/2]]4 BC 5.5 0.5 OpLin 108 [[21, 15, 4/2]]4 BC 15.5 0.5 OpLin
41 [[13, 4, 7/2]]4 BC 4.5 0.5 OpLin 109 [[21, 14, 5/2]]4 BC 14 0 Optimal
42 [[13, 2, 9/2]]4 BC 4.5 0.5 OpLin 110 [[21, 11, 7/2]]4 BC 11.5 0.5 OpLin
43 [[13, 7, 3/3]]4 SO 7 0 Optimal 111 [[21, 15, 3/3]]4 SO 15 0 Optimal
44 [[14, 10, 3/2]]4 BC 10 0 Optimal 112 [[22, 17, 3/2]]4 BC 17.5 0.5 OpLin
45 [[14, 9, 4/2]]4 BC 9 0 Optimal 113 [[22, 16, 4/2]]4 BC 16.5 0.5 OpLin
46 [[14, 7, 5/2]]4 BC 7.5 0.5 OpLin 114 [[22, 4, 14/2]]4 BC 4.5 0.5 OpLin
47 [[14, 6, 6/2]]4 BC 6.5 0.5 OpLin 115 [[23, 18, 3/2]]4 BC 18.5 0.5 OpLin
48 [[14, 5, 7/2]]4 BC 5.5 0.5 OpLin 116 [[23, 17, 4/2]]4 BC 17.5 0.5 OpLin
49 [[14, 4, 8/2]]4 BC 4.5 0.5 OpLin 117 [[23, 4, 15/2]]4 BC 4.5 0.5 OpLin
50 [[14, 3, 9/2]]4 BC 3.5 0.5 OpLin 118 [[24, 19, 3/2]]4 BC 19.5 0.5 OpLin
51 [[14, 2, 10/2]]4 BC 2.5 0.5 OpLin 119 [[24, 18, 4/2]]4 BC 18.5 0.5 OpLin
52 [[14, 8, 3/3]]4 ACC,SO 8 0 Optimal 120 [[24, 8, 12/2]]4 BC 8.5 0.5 OpLin
53 [[14, 7, 4/3]]4 ACC 7 0 Optimal 121 [[25, 20, 3/2]]4 BC 20.5 0.5 OpLin
54 [[14, 5, 5/3]]4 ACC 5.5 0.5 ROpLin 122 [[25, 19, 4/2]]4 BC 19.5 0.5 OpLin
55 [[14, 4, 6/3]]4 ACC 4.5 0.5 ROpLin 123 [[26, 21, 3/2]]4 BC 21.5 0.5 OpLin
56 [[14, 3, 7/3]]4 ACC 3.5 0.5 ROpLin 124 [[26, 20, 4/2]]4 BC 20.5 0.5 OpLin
57 [[14, 6, 4/4]]4 ACC,SO 6 0 Optimal 125 [[26, 10, 12/2]]4 BC 10.5 0.5 OpLin
58 [[14, 4, 5/4]]4 ACC 4.5 0.5 ROpLin 126 [[27, 22, 3/2]]4 BC 22.5 0.5 OpLin
59 [[14, 3, 6/4]]4 ACC 3.5 0.5 ROpLin 127 [[27, 21, 4/2]]4 BC 21.5 0.5 OpLin
60 [[15, 11, 3/2]]4 BC 11 0 Optimal 128 [[28, 23, 3/2]]4 BC 23.5 0.5 OpLin
61 [[15, 10, 4/2]]4 BC 10 0 Optimal 129 [[28, 22, 4/2]]4 BC 22.5 0.5 OpLin
62 [[15, 8, 5/2]]4 BC 8.5 0.5 OpLin 130 [[28, 13, 11/2]]4 BC 13.5 0.5 OpLin
63 [[15, 7, 6/2]]4 BC 7.5 0.5 OpLin 131 [[28, 12, 12/2]]4 BC 12.5 0.5 OpLin
64 [[15, 6, 7/2]]4 BC 6.5 0.5 OpLin 132 [[29, 24, 3/2]]4 BC 24.5 0.5 OpLin
65 [[15, 3, 10/2]]4 BC 3 0 Optimal 133 [[29, 23, 4/2]]4 BC 23.5 0.5 OpLin
66 [[15, 2, 11/2]]4 BC 2 0 Optimal 134 [[30, 22, 5/2]]4 BC 22.5 0.5 OpLin
67 [[15, 9, 3/3]]4 CC,SO 9 0 Optimal 135 [[30, 14, 12/2]]4 BC 14.5 0.5 OpLin
68 [[15, 8, 4/3]]4 CC 8 0 Optimal
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TABLE XII
NESTED PAIRS OF F2-LINEAR CYCLIC CODES OVER F4 YIELDING OPTIMAL OR GOOD ASYMMETRIC CSS-LIKE CODES IN TABLE XI

C and D Generator Polynomials AQC Q
(6, 26, 4)4 g4 = (1011) + w(11), g2 = (111111) [[6, 2, 4/2]]4
(6, 22, 6)4 (10101)g4, (1)g2
(6, 27, 3)4 g4 = (101) + w(11), g2 = (10101) [[6, 1, 3/3]]4
(6, 25, 4)4 (11)g4, (11)g2
(7, 25, 5)4 g4 = (11101) + w(1011), g2 = (1111111) [[7, 1.5, 5/2]]4
(7, 22, 7)4 (1101)g4, (1)g2
(12, 213, 5)4 g4 = (001110001) + w(1), g2 = (111111111111) [[12, 5.5, 5/2]]4
(12, 22, 12)4 (111111111111)g4, (1)g2
(12, 24, 9)4 g4 = (00100010001) + w(1100110011), g2 = (111111111111) [[12, 1, 9/2]]4
(12, 22, 12)4 (101)g4, (1)g2
(12, 218, 3)4 g4 = (0001) + w(11), g2 = (101101) [[12, 6, 3/3]]4
(12, 26, 8)4 (1101011)g4, (1101011)g2
(12, 213, 5)4 g4 = (000101001) + w(11), g2 = (10101010101) [[12, 7/2, 5/3]]4
(12, 26, 8)4 (1101011)g4, (11)g2
(12, 212, 6)4 g4 = (001110101) + w(11), g2 = (111111111111) [[12, 3, 6/3]]4
(12, 26, 8)4 (1101011)g4, (1)g2
(12, 27, 7)4 g4 = (1000010011) + w(1110111), g2 = (111111111111) [[12, 0.5, 7/3]]4
(12, 26, 8)4 (1)g4, (11)g2
(12, 216, 4)4 g4 = (1101) + w(111),g2 = (1110111) [[12, 4, 4/4]]4
(12, 28, 6)4 (10101)g4, (10101)g2
(12, 212, 5)4 g4 = (1000101) + w(111), g2 = (11011011011) [[12, 2, 5/4]]4
(12, 28, 7)4 (10101)g4, (1)g2
(12, 210, 6)4 g4 = (01100101) + w(10101), g2 = (11011011011) [[12, 1, 6/4]]4
(12, 28, 6)4 (111)g4, (1)g2
(12, 213, 5)4 g4 = (001101) + w(11), g2 = (10101010101) [[12, 1, 5/5]]4
(12, 211, 5)4 (11)g4, (11)g2
(14, 222, 3)4 g4 = (011) + w(1), g2 = (1000101) [[14, 8, 3/3]]4
(14, 26, 10)4 (101010001)g4, (100010101)g2
(14, 220, 4)4 g4 = (00001011) + w(1),g2 = (101010001) [[14, 7, 4/3]]4
(14, 26, 10)4 (101010001)g4, (1010001)g2
(14, 222, 3)4 g4 = (010111) + w(1),g2 = (1000101) [[14, 5, 5/3]]4
(14, 212, 6)4 (101)g4, (100010101)g2
(14, 214, 6)4 g4 = (110011101) + w(101), g2 = (1010101010101) [[14, 4, 6/3]]4
(14, 26, 10)4 (1010001)g4, (101)g2
(14, 212, 7)4 g4 = (010111011) + w(101), g2 = (100000000000001) [[14, 3, 7/3]]4
(14, 26, 10)4 (1000101)g4, (1)g2
(14, 220, 4)4 g4 = (001011) + w(11),g2 = (11001111) [[14, 6, 4/4]]4
(14, 28, 8)4 (1010001)g4, (1010001)g2
(14, 220, 4)4 g4 = (01001) + w(1011),g2 = (100111) [[14, 4, 5/4]]4
(14, 212, 6)4 (101)g4, (1010001)g2
(14, 214, 6)4 g4 = (0001010111) + w(11), g2 = (11111111111111) [[14, 3, 6/4]]4
(14, 28, 8)4 (1000101)g4, (1)g2

TABLE XIII
NESTED PAIRS OF LINEAR CYCLIC CODES OVER F4 YIELDING OPTIMAL OR GOOD ASYMMETRIC CSS CODES IN TABLE XI

C and D Generator Polynomials AQC Q C and D Generator Polynomials AQC Q
[11, 6, 5]4 g = (1w211w1) [[11, 1, 5/5]]4 [15, 12, 3]4 g = (w2011) [[15, 1, 10/3]]4
[11, 5, 6]4 (11)g [15, 11, 4]4 (w1)g
[15, 12, 3]4 g = (w2011) [[15, 9, 3/3]]4 [15, 9, 5]4 g = (1w11w2w21) [[15, 5, 5/4]]4
[15, 3, 11]4 (w20w00w210w1)g [15, 4, 10]4 (w2w0w201)g
[15, 12, 3]4 g = (w2011) [[15, 8, 4/3]]4 [15, 8, 6]4 g = (ww2w0w0w21) [[15, 4, 6/4]]4
[15, 4, 10]4 (w2w2111ww2w21)g [15, 4, 10]4 (w1001)g
[15, 12, 3]4 g = (w2011) [[15, 6, 5/3]]4 [17, 13, 4]4 g = (11w11) [[17, 9, 4/4]]4
[15, 6, 8]4 (www0w201)g [17, 4, 12]4 (1001111001)g
[15, 8, 6]4 g = (ww2w0w0w21) [[15, 5, 6/3]]4 [17, 9, 7]4 g = (1w20w2w2w20w21) [[17, 5, 7/4]]4
[15, 3, 11]4 (ww20w01)g [17, 4, 12]4 (1wwww1)g
[15, 12, 3]4 g = (w2011) [[15, 4, 7/3]]4 [17, 8, 8]4 g = (1ww2w200w2w2w1) [[17, 4, 8/4]]4
[15, 8, 6]4 (1w2w2w21)g [17, 4, 12]4 (1w21w21)g
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TABLE XIV
GOOD PURE ASYMMETRIC CSS-LIKE CODES OVER F8

No. AQC Q Type LP Def Remarks No. AQC Q Type LP Def Remarks
1 [[10, 19/3, 3/2]]8 ACC 20/3 1/3 BeOpLin 44 [[15, 7, 7/2]]8 BC 23/3 2/3 OpLin
2 [[10, 6, 4/2]]8 BC 6 0 Optimal 45 [[15, 6, 8/2]]8 BC 20/3 2/3 OpLin
3 [[10, 4, 5/2]]8 BC 14/3 2/3 OpLin 46 [[15, 4, 10/2]]8 BC 13/3 1/3 OpLin
4 [[10, 3, 6/2]]8 BC 11/3 2/3 OpLin 47 [[15, 3, 11/2]]8 BC 10/3 1/3 OpLin
5 [[10, 2, 8/2]]8 BC 2 0 Optimal 48 [[15, 2, 12/2]]8 BC 7/3 1/3 OpLin
6 [[11, 7, 3/2]]8 BC 23/3 2/3 OpLin 49 [[16, 12, 3/2]]8 BC 38/3 2/3 OpLin
7 [[11, 6, 4/2]]8 BC 20/3 2/3 OpLin 50 [[16, 11, 4/2]]8 BC 35/3 2/3 OpLin
8 [[11, 5, 5/2]]8 BC 17/3 2/3 OpLin 51 [[16, 10, 5/2]]8 BC 32/3 2/3 OpLin
9 [[11, 4, 6/2]]8 BC 14/3 2/3 OpLin 52 [[16, 9, 6/2]]8 BC 29/3 2/3 OpLin

10 [[11, 3, 7/2]]8 BC 11/3 2/3 OpLin 53 [[16, 7, 8/2]]8 BC 23/3 2/3 OpLin
11 [[11, 2, 8/2]]8 BC 8/3 2/3 OpLin 54 [[16, 3, 12/2]]8 BC 10/3 1/3 OpLin
12 [[11, 1, 9/2]]8 BC 5/3 2/3 OpLin 55 [[17, 40/3, 3/2]]8 ACC 41/3 1/3 BeOpLin
13 [[12, 8, 3/2]]8 BC 26/3 2/3 OpLin 56 [[17, 12, 4/2]]8 BC 38/3 2/3 OpLin
14 [[12, 7, 4/2]]8 BC 23/3 2/3 OpLin 57 [[17, 11, 5/2]]8 BC 35/3 2/3 OpLin
15 [[12, 6, 5/2]]8 BC 20/3 2/3 OpLin 58 [[17, 10, 6/2]]8 BC 32/3 2/3 OpLin
16 [[12, 5, 6/2]]8 BC 17/3 2/3 OpLin 59 [[18, 14, 3/2]]8 BC 43/3 1/3 OpLin
17 [[12, 4, 7/2]]8 BC 14/3 2/3 OpLin 60 [[18, 13, 4/2]]8 BC 41/3 2/3 OpLin
18 [[12, 3, 8/2]]8 BC 11/3 2/3 OpLin 61 [[18, 12, 5/2]]8 BC 38/3 2/3 OpLin
19 [[12, 2, 9/2]]8 BC 8/3 2/3 OpLin 62 [[18, 11, 6/2]]8 BC 35/3 2/3 OpLin
20 [[12, 1, 10/2]]8 BC 4/3 1/3 OpLin 63 [[19, 15, 3/2]]8 BC 46/3 1/3 OpLin
21 [[13, 9, 3/2]]8 BC 29/3 2/3 OpLin 64 [[19, 14, 4/2]]8 BC 43/3 1/3 OpLin
22 [[13, 8, 4/2]]8 CC 26/3 2/3 OpLin 65 [[19, 13, 5/2]]8 BC 40/3 1/3 OpLin
23 [[13, 7, 5/2]]8 BC 23/3 2/3 OpLin 66 [[19, 12, 6/2]]8 CC 38/3 2/3 OpLin
24 [[13, 6, 6/2]]8 BC 20/3 2/3 OpLin 67 [[20, 16, 3/2]]8 BC 49/3 1/3 OpLin
25 [[13, 5, 7/2]]8 BC 17/3 2/3 OpLin 68 [[20, 15, 4/2]]8 BC 46/3 1/3 OpLin
26 [[13, 4, 8/2]]8 BC 14/3 2/3 OpLin 69 [[20, 14, 5/2]]8 BC 43/3 1/3 OpLin
27 [[13, 3, 9/2]]8 BC 11/3 2/3 OpLin 70 [[21, 17, 3/2]]8 CC 52/3 1/3 OpLin
28 [[13, 2, 10/2]]8 BC 7/3 1/3 OpLin 71 [[21, 16, 4/2]]8 CC 49/3 1/3 OpLin
29 [[13, 1, 11/2]]8 BC 4/3 1/3 OpLin 72 [[21, 15, 3/3]]8 CC 47/3 2/3 OpLin
30 [[14, 10, 3/2]]8 CC 32/3 2/3 OpLin 73 [[21, 14, 4/3]]8 CC 44/3 2/3 OpLin
31 [[14, 9, 4/2]]8 CC 29/3 2/3 OpLin 74 [[21, 13, 4/4]]8 CC 41/3 2/3 OpLin
32 [[14, 8, 5/2]]8 BC 26/3 2/3 OpLin 75 [[22, 18, 3/2]]8 BC 55/3 1/3 OpLin
33 [[14, 7, 6/2]]8 BC 23/3 2/3 OpLin 76 [[22, 17, 4/2]]8 BC 52/3 1/3 OpLin
34 [[14, 6, 7/2]]8 BC 20/3 2/3 OpLin 77 [[23, 19, 3/2]]8 BC 58/3 1/3 OpLin
35 [[14, 5, 8/2]]8 BC 17/3 2/3 OpLin 78 [[23, 18, 4/2]]8 BC 55/3 1/3 OpLin
36 [[14, 4, 9/2]]8 BC 14/3 2/3 OpLin 79 [[24, 20, 3/2]]8 BC 61/3 1/3 OpLin
37 [[14, 3, 10/2]]8 BC 10/3 1/3 OpLin 80 [[24, 19, 4/2]]8 BC 58/3 1/3 OpLin
38 [[14, 2, 11/2]]8 BC 7/3 1/3 OpLin 81 [[25, 21, 3/2]]8 BC 64/3 1/3 OpLin
39 [[14, 1, 12/2]]8 CC 4/3 1/3 OpLin 82 [[25, 20, 4/2]]8 BC 61/3 1/3 OpLin
40 [[15, 34/3, 3/2]]8 ACC 35/3 1/3 BeOpLin 83 [[26, 22, 3/2]]8 BC 67/3 1/3 OpLin
41 [[15, 31/3, 4/2]]8 ACC 32/3 1/3 BeOpLin 84 [[26, 21, 4/2]]8 BC 64/3 1/3 OpLin
42 [[15, 9, 5/2]]8 BC 29/3 2/3 OpLin 85 [[27, 23, 3/2]]8 BC 70/3 1/3 OpLin
43 [[15, 8, 6/2]]8 BC 26/3 2/3 OpLin 86 [[27, 22, 4/2]]8 BC 67/3 1/3 OpLin

TABLE XV
NESTED PAIRS OF F2-LINEAR CYCLIC CODES OVER F8 = F2(w) YIELDING OPTIMAL OR GOOD ASYMMETRIC CSS-LIKE CODES IN TABLE XIV

C and D Generator Polynomials AQC Q
(10, 222, 3)8 g1 = (000011) + w(0) + w2(1), g2 = (1101001) + w(1), g3 = (101010101) [[10, 19/3, 3/2]]8
(10, 23, 10)8 (1111111111)g1, (1111111111)g2, (11)g3
(15, 237, 3)8 g1 = (1001) + w(0) + w2(111), g2 = (010011) + w(1), g3 = (1001111) [[15, 34/3, 3/2]]8
(15, 23, 15)8 (1001001001001)g1, (11011011011011)g2, (1001110011)g3
(15, 234, 4)8 g1 = (111011111) + w(0) + w2(111), g2 = (0000111) + w(1), g3 = (1001110011) [[15, 31/3, 4/2]]8
(15, 23, 15)8 (1001001001001)(111)g1, (11011011011011)g2 + (1001001001001)(011)g1, (1001111)g3
(17, 243, 3)8 g1 = (00100101) + w(0) + w2(1), g2 = (01000101) + w(1), g3 = (111010111) [[17, 40/3, 3/2]]8
(17, 23, 17)8 (11111111111111111)g1, (11111111111111111)g2, (100111001)g3

TABLE XVI
NESTED PAIRS OF LINEAR CYCLIC CODES OVER F8 YIELDING OPTIMAL OR GOOD ASYMMETRIC CSS CODES IN TABLE XIV

C and D Generator Polynomials AQC Q C and D Generator Polynomials AQC Q
[13, 9, 4]8 g = (1w3w5w31) [[13, 8, 4/2]]8 [21, 20, 2]8 g = (11) [[21, 17, 3/2]]8
[13, 1, 13]8 (1w0w5w2w50w1)g [21, 3, 14]8 (w5w6w4w21w31w6w3w20w4w5w00w1)g
[14, 11, 3]8 g = (w2w3w61) [[14, 10, 3/2]]8 [21, 20, 2]8 g = (11) [[21, 16, 4/2]]8
[14, 1, 14]8 (w5ww5w41w2w4w0w21)g [21, 4, 14]8 (w50w3ww5w3w3w4w5w2w4w4ww6ww31)g
[14, 10, 4]8 g = (ww41w21) [[14, 9, 4/2]]8 [21, 18, 3]8 g = (110w31) [[21, 15, 3/3]]8
[14, 1, 14]8 (ww6ww2w1w6w6w31)g [21, 3, 14]8 (w5w6w2w6w01w5ww4w3w4w2w301)g
[14, 2, 12]8 g = (w6w51w3110w6w51w311) [[14, 1, 12/2]]8 [21, 17, 4]8 g = (1ww3w1) [[21, 14, 4/3]]8
[14, 1, 14]8 (w61)g [21, 3, 14]8 (11w6w6w61w3w61ww4ww5w31)g
[19, 13, 6]8 g = (1w3w6w6w6w31) [[19, 12, 6/2]]8 [21, 17, 4]8 g = (1ww3w1) [[21, 13, 4/4]]8
[19, 1, 19]8 (1www31w6ww61w3ww1)g [21, 4, 14]8 (w6w4ww6w3w2w6w5w6w5w6w611)g
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TABLE XVII
GOOD PURE ASYMMETRIC CSS-LIKE CODES OVER F9

No. AQC Q Type LP Def Remarks No. AQC Q Type LP Def Remarks
1 [[10, 7, 3/2]]9 BC 7 0 Optimal 50 [[15, 9, 5/2]]9 BC 9.5 0.5 OpLin
2 [[10, 6, 4/2]]9 CC 6 0 Optimal 51 [[15, 8, 6/2]]9 BC 8.5 0.5 OpLin
3 [[10, 5, 5/2]]9 BC 5 0 Optimal 52 [[15, 7, 7/2]]9 BC 7.5 0.5 OpLin
4 [[10, 4, 6/2]]9 CC 4 0 Optimal 53 [[15, 6, 8/2]]9 BC 6.5 0.5 OpLin
5 [[10, 3, 7/2]]9 BC 3 0 Optimal 54 [[15, 5, 9/2]]9 BC 5.5 0.5 OpLin
6 [[10, 2, 8/2]]9 CC 2 0 Optimal 55 [[15, 4, 10/2]]9 BC 4.5 0.5 OpLin
7 [[10, 2, 6/4]]9 CC 2 0 Optimal 56 [[15, 3, 11/2]]9 BC 3.5 0.5 OpLin
8 [[11, 7.5, 3/2]]9 ACC 7.5 0 Optimal,BeOpLin 57 [[15, 2, 12/2]]9 BC 2.5 0.5 OpLin
9 [[11, 6, 4/2]]9 BC 6.5 0.5 OpLin 58 [[15, 1, 13/2]]9 BC 1.5 0.5 OpLin

10 [[11, 5, 5/2]]9 CC 5.5 0.5 OpLin 59 [[16, 12, 3/2]]9 CC 12.5 0.5 OpLin
11 [[11, 4, 6/2]]9 BC 4.5 0.5 OpLin 60 [[16, 11, 4/2]]9 CC 11.5 0.5 OpLin
12 [[11, 3, 7/2]]9 BC 3.5 0.5 OpLin 61 [[16, 10, 5/2]]9 ACC 10.5 0.5 ROpLin
13 [[11, 2, 8/2]]9 BC 2.5 0.5 OpLin 62 [[16, 9, 6/2]]9 BC 9.5 0.5 OpLin
14 [[11, 1, 9/2]]9 BC 1.5 0.5 OpLin 63 [[16, 8, 7/2]]9 BC 8.5 0.5 OpLin
15 [[11, 6, 3/3]]9 ACC 6 0 Optimal 64 [[16, 7, 8/2]]9 BC 7.5 0.5 OpLin
16 [[11, 3, 6/3]]9 ACC 3.5 0.5 ROpLin 65 [[16, 6, 9/2]]9 BC 6.5 0.5 OpLin
17 [[12, 8.5, 3/2]]9 ACC 8.5 0 Optimal,BeOpLin 66 [[16, 5, 10/2]]9 BC 5.5 0.5 OpLin
18 [[12, 7, 4/2]]9 ACC 7.5 0.5 ROpLin 67 [[16, 4, 11/2]]9 BC 4.5 0.5 OpLin
19 [[12, 6, 5/2]]9 ACC 6.5 0.5 ROpLin 68 [[16, 3, 12/2]]9 BC 3.5 0.5 OpLin
20 [[12, 5, 6/2]]9 ACC 5.5 0.5 ROpLin 69 [[16, 1, 14/2]]9 CC 1.5 0.5 OpLin
21 [[12, 4, 7/2]]9 ACC 4.5 0.5 ROpLin 70 [[17, 13, 3/2]]9 BC 13.5 0.5 OpLin
22 [[12, 2, 9/2]]9 BC 2.5 0.5 OpLin 71 [[17, 12, 4/2]]9 BC 12.5 0.5 OpLin
23 [[12, 1, 10/2]]9 BC 1.5 0.5 OpLin 72 [[17, 11, 5/2]]9 BC 11.5 0.5 OpLin
24 [[12, 7, 3/3]]9 ACC 7 0 Optimal 73 [[17, 9, 7/2]]9 BC 9.5 0.5 OpLin
25 [[13, 9, 3/2]]9 CC 9.5 0.5 OpLin 74 [[17, 8, 8/2]]9 BC 8.5 0.5 OpLin
26 [[13, 8, 4/2]]9 ACC 8.5 0.5 ROpLin 75 [[17, 7, 9/2]]9 BC 7.5 0.5 OpLin
27 [[13, 7.5, 5/2]]9 ACC 7.5 0 Optimal,BeOpLin 76 [[17, 6, 10/2]]9 BC 6.5 0.5 OpLin
28 [[13, 6, 6/2]]9 ACC 6.5 0.5 ROpLin 77 [[17, 2, 14/2]]9 BC 2.5 0.5 OpLin
29 [[13, 5, 7/2]]9 BC 5.5 0.5 OpLin 78 [[18, 14, 3/2]]9 BC 14.5 0.5 OpLin
30 [[13, 4, 8/2]]9 BC 4.5 0.5 OpLin 79 [[18, 13, 4/2]]9 BC 13.5 0.5 OpLin
31 [[13, 3, 9/2]]9 BC 3.5 0.5 OpLin 80 [[18, 12, 5/2]]9 BC 12.5 0.5 OpLin
32 [[13, 2, 10/2]]9 BC 2.5 0.5 OpLin 81 [[18, 9, 8/2]]9 BC 9.5 0.5 OpLin
33 [[13, 1, 11/2]]9 BC 1.5 0.5 OpLin 82 [[18, 8, 9/2]]9 BC 8.5 0.5 OpLin
34 [[13, 6, 5/3]]9 ACC 6 0 Optimal 83 [[18, 7, 10/2]]9 BC 7.5 0.5 OpLin
35 [[13, 6, 4/4]]9 ACC 6 0 Optimal 84 [[18, 2, 14/2]]9 BC 2.5 0.5 OpLin
36 [[13, 5, 5/4]]9 ACC 5 0 Optimal 85 [[19, 15, 3/2]]9 BC 15.5 0.5 OpLin
37 [[13, 4, 5/5]]9 ACC 4 0 Optimal 86 [[19, 14, 4/2]]9 BC 14.5 0.5 OpLin
38 [[14, 10, 3/2]]9 BC 10.5 0.5 OpLin 87 [[19, 13, 5/2]]9 BC 13.5 0.5 OpLin
39 [[14, 9, 4/2]]9 CC 9.5 0.5 OpLin 88 [[19, 9, 9/2]]9 BC 9.5 0.5 OpLin
40 [[14, 8, 5/2]]9 BC 8.5 0.5 OpLin 89 [[19, 8, 10/2]]9 BC 8.5 0.5 OpLin
41 [[14, 7, 6/2]]9 ACC 7.5 0.5 ROpLin 90 [[20, 16, 3/2]]9 CC 16.5 0.5 OpLin
42 [[14, 6, 7/2]]9 ACC 6.5 0.5 ROpLin 91 [[20, 15, 4/2]]9 CC 15.5 0.5 OpLin
43 [[14, 5, 8/2]]9 BC 5.5 0.5 OpLin 92 [[20, 14, 5/2]]9 BC 14.5 0.5 OpLin
44 [[14, 4, 9/2]]9 BC 4.5 0.5 OpLin 93 [[20, 9, 10/2]]9 BC 9.5 0.5 OpLin
45 [[14, 3, 10/2]]9 BC 3.5 0.5 OpLin 94 [[21, 17, 3/2]]9 BC 17.5 0.5 OpLin
46 [[14, 2, 11/2]]9 BC 2.5 0.5 OpLin 95 [[21, 16, 4/2]]9 BC 16.5 0.5 OpLin
47 [[14, 1, 12/2]]9 BC 1.5 0.5 OpLin 96 [[22, 18, 3/2]]9 BC 18.5 0.5 OpLin
48 [[15, 11, 3/2]]9 BC 11.5 0.5 OpLin 97 [[22, 17, 4/2]]9 BC 17.5 0.5 OpLin
49 [[15, 10, 4/2]]9 BC 10.5 0.5 OpLin

This establishes (VII.1).

Hence, by using the definition of A(Y ), B(Y ) can now be

written as

B(Y ) =
1

|C|
n∑

i=0

Ai(1 + (q − 1)Y )n−i(1− Y )i.

Comparing the coefficients of Y j on both sides gives us

the claimed MacWilliams equation for the single variable Y .

Replacing Y by Y
X and multiplying both sides by Xn give the

desired expression for the two-variable case.

Note that |C⊥Trq/r E | can be derived by substituting Y = 1

in (VII.1) from whence we have |C||C⊥Trq/r E | = qn. This

is sufficient to establish the closure property of C under the

trace Euclidean inner product.

Remark A.2: The closure property and the MacWilliams

equation for an Fr-linear code C over Fq under the trace

Euclidean inner product can also be deduced from [26, Cor.

3.2.3 on p. 88]. The explicit approach above is preferred so

as to eliminate the need for a more sophisticated algebraic

build-up in the exposition.

APPENDIX B: PROOF OF THEOREM 3.6

We begin with some preparatory lemmas. Recall that for

C ⊆ F
n
q , C := {c : c ∈ C}.

Lemma B.1: Suppose that q = r2 is odd. Let C1 and C2 be

Fr-linear codes of length n over Fq . For α ∈ Fq \ {0} such

that α = −α, the following statements hold:

i) If C
⊥Trq/r E

1 ⊆ C2, then

α−1C
⊥Trq/r E

1 ⊆
(
C

⊥Trq/r E

2

)⊥Tr q/rH

.
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TABLE XVIII
NESTED PAIRS OF F3-LINEAR CYCLIC CODES OVER F9 = F3(w) YIELDING OPTIMAL OR GOOD ASYMMETRIC CSS-LIKE CODES IN TABLE XVII

C and D Generator Polynomials AQC Q
(11, 317, 3)9 g9 = (011) + w(1), g3 = (201211) [[11, 7.5, 3/2]]9
(11, 32, 11)9 (11111111111)g9, (221201)g3
(11, 317, 3)9 g9 = (011) + w(1), g3 = (201211) [[11, 6, 3/3]]9
(11, 35, 8)9 (1012221)g9, (1012221)g3
(11, 311, 6)9 g9 = (1010211) + w(21), g3 = (11111111111) [[11, 3, 6/3]]9
(11, 35, 8)9 (201211)g9, (21)g3
(12, 319, 3)9 g9 = (001) + w(11), g3 = (12221) [[12, 8.5, 3/2]]9
(12, 32, 12)9 (10101010101)g9, (20112201)g3
(12, 316, 4)9 g9 = (1112121) + w(11),g3 = (21000021) [[12, 7, 4/2]]9
(12, 32, 12)9 (10101010101)g9, (10101)g3
(12, 314, 5)9 g9 = (02021012) + w(11), g3 = (1221001221) [[12, 6, 5/2]]9
(12, 32, 12)9 (10101010101)g9, (201)g3
(12, 312, 6)9 g9 = (2021201) + w(2211), g3 = (1221001221) [[12, 5, 6/2]]9
(12, 32, 12)9 (111000111)g9, (121)g3
(12, 310, 7)9 g9 = (0110212102) + w(2211), g3 = (111111111111) [[12, 4, 7/2]]9
(12, 32, 12)9 (111000111)g9, (1)g3
(12, 319, 3)9 g9 = (001) + w(11), g3 = (12221) [[12, 7, 3/3]]9
(12, 35, 8)9 (20112201)g9, (20112201)g3
(13, 319, 4)9 g9 = (2221011) + w(1),g3 = (21210201) [[13, 8, 4/2]]9
(13, 33, 12)9 (12020111211)g9, (1100101)g3
(13, 317, 5)9 g9 = (122001222) + w(1), g3 = (2001102121) [[13, 7.5, 5/2]]9
(13, 32, 13)9 (1111111111111)g9, (2221)g3
(13, 314, 6)9 g9 = (110200000122) + w(1), g3 = (1111111111111) [[13, 6, 6/2]]9
(13, 32, 13)9 (1111111111111)g9, (1)g3
(13, 317, 5)9 g9 = (122001222) + w(1), g3 = (2001102121) [[13, 6, 5/3]]9
(13, 35, 10)9 (2001102121)g9, (2221)g3
(13, 319, 4)9 g9 = (2221011) + w(1),g3 = (21210201) [[13, 6, 4/4]]9
(13, 37, 9)9 (1100101)g9, (1100101)g3
(13, 317, 5)9 g9 = (011100002) + w(1), g3 = (2022010211) [[13, 5, 5/4]]9
(13, 37, 9)9 (22001211)g9, (2201)g3
(13, 317, 5)9 g9 = (122001222) + w(1), g3 = (2001102121) [[13, 4, 5/5]]9
(13, 39, 8)9 (10011)g9, (10011)g3
(14, 316, 6)9 g9 = (1121101101) + w(1), g3 = (1010101010101) [[14, 7, 6/2]]9
(14, 32, 14)9 (1010101010101)g9, (201)g3
(14, 314, 7)9 g9 = (122202010101) + w(21), g3 = (11111111111111) [[14, 6, 7/2]]9
(14, 32, 14)9 (1010101010101)g9, (1)g3
(16, 322, 5)9 g9 = (02102001) + w(201), g3 = (220210221) [[16, 10, 5/2]]9
(16, 32, 16)9 (1000100010001)g9, (121110211)g3

ii) If C
⊥Tr q/rH

1 ⊆ C2, then

αC
⊥Tr q/rH

1 ⊆
(
C

⊥Tr q/rH

2

)⊥Trq/r E

.

Proof: Let u ∈ C
⊥Trq/r E

1 and v ∈ C
⊥Trq/r E

2 . Then,

0 = 〈u,v〉Trq/r E = 〈u,v〉E + 〈u,v〉E.

Therefore,

〈α−1u,v〉Tr q/rH = α〈α−1u,v〉H + α〈α−1u,v〉H
= 〈u,v〉E + 〈u,v〉E = 0.

Hence, α−1C
⊥Trq/r E

1 ⊆
(
C

⊥Trq/r E

2

)⊥Tr q/rH

. This proves i).

To prove ii), let u ∈ C
⊥Tr q/rH

1 and v ∈ C
⊥Tr q/rH

2 . Then

0 = 〈u,v〉Tr q/rH = α〈u,v〉E + α〈u,v〉E.

Since α = −α,

〈αu,v〉Trq/r E = 〈αu,v〉E + 〈αu,v〉E
= α〈u,v〉E + α〈u,v〉E
= − (α〈u,v〉E + α〈u,v〉E) = 0.

Therefore, αC
⊥Tr q/rH

1 ⊆
(
C

⊥Tr q/rH

2

)⊥Trq/r E

.

Lemma B.2: Suppose that q = r2 is even. Let C1 and C2

be Fr-linear codes of length n over Fq . Then the following

statements hold:

i) If C
⊥Trq/r E

1 ⊆ C2, then

C
⊥Trq/r E

1 ⊆
(
C

⊥Trq/r E

2

)⊥Tr q/rH

.

ii) If C
⊥Tr q/rH

1 ⊆ C2, then

C
⊥Tr q/rH

1 ⊆
(
C

⊥Tr q/rH

2

)⊥Trq/r E

.

Proof: The proof follows from the proof of Lemma B.1

by setting α = 1.

Proof of Theorem 3.6: Assume there exists a pair of

Fr-linear codes C1 and C2 of length n over Fq such that

C
⊥Trq/r E

1 ⊆ C2 with
|C2|∣∣∣C⊥Trq/r E

1

∣∣∣ = K, dx = wtH(C1 \

C
⊥Trq/r E

2 ) and dz = wtH(C2 \ C
⊥Trq/r E

1 ).

Case 1. If q is odd, then by Lemma B.1 i), we have



ACCEPTED, IEEE TRANS. IT, JUNE 2013 21

TABLE XIX
NESTED PAIRS OF LINEAR CYCLIC CODES OVER F9 YIELDING OPTIMAL OR GOOD ASYMMETRIC CSS CODES IN TABLE XVII

C and D Generator Polynomials AQC Q C and D Generator Polynomials AQC Q
[10, 7, 4]9 g = (1w2w21) [[10, 6, 4/2]]9 [14, 10, 4]9 g = (2w2w2w21) [[14, 9, 4/2]]9
[10, 1, 10]9 (1w5w2w6w2w51)g [14, 1, 14]9 (1w011110w31)g
[10, 9, 2]9 g = (21) [[10, 4, 6/2]]9 [16, 13, 3]9 g = (1w3w51) [[16, 12, 3/2]]9
[10, 5, 6]9 (1w20w21)g [16, 1, 16]9 (1ww70w6w721w3w51w21)g
[10, 9, 2]9 g = (21) [[10, 2, 8/2]]9 [16, 12, 4]9 g = (w6w5021) [[16, 11, 4/2]]9
[10, 7, 4]9 (1w51)g [16, 1, 16]9 (w0w7w3w31w6w3w5w6w21)g
[10, 7, 4]9 g = (1w2w21) [[10, 2, 6/4]]9 [16, 2, 14]9 g = (w3w3w21w10w3w3w21w1) [[16, 1, 14/2]]9
[10, 5, 6]9 (1w71)g [16, 1, 16]9 (w21)g
[11, 6, 5]9 g = (201211) [[11, 5, 5/2]]9 [20, 17, 3]9 g = (1w2w51) [[20, 16, 3/2]]9
[11, 1, 11]9 (221201)g [20, 1, 20]9 (w20w20w7ww2w2w20w21w7w221)g
[13, 10, 3]9 g = (2111) [[13, 9, 3/2]]9 [20, 16, 4]9 g = (w62w701) [[20, 15, 4/2]]9
[13, 1, 13]9 (2121022001)g [20, 1, 20]9 (2w2ww21ww3w3w7w7w52w6w5w61)g

α−1C
⊥Trq/r E

1 ⊆
(
C

⊥Trq/r E

2

)⊥Tr q/rH

with

K =
|C2|∣∣∣∣C⊥Trq/r E

1

∣∣∣∣
=

∣∣∣∣(C⊥Trq/r E

2

)⊥Tr q/rH
∣∣∣∣∣∣∣∣α−1C

⊥Trq/r E

1

∣∣∣∣
.

Since the codes α−1C
⊥Trq/r E

1 and C
⊥Trq/r E

2 are

equivalent and it follows from (II.3) that C2 =

(C
⊥Trq/r E

2 )
⊥Trq/r E and (C

⊥Trq/r E

2 )
⊥Tr q/rH share the

same weight enumerator, we have

wtH

Å(
C

⊥Trq/r E

2

)⊥Tr q/rH

\ α−1C
⊥Trq/r E

1

ã
= wtH(C2 \ C

⊥Trq/r E

1 ) = dz.

The code C1 is equivalent to (α−1C
⊥Trq/r E

1 )
⊥Trq/r E

which, by (II.3), shares the same weight enumerator

with (α−1C
⊥Trq/r E

1 )
⊥Tr q/rH . Hence

wtH

ÇÅ
α−1C

⊥Trq/r E

1

ã⊥Trq/rH

\ C⊥Trq/r E

2

å
= wtH(C1 \ C

⊥Trq/r E

2 ) = dx.

The conclusion follows from [11, Th. 4.5].

Case 2. If q is even, then the proof is similar to that of Case

1 with α = 1 and using Lemma B.2 i) instead of

Lemma B.1 i).

Conversely, assume that there exists a pair of Fr-linear

codes C1 and C2 of length n over Fq such that C
⊥Tr q/rH

1 ⊆ C2

with
|C2|∣∣∣C⊥Tr q/rH

1

∣∣∣ = K, dx = wtH(C1 \ C
⊥Tr q/rH

2 ) and

dz = wtH(C2 \ C
⊥Tr q/rH

1 ).

Case 1. If q is odd, then by Lemma B.1 ii), we have

αC
⊥Tr q/rH

1 ⊆
(
C

⊥Tr q/rH

2

)⊥Trq/r E

with

K =
|C2|∣∣∣∣C⊥Tr q/rH

1

∣∣∣∣
=

∣∣∣∣(C⊥Tr q/rH

2

)⊥Trq/r E
∣∣∣∣∣∣∣∣αC⊥Tr q/rH

1

∣∣∣∣
.

Using similar observation as in Case 1 of the neces-

sary part, we have

wtH

Å(
C

⊥Tr q/rH

2

)⊥Trq/r E \ αC⊥Tr q/rH

1

ã
= dz

and

wtH

ÇÅ
αC

⊥Tr q/rH

1

ã⊥Trq/r E

\ C⊥Tr q/rH

2

å
= dx.

The conclusion follows from Theorem 3.4.

Case 2. If q is even, then the proof is similar to that of Case

1 with α = 1 and using Lemma B.2 ii) instead of

Lemma B.1 ii).

APPENDIX C: PROOF OF THEOREM 4.2

We will need the following lemma in the proof.

Lemma C.1: Let Fq = Fr(ω) be a quadratic extension of

Fr. Then the following statements hold:

i) Any (n, rl)q-cyclic Fr-linear code C over Fq has two

generators and can be written as C := 〈a(x) +
ωb(x), c(x)〉, where a(x), b(x), and c(x) are polynomials

in Fr[x], b(x) and c(x) are monic divisors of xn − 1
in Fr[x], c(x) divides a(x)(xn − 1)/b(x) in Fr[x], and

l = 2n− deg(b(x))− deg(c(x)).
ii) If 〈a′(x) + ωb′(x), c′(x)〉 is another representation of C

in the above sense, then b′(x) = b(x), c′(x) = c(x) and

a′(x) ≡ a(x)(mod c(x)).

Proof: To prove i), let C be an (n, rl)q-cyclic Fr-linear

code over Fq . Define an Fr[x]-module homomorphism

ϕ :C → Fr[x]/〈xn − 1〉 sending

v(x) := f0(x) + ωf1(x) �→ f1(x),

where f0(x) and f1(x) are polynomials in Fr[x].
The zero code is viewed as the one generated by xn − 1.

The kernel ker(ϕ) = {v(x) ∈ C : f1(x) ≡ 0} = {f0(x) ∈ C}
and the image ϕ(C) = {f1(x) : v(x) ∈ C} are linear cyclic

codes over Fr. Hence, there exist unique, monic generators

c(x) and b(x) of minimal degree, respectively, such that

ker(ϕ) = 〈c(x)〉 and ϕ(C) = 〈b(x)〉.
Note that for all a(x) ∈ Fr[x],

dimFr
(C) = dimFr

(〈c(x)〉) + dimFr
(〈b(x)〉)
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= dimFr
(〈c(x), ωb(x)〉) (VII.6)

≤ dimFr
(〈c(x), a(x) + ωb(x)〉). (VII.7)

The first equation is clear from the definition of ϕ. To justify

(VII.6), let 0 ≤ i ≤ n − deg(c(x)) − 1 and 0 ≤ j ≤
n − deg(b(x)) − 1. The sets {xic(x)} and {xjb(x)} serve,

respectively, as bases for 〈c(x)〉 and 〈b(x)〉. Since the set

{xic(x), xjωb(x)} is Fr-linearly independent,

dimFr
(〈c(x), ωb(x)〉) ≥ 2n− deg(b(x))− deg(c(x))

= dimFr
(〈c(x)〉) + dimFr

(〈b(x)〉).
The other direction is clear.

To establish (VII.7), notice that the set {xic(x), xj(a(x) +
ωb(x))} ⊆ 〈c(x), (a(x) + ωb(x))〉 is again Fr-linearly inde-

pendent.

If a(x) + ωb(x) is a preimage of b(x) under ϕ, then

〈c(x), (a(x) + ωb(x))〉 ⊆ C. By (VII.7), we conclude that

〈c(x), (a(x) + ωb(x))〉 = C and that C has the claimed Fr-

dimension.

Clearly, c(x) and b(x) divide xn − 1 in Fr[x]. Let g(x) :=
(xn − 1)/b(x). Since

a(x)g(x) ≡ (a(x) + ωb(x))g(x) ∈ ker(ϕ),

c(x) divides a(x)g(x) in Fr[x].
To prove ii), assume C := 〈a′(x) + ωb′(x), c′(x)〉. Then

b(x)|b′(x), c(x)|c′(x) and

deg(b′(x)c′(x)) = deg(b′(x)) + deg(c′(x))
= 2n− l = deg(b(x)) + deg(c(x))

= deg(b(x)c(x)).

Hence, we have b(x) = b′(x) and c(x) = c′(x).
Since a′(x) + ωb(x) ∈ 〈a(x) + ωb(x), c(x)〉, there exist

polynomials s(x), t(x) ∈ Fr[x] such that

a′(x) + ωb(x) = s(x)(a(x) + ωb(x)) + t(x)c(x).

Without loss of generality, deg(s(x)) < n − deg(b(x)) and

deg(t(x)) < n−deg(c(x)) can be assumed. By comparing the

coefficients on both sides of the equation, s(x) = 1. Therefore,

a′(x) = a(x) + t(x)c(x), making a′(x) ≡ a(x) (mod c(x)).

With the lemma established, the theorem can now be settled.

Proof of Theorem 4.2: We prove by induction on m. If

m = 2, the statement follows from Lemma C.1. Assume that

the theorem holds for m− 1. Let C be an (n, rl)q-cyclic Fr-

linear code over Fq and let Fs be the field extension of Fr of

degree m− 1 such that Fs = Fr(α).
Let φ : C → Fs[x]/〈xn − 1〉 be an Fr[x]-module homo-

morphism defined by

f0(x) + ωf1(x) + ω2f2(x) + · · ·+ ωm−1fm−1(x)

�→ f1(x) + αf2(x) + · · ·+ αm−2fm−1(x).

The kernel ker(φ) and the image φ(C) are a linear cyclic code

over Fr and a cyclic Fr-linear code over Fs, respectively.

Let am−1,0(x) be the unique monic generator of ker(φ) of

minimal degree. By the induction hypothesis, φ(C) has m−1
generators, say

φ(C) = 〈a0,1(x) + αa0,2(x) + . . .+ αm−2a0,m−1(x),

a1,1(x) + αa1,2(x) + . . .+ αm−3a1,m−2(x),

...
... . .

.

am−3,1(x) + αam−3,2(x),

am−2,1(x)〉,

satisfying properties i) to iv). Therefore, C is an Fr[x]-module

generated by

〈a0,0(x) + ωa0,1(x) + . . .+ ωm−1a0,m−1(x),

a1,0(x) + ωa1,1(x) + . . .+ ωm−2a1,m−2(x),

...
... . .

.

am−2,0(x) + ωam−2,1(x),

am−1,0(x)〉,

where ai,0(x) + ωai,1(x) + . . . + ωm−1−iai,m−1−i(x) is an

inverse image of ai,1(x)+αai,2(x)+. . .+αm−2−iai,m−1−i(x)
for all 0 ≤ i ≤ m− 2. Clearly, property i) holds.

Using a similar reasoning to the proof of Lemma C.1, by the

inductive hypothesis we obtain the fact that am−2,0(x)(x
n −

1)/am−2,1(x) is divisible by am−1,0(x). Hence, property ii)
follows.

Since

dimFr
(ker(φ)) = n− deg(am−1,0(x))

and

dimFr
(φ(C)) = (m− 1)n−

m−2∑
i=0

deg(ai,m−1−i(x)),

we have

l = dimFr
(ker(φ)) + dimFr

(φ(C))

= mn−
m−1∑
i=0

deg(ai,m−1−i(x)).

This proves property iii).
The uniqueness stated in property iv) can be obtained from

an argument similar to the one used in the proof of b) in

Lemma C.1.

APPENDIX D: FARKAS CERTIFICATE OF INFEASIBILITY

Referring to (V.3), the tuple

(n, q, k, k′, dx, dz) = (6, 2, 2, 1, 3, 2)

has a vector r with rᵀ = (1, 0, 0, 0, 1, 0, 0, . . . , 0) and the

matrices M1 and M2 below.

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
6 4 2 0 −2 −4 −6 0 0 0 0 0 0 0
15 5 −1 −3 −1 5 15 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 6 4 2 0 −2 −4 −6
−1 −1 −1 −1 −1 −1 −1 32 0 0 0 0 0 0
−6 −4 −2 0 2 4 6 0 32 0 0 0 0 0
−15 −5 1 3 1 −5 −15 0 0 32 0 0 0 0
8 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1
0 8 0 0 0 0 0 −6 −4 −2 0 2 4 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

20 0 −4 0 4 0 −20 0 0 0 0 0 0 0
15 −5 −1 3 −1 −5 15 0 0 0 0 0 0 0
6 −4 2 0 −2 4 −6 0 0 0 0 0 0 0
1 −1 1 −1 1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 15 5 −1 −3 −1 5 15
0 0 0 0 0 0 0 20 0 −4 0 4 0 −20
0 0 0 0 0 0 0 15 −5 −1 3 −1 −5 15
0 0 0 0 0 0 0 6 −4 2 0 −2 4 −6
0 0 0 0 0 0 0 1 −1 1 −1 1 −1 1

−20 0 4 0 −4 0 20 0 0 0 32 0 0 0
−15 5 1 −3 1 5 −15 0 0 0 0 32 0 0
−6 4 −2 0 2 −4 6 0 0 0 0 0 32 0
−1 1 −1 1 −1 1 −1 0 0 0 0 0 0 32
0 0 8 0 0 0 0 −15 −5 1 3 1 −5 −15
0 0 0 8 0 0 0 −20 0 4 0 −4 0 20
0 0 0 0 8 0 0 −15 5 1 −3 1 5 −15
0 0 0 0 0 8 0 −6 4 −2 0 2 −4 6
0 0 0 0 0 0 8 −1 1 −1 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Letting

sᵀ1 =
(
0, 14

3 ,− 2
3 ,− 3

4 , 4,−1,−1,− 1
12 ,− 1

3 ,−1,−1,−1,−1
)

,

sᵀ2 =
(
1
8 , 0,

1
32 , 0, 0, 0, 0, 0, 1, 0, 0,

11
96 ,

1
12 , 0,

1
24 , 0, 0, 0

)
,

one can see that

sᵀ1M1 + sᵀ2M2 =
(
0, 0, 0, 0, 0, 0, 0, 0,− 88

3 ,−29, 0, 0, . . . , 0
)
,

sᵀ1r = 4 and s2 ≥ 0, as required by our criterion.
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