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Protein palmitoylation is an essential post-translational
lipid modification of proteins, and reversibly orchestrates
a variety of cellular processes. Identification of palmitoy-
lated proteins with their sites is the foundation for under-
standing molecular mechanisms and regulatory roles of
palmitoylation. Contrasting to the labor-intensive and
time-consuming experimental approaches, in silico pre-
diction of palmitoylation sites has attracted much atten-
tion as a popular strategy. In this work, we updated our
previous CSS-Palm into version 2.0. An updated cluster-
ing and scoring strategy (CSS) algorithm was employed
with great improvement. The leave-one-out validation
and 4-, 6-, 8- and 10-fold cross-validations were adopted
to evaluate the prediction performance of CSS-Palm 2.0.
Also, an additional new data set not included in training
was used to test the robustness of CSS-Palm 2.0. By com-
parison, the performance of CSS-Palm was much better
than previous tools. As an application, we performed a
small-scale annotation of palmitoylated proteins in
budding yeast. The online service and local packages of
CSS-Palm 2.0 were freely available at: http://bioinfor-
matics.lcd-ustc.org/css_palm.
Keywords: clustering and scoring strategy/CSS-Palm/
palmitoylated proteins/palmitoylation

Introduction

As a special class of post-translational modifications, numer-
ous proteins could be covalently modified by a variety of
lipids, including myristate (C14), palmitate (C16), farnesyl
(C15), geranylgeranyl (C20), glycosylphosphatidylinositol
(GPI) and so on (Casey, 1995; Nadolski and Linder, 2007;
Resh, 2006a, 2006b). Although most of lipid modifications are
irreversible, protein S-palmitoylation, also called as thioacyla-
tion or S-acylation, could reversibly attach 16-carbon saturated
fatty acids to specific cysteine residues in protein substrates
through thioester linkages (el-Husseini Ael and Bredt, 2002;
Bijlmakers and Marsh, 2003; Dietrich and Ungermann, 2004;
Smotrys and Linder, 2004; Resh, 2006a, 2006b; Roth et al.,
2006; Greaves and Chamberlain, 2007; Linder and Deschenes,
2007; Nadolski and Linder, 2007; Wan et al., 2007).
Palmitoylation will enhance surface hydrophobicity and mem-
brane affinity of protein substrates, and plays important roles
in modulating proteins’ trafficking (Draper et al., 2007; Linder
and Deschenes, 2007), stability (Linder and Deschenes,
2007), sorting (Greaves and Chamberlain, 2007) and so on.

Also, protein palmitoylation has been involved in numerous
cellular processes, including signaling (Casey, 1995; Resh,
2006a, 2006b), apoptosis (Chakrabandhu et al., 2007), neur-
onal transmission (el-Husseini Ael and Bredt, 2002) and so
on. Although many efforts have been made in this field, the
molecular mechanisms underlying protein palmitoylation still
remain to be inexplicit.

Identification of palmitoylation proteins with their sites is
fundamental for elucidating the molecular mechanisms and
dynamics of palmitoylation processes. However, experimental
identification of palmitoylation substrates with their sites is
quite difficult, because there is not a common motif for palmi-
toylation recognition (el-Husseini Ael and Bredt, 2002;
Bijlmakers and Marsh, 2003; Dietrich and Ungermann, 2004;
Smotrys and Linder, 2004; Roth et al. 2006; Linder and
Deschenes, 2007; Nadolski and Linder, 2007). Conventionally,
palmitoylation sites were usually mapped by mutagenesis of
candidate cysteine residues. Without any guidance or pre-
prediction, such a procedure is time-consuming and labor-
intensive. Recently, with a high-throughput, tandem mass
spectrometry (MS/MS)-based proteomic methodology of
MudPIT (multi-dimensional protein identification technology),
a large-scale experiment was performed to identify �50 pal-
mitoylated proteins in Saccharomyces cerevisae (Roth et al.,
2006; Wan et al., 2007). However, the bona fide palmi-
toylation sites in most of these substrates still remained to
be dissected. In this regard, computational prediction of
palmitoylation sites in silico is urgent and greatly useful for
further experimental verification.

In the field of computational lipid modifications, we and
other researchers have taken great efforts to develop a variety
of predictors (Eisenhaber et al., 1999; Eisenhaber et al., 2003;
Bologna et al., 2004; Eisenhaber et al., 2004; Podell and
Gribskov, 2004; Fankhauser and Maser, 2005; Maurer-Stroh
and Eisenhaber, 2005; Xue et al., 2006; Zhou et al., 2006). In
1999, Eisenhaber et al. constructed the first web server of
‘big-Pi predictor’ to predict potential GPI-anchor sites from
protein sequences (Eisenhaber et al., 1999). The model
combined several distinct features of GPI-anchor sites with
11 upstream and 10 downstream amino acid residues
(Eisenhaber et al., 1999, 2003, 2004). And Fankhauser et al.
employed an artificial neural network algorithm to develop
the GPI-SOM, with a window length of 32 amino acid resi-
dues (Fankhauser and Maser, 2005). For prediction of
N-myristoylation proteins, there were at least three web tools
constructed, including NMT (Maurer-Stroh et al., 2002a,
2002b; Eisenhaber et al., 2003), Myristoylator (Bologna
et al., 2004) and PlantsP (Podell and Gribskov, 2004). And
for prediction of prenylated proteins, Eisenhaber et al. devel-
oped the Prenylation Prediction Suite (PrePS) (Maurer-Stroh
and Eisenhaber, 2005). Previously, we constructed two online
severs of CSS-Palm 1.0 and NBA-Palm 1.0 to predict palmi-
toylation sites (Xue et al., 2006; Zhou et al., 2006). The
CSS-Palm 1.0 was implemented in Clustering and Scoring
Strategy (CSS) algorithm (Zhou et al., 2006), whereas the
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NBA-Palm 1.0 was constructed with the Naı̈ve Bayesian
Algorithm (NBA) (Xue et al., 2006).

In this work, we updated our previous CSS-Palm 1.0 into
version 2.0. We manually collected the experimentally verified
palmitoylation sites from scientific literature. The non-
redundant training data contained 263 palmitoylation sites
from 109 distinct proteins. Then an improved version of CSS
algorithm was deployed. The leave-one-out (Loo) validation
and 4-, 6-, 8- and 10-fold cross-validations were calculated to
evaluate the prediction performance and system robustness of
CSS-Palm 2.0. Again, the prediction performance was also
tested on an additional data set not included in the training
data set, with 53 palmitoylation sites in 26 proteins. By com-
parison with our previous CSS-Palm1.0 and NBA-Palm 1.0,
the performance of CSS-Palm 2.0 was greatly improved.
Finally, the online service and local packages of CSS-Palm
2.0 were implemented in JAVA 1.4.2 with high speed. The
CSS-Palm 2.0 could predict potential palmitoylation sites for
�1000 proteins (with an average length of �1000 amino
acids) within 3 min. Taken together, we proposed that the
CSS-Palm 2.0 will be a useful tool for experimentalists. The
online service and local packages of CSS-Palm 2.0 were
freely available at: http://bioinformatics.lcd-ustc.org/css_palm.

Materials and methods

Data preparation
We searched the scientific literature from PubMed with key-
words of ‘palmitoylation’ or ‘palmitoylated’, and manually
collected 340 experimentally verified palmitoylation sites in
145 proteins which were published before 8 October 2007. In
this work, we arbitrarily took the 284 palmitoylation sites
from 116 proteins published before November 2006 as the
training data set. And the remaining 56 sites in 29 proteins
were not included in training as an additional data set for per-
formance evaluation. The protein sequences were retrieved
from UniProt database (http://cn.expasy.org/uniprot).

As previously described (Xue et al., 2006), we regarded
the cysteine (C) residues that undergo palmitoylation modifi-
cation as positive data (+), while all other non- palmitoylated
cysteine residues were taken as negative data (2). The posi-
tive data set (+) for training might contain several homolo-
gous sites from homologous proteins. If the training data
were highly redundant with too many homologous sites, the
prediction accuracy would be overestimated. To avoid the
overestimation, we clustered the protein sequences with a
threshold of 40% identity by CD-HIT (Li and Godzik,
2006). If two proteins were similar with �40% identity, we
re-aligned the proteins with BL2SEQ, a program in the
BLAST package (Altschul et al., 1997), and checked the
results manually. If two palmitoylation sites from two hom-
ologous proteins were at the same position after sequence
alignment, only one item was reserved while the other was
discarded. Finally, the non-redundant data set for training
contained 263 positive sites and 1150 negative sites from
109 substrates. And the non-redundant new data set con-
tained 53 positive sites from 26 proteins. The training and
new data sets are freely available upon request.

An upgraded algorithm of CSS
In CSS-Palm 1.0, the algorithm of CSS was employed (Zhou
et al., 2006). And the experimentally verified palmitoylation

sites were automatically clustered into three clusters by
different thresholds of peptides similarity (Zhou et al.,
2006). The clustering procedure was terminated, when the
prediction performance was not significantly increased any
more. Given a putative palmitoylation site for prediction, the
CSS-Palm 1.0 will calculate a score between the sites with
each cluster dependent on BLOSUM62 matrix, respectively.
If the largest score was greater than the cut-off value, the
putative site would be predicted as a positive hit.

In CSS-Palm 2.0, an updated version of CSS algorithm
was used. First, we manually classified the known palmitoy-
lation sites into three clusters, including Type I (sites follow
a –CC– pattern, C is a cysteine residue), Type II (sites
follow a –CXXC– pattern, C is a cysteine residue and X is a
random residue) and Type III (other sites) group. Thus, the
clustering procedure was based on experimental evidence
rather than randomness. Then, we defined a potential
palmitoylation peptide PPP(m, n) as a C residue flanked by
m residues upstream and n residues downstream. By exhaus-
tively testing, we chose PPP(25, 7), PPP(25, 16) and
PPP(23, 15) for Type I, Type II and Type III palmitoylation
sites, respectively. The training and prediction processes
were separately performed on Type I, Type II and Type III
palmitoylation sites, while the prediction results were inte-
grated to calculate the final performance. Also, to improve the
prediction performance, we developed a simple approach of
matrix mutation (MaM). First, the BLOSUM62 was chosen as
the initial matrix, and the Loo performance was calculated.
Then, we fixed the specificity (Sp) as 85% to improve the
sensitivity (Sn) by randomly picking out an element of
the matrix for mutation. The procedure was terminated when
the Sn value was not increased any more.

Performance evaluation
As previously described (Zhou et al., 2006), we used four
measurements such as Sn, Sp, accuracy (Ac) and Mathew
correlation coefficient (MCC) to evaluate the prediction
performance of the CSS-Palm 2.0. The four measurements
were defined as below:

Sn ¼ TP

TPþ FN
; Sp ¼ TN

TNþ FP
;

Ac ¼ TPþ TN

TPþ FPþ TNþ FN
;

and

MCC¼ ðTP� TNÞ � ðFN� FPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞ�ðTNþFPÞ�ðTPþFPÞ � ðTNþFNÞ

p :

In this work, the Loo validation and 4-, 6-, 8- and 10-fold
cross-validations were performed on the training data set
(263 positive sites and 1150 negative sites). And the receiver
operating characteristic (ROC) curves were drawn (Fig. 1).
Also, the area under ROC (AROC) values were calculated as
0.8993 (Loo validation), 0.8732 (4-fold cross-validation,
4-fold), 0.8730 (6-fold cross-validation, 6-fold), 0.8864
(8-fold cross-validation, 8-fold) and 0.8982 (10-fold cross-
validation, 10-fold). Thus, the results of 4-, 6-, 8- and
10-fold cross-validations were very similar with the Loo
validation. In this regard, we took the Loo validation as
an indicator of prediction performance of CSS-Palm 2.0.
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Also, we evaluated the robustness of CSS-Palm 2.0 with a
new data set, including 53 verified palmitoylation sites in 26
substrates (published after Nov., 2006).

Implementation of the online service and local packages
The online service and local packages of CSS-Palm 2.0 were
implemented in JAVA and freely available at http://bioinfor-
matics.lcd-ustc.org/css_palm/prediction.php. For the online
service, we tested the CSS-Palm 2.0 on a variety of internet
browsers, including Internet Explorer 6.0, Netscape Browser
8.1.3 and Firefox 2 under Windows XP Operating System
(OS), Mozilla Firefox 1.5 of Fedora Core 6 OS (Linux) and
Safari 3.0 of Apple Mac OS X 10.4 (Tiger) and 10.5
(Leopard). For Windows and Linux systems, a latest version
of Java Runtime Environment (JRE) package (JAVA 1.4.2 or
later versions) of Sun Microsystems should be pre-installed
for using the CSS-Palm 2.0 program. However, for Mac OS,
the CSS-Palm 2.0 could be used directly without any
additional packages. The online service of CSS-Palm 2.0

uses the local CPU for computation. Thus, the computing
time is dependent on the users’ computers. In our laptop
(IBM ThinkPad R51, 1.60 GHz, 768 MB), it only cost
,3 min to predict palmitoylation sites for 1000 protein
sequences (average length �1000 amino acids). For conven-
ience, we also developed the local packages of CSS-Palm
2.0. The stand-alone software of CSS-Palm 2.0 supported
three major OSs, including Windows, Linux and Mac.

Results

Development of the CSS-Palm 2.0 software
In this work, we used an updated version of CSS algorithm.
The experimental results proposed that there is not a general
consensus sequence for protein palmitoylation (el-Husseini
Ael and Bredt, 2002; Bijlmakers and Marsh, 2003; Dietrich
and Ungermann, 2004; Smotrys and Linder, 2004; Roth
et al., 2006; Linder and Deschenes, 2007; Nadolski and
Linder, 2007). However, there are still some sequence pat-
terns for a large proportion of palmitoylation sites. For
example, in budding yeast, a DHHC cysteine-rich domain
protein of Akr1p was identified as a palmitoyl transferase, to
dual modify the casein kinase Yck2p at its C-terminal –
CC– sequences (Roth et al., 2002; Dietrich and Ungermann,
2004). Also, H-Ras was verified to be dual palmitoylated at
its –CXXC– motif (Hancock et al., 1989). Based on the
experimental observations, we classified the known palmitoy-
lation sites into three clusters, including Type I (sites follow
a –CC– pattern, C is a cysteine residue), Type II (sites
follow a –CXXC– pattern, C is a cysteine residue and X is a
random residue) and Type III (other sites) cluster. Although
several other motifs were also proposed, we adopted only the
two major motifs for protein palmitoylation by performance
comparisons. To improve the prediction performance, we
also developed a simple method of MaM. By exhaustively
testing, we fixed the Sp as 85% to improve the Sn by MaM.
Successfully, both of the Loo validation and the performance
on the new data set were greatly improved (Table I). Also,
the Ac of Loo validation is very similar with the performance
on the new data set. In this regard, the CSS-Palm 2.0 system
is accurate and robust.

Finally, the online service and local packages of
CSS-Palm 2.0 was implemented in JAVA 1.4.2 (J2SE). As
an instance, the prediction results of human CD82 was
shown (Fig. 2). The human CD82 (UniProt accession
number: P27 701), also called as KAI1, is a member of

Fig. 1. The receiver operating characteristic (ROC) curves of leave-one-out
(Loo) validation and 4-, 6-, 8- and 10-fold cross-validations (4-, 6-, 8- and
10-fold).

Table I. The performance of CSS-Palm 2.0 was greatly improved by matrix mutation (MaM)

CSS-Palm 2.0 Threshold Leave-one-out New data set

Ac (%) Sn (%) Sp (%) MCC (%) Ac (%) Sn (%) Sp (%) MCC

Before MaMa High 88.68 77.19 91.30 0.6495 89.00 56.60 93.82 0.5084
Medium 82.38 82.89 82.26 0.5541 81.91 69.81 83.71 0.4256
Low 69.43 87.83 65.22 0.4153 71.88 75.47 71.35 0.3303

After MaMb High 89.60 77.19 92.43 0.6709 89.49 56.60 94.38 0.5227
Medium 85.92 82.89 86.61 0.6142 86.31 73.58 88.20 0.5207
Low 77.00 87.83 74.52 0.5024 76.28 81.13 75.56 0.4089

Both of the leave-one-out validation and the performance on the new data set were calculated and shown.
aPerformance before MaM.
bThe performance after MaM.
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tetraspanin superfamily. Palmitoylation of CD82/KAI1 plays
an essential role in inhibiting the migration and invasion of
cancer cells (Zhou et al., 2004). The experimentally verified
palmitoylation sites on CD82/KAI1 were mapped at position
5, 74, 83, 251 and 253 (Zhou et al., 2004). With the default
threshold (medium threshold), the CSS-Palm 2.0 could cor-
rectly predict the five sites as positive hits (Fig. 2). In
addition, the C150 was also predicted as a positive hit to
follow a –CC– (Type I) pattern. Thus, this site might also
be a highly potential palmitoylation site and need further
experimental verifications.

Comparison of CSS-Palm 2.0 with previous tools
Here, we compared the prediction performance of CSS-Palm
2.0 to CSS-Palm 1.0 and NBA-Palm 1.0. Previously, the
NBA-Palm 1.0 was compared with CSS-Palm 1.0 on an old
data set (210 experimental sites in 83 proteins) (Xue et al.,
2006; Zhou et al., 2006). Since the training data set of
CSS-Palm 2.0 is much larger than previous tools, it is not
strange that the performance of CSS-Palm 2.0 is much
higher on the training data set. To dissect whether the
updated algorithm of CSS-Palm 2.0 is superior, we re-trained
the CSS-Palm 2.0 with the old data set. The default
thresholds were chosen for CSS-Palm 1.0 and NBA-Palm
1.0, respectively. Then, we fixed the Sn values of CSS-Palm
2.0 to be identical with previous tools and compared the Sp
values (Table II). The prediction performance of CSS-Palm
2.0 was greatly improved against previous tools on the old
data set. In this regard, the updated CSS algorithm was

more useful and accurate. Also, we compared the prediction
performance of CSS-Palm 2.0 with previous tools on the
new data set (Table II). Again, the prediction results of
CSS-Palm 2.0 were much better than the previous tools.
Taken together, we proposed that CSS-Palm 2.0 would be
more useful for experimentalists.

Annotation of palmitoylated proteins in budding yeast
Recently, Roth et al. (2006) carried out a large-scale experi-
ment to identify palmitoylated proteins in S. cerevisae.
Totally, there were 16 known palmitoylated proteins and 35
novel palmitoylated proteins reported. Then, we used the
CSS-Palm 2.0 with high threshold to predict potential palmi-
toylation sites for these known and novel palmitoylated pro-
teins (Table III). Under the high threshold, the Ac, Sn, Sp
and MCC of CSS-Palm 2.0 were 89.60, 77.19, 92.43 and
0.6709, respectively. Successfully, CSS-Palm 2.0 could
predict 12 of 16 (75%) known palmitoylated proteins with at
least one site. And 26 of 35 (�74%) novel palmitoylated
proteins were predicted with at least one site.

Also, for the known palmitoylated proteins, we searched
the UniProt database and scientific literature for their palmi-
toylation sites information. The ambiguous information with
‘By similarity’, ‘Potential’ and ‘Probable’ in UniProt data-
base was not adopted. In our results, most of real palmitoyla-
tion sites were correctly predicted by CSS-Palm 2.0
(Table III). Only one site of Snc1 C95 was missed. And our
predictions provided additional information and were useful
for further experimental design. For example, although Yck1,
Yck2 and Yck3 were verified as palmitoylated proteins, only
the palmitoylation sites in Yck2 were clearly mapped as
C545 and C546 (Roth et al., 2006). Our prediction results
proposed that Yck1 and Yck3 might be palmitoylated at
C537, C538 and C517, C518, C519, C520, C522, C523 and
C524, respectively. Again, although Gpa2 was proposed as a
real palmitoylated protein, its palmitoylation sites infor-
mation is still ambiguous (Roth et al., 2006). Our results
suggested that Gpa2 might be palmitoylated on a single
cysteine residue at position 4 (Table III).

In the novel palmitoylated proteins, the palmitoylation
sites on Rho2 and Rho3 were mapped at C188 and C5,
respectively (Roth et al., 2006). Our results could correctly
predict these sites as positive hits (Table III). Again, eight
amino acid permeases (AAPs) including Agp1, Bap2, Gap1,
Gnp1, Hip1, Sam3, Tat1 and Tat2 were suggested to be pal-
mitoylated at C-teminal cysteines (Table III) (Roth et al.,
2006). And our results predicted most of these C-terminal
cysteine residues as positive hits.

Fig. 2. The snapshot of CSS-Palm 2.0 JAVA applet. The prediction results
of human CD28 protein were shown as an instance.

Table II. Comparisons of CSS-Palm 2.0 with CSS-Palm 1.0 and NBA-Palm 1.0

Predictor Old data set New data set

Ac (%) Sn (%) Sp (%) MCC (%) Ac (%) Sn (%) Sp (%) MCC

CSS-Palm 2.0 88.81 82.38 90.68 0.6982 89.49 64.15 93.26 0.5527
90.31 67.62 96.94 0.7082 92.42 43.40 99.72 0.6161

CSS-Palm 1.0 82.94 82.16 83.17 0.5877 81.42 64.15 83.99 0.3887
NBA-Palm 1.0 86.67 67.46 92.25 0.6102 88.26 43.40 94.94 0.4287

The old data set included 210 palmitoylation sites from 83 proteins (Zhou et al., 2006), while the new data set contained 53 palmitoylation sites in 26
proteins. The default thresholds were chosen for CSS-Palm 1.0 and NBA-Palm 1.0. Then we fixed the Sn values of CSS-Palm 2.0 to be identical with
previous tools and compared the Sp values.
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Furthermore, Roth et al. (2006) suggested a novel
sequence pattern for palmitoylation recognition. Thirteen pal-
mitoylated proteins, including Snc1, Snc2, Tlg1, Syn8, Sso1,
Sso2, Vam3, Tlg2, Mnn10, Mnn11, Pin2, Mnn1 and Ylr001c
(Table III), were proposed to be potentially palmitoylated at
cysteines cytoplasmically adjacent to their single transmem-
brane domains. However, these potential palmitoylation sites
were still not experimentally verified during the past one and
a half year. Thus, the new sequence pattern for palmitoyla-
tion was not adopted in current CSS-Palm 2.0. And the

CSS-Palm 2.0 with high threshold generated only poor pre-
diction on these proteins. We believed that the prediction
performance of CSS-Palm 2.0 will be improved if these
potential sites were experimentally verified and included into
training data set.

Discussion

In this work, we updated our previous CSS algorithm with
great improvement (Zhou et al., 2006). First, the

Table III. The prediction results for 16 known palmitoylated proteins and novel palmitoylated proteins in budding yeast

Protein UniProt Exp. sites Predicted sites Predicted palmitoylated peptides

Known palmitoylated proteins
Ras1 P01119 305 305, 306, 309 303-GGCCIIC-309
Ras2 P01120 318 318, 319 316-GGCCIIS–322
Ste18 P18852 106 56, 106, 107 55-ACL-57, 104-SVCCTLM-110
Gpa1 P08539 3 3 1-MGCTV-5
Vac8 P39968 4, 5, 7 4, 5, 7, 106, 149 4-CCSCLK-9, 105-ACA-107, 148-GCI-150
Gpa2 P10823 4 2-GLCAS-6
Yck1 P23291 537, 538 534-KLGCC-538
Yck2 P23292 545, 546 545, 546 542-KLGCC-546
Yck3 P39962 517, 518, 519, 520, 522, 523, 524 515-KYCCCCFCCC-524
Bet3 P36149 80 80 78-PRCEN-82
Lcb4 Q12246 43, 46 43, 46, 358, 359 41-LSCLSCLD-48, 356-LMCCS-360
Akr1 P39010 443, 598 441-PGCLP-445, 596-QICKG-600
Snc1 P31109 95
Snc2 P33328
Tlg1 Q03322
Syn8 P31377

Novel palmitoylated proteins
Rho2 P06781 188 188, 189 186-ANCCIIL–192
Rho3 Q00245 5 5, 228 3-FLCGS-7, 226-SSCTI-230
Ycp4 P25349 243, 244 241-LSCCTVM-247
Psr1 Q07800 9, 10 7-ILCCSS-12
Psr2 Q07949 9, 10 7-ILCCSS-12
Meh1 Q02205 7, 8 5-LSCCRN-10
Ygl108c P53139 4 2-GLCGS-6
Ypl236c Q12003 13, 14, 15 11-NLCCCRG-17
Lsb6 P42951 607 605-TWC-607
Ypl199c Q08954 235 231-IFCNCIQ-237
Ykl047w P36090 511, 516 509-PECLGNLC-516
Ybr016w P38216 119, 122 117-ALCICCTM-124
Pin2 Q12057 4, 66, 79, 81, 82, 84 3-VCK-5, 65-TCF-67, 77-FICWCCRC-84
Sna4 Q07549 2, 3, 5, 7, 8 1-MCCYCVCCTV-10
Mnn1 P39106 17 15-RSCTIP-20
Ylr001c Q07895 780 778-LFCII-782
Mlf3 P32047 2, 450 1-MCVYKS-5, 447-FNSCDT-452
Mse1 P48525 12, 169 10-SYCSP-14, 167-RCCAHL-172
Nuc1 P08466 2 1-MCSRI-5
Sso1 P32867
Sso2 P39926
Vam3 Q12241
Tlg2 Q08144
Mnn10 P50108
Mnn11 P46985
Tvp18 A6ZMD0
Ylr326w Q06170

Amino acid permeases (AAPs)
Agp1 P25376
Bap2 P38084 609 435, 609 433-IVCCVF-438, 607- FWC-609
Gap1 P19145 397, 602 395-YACSR-399, 600-FWC-602
Gnp1 P48813 663 193, 663 191-GSCVY-195, 601-FWC-603
Hip1 P06775 603 339, 397, 400, 603 338-GCL-340, 397-CSRC-400, 601-FWC-603
Sam3 Q08986 123, 377, 587 122-FCV-124, 376-SCV-378, 585-FWC-587
Tat1 P38085 619 619 617-FWC-619
Tat2 P38967 289, 592 288-TCL-290, 590-FWC-592

The predicted palmitoylation sites were marked in bold underline. The experimentally verified sites were taken from UniProt annotation or scientific literature.
Eight amino acid permeases (AAPs) were proposed to be palmitoylated at C-teminal cysteines (Roth et al., 2006).
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experimentally verified palmitoylation sites were classified
into three clusters, including Type I (sites follow a –CC–
pattern, C is a cysteine residue), Type II (sites follow a –
CXXC– pattern, C is a cysteine residue and X is a random
residue) and Type III (other sites) cluster. Both of training
and prediction processes were separately performed on three
types of palmitoylation sites. Also, the threshold values for
three types of sites were different, dependent on final predic-
tion performance. In addition, we developed a simple
method as MaM to improve the prediction performance of
CSS-palm 2.0.

Although it is very fast to predict potential palmitoylation
sites for a single protein sequence, the speed of previous
tools will be greatly slowed down if several users input mul-
tiple sequences simultaneously for prediction. Thus, both
CSS-Palm 1.0 and NBA-Palm 1.0 only permitted a few pro-
teins (,100) in FASTA format as input. The CSS-palm 2.0
was implemented in JAVA and used local CPU for compu-
tation. Thus, the calculating time is dependent on the users’
computers. Also, the code of CSS-Palm 2.0 was greatly opti-
mized. We tested the speed of CSS-palm 2.0 on a variety of
computers. Even on a laptop (e.g. IBM ThinkPad R51,
1.60 GHz, 768 MB), CSS-palm 2.0 will predict out potential
palmitoylation sites for �1000 proteins (average length
�1000 amino acids) within 3 min. Thus, the CSS-palm 2.0
is more convenient for a large-scale scan. Moreover, the
local packages of CSS-Palm 2.0 were developed and could
support three major OSs, including Windows, Linxu/Unix
and Mac.

As an application of CSS-Palm 2.0, we annotated the pal-
mitoylation sites information for palmitoylated proteins in
budding yeast. These substrates were generated from a
large-scale experiment (Roth et al., 2006). And the palmitoy-
lation sites in most of these proteins are not experimentally
verified. Our results could accurately predict out the known
palmitoylation sites. Furthermore, our predictions provided
more information and were useful for further experimental
consideration. Taken together, we proposed that CSS-Palm
2.0 will be more useful for its fast-speed and superior
performance.

Funding

This work was supported by grants from Chinese 973 project
(2002CB713700, 2006CBOF0503 and 2006CB933300),
Chinese Academy of Sciences (KSCX1-YW-R65, KSCX2-
YW-21 and KJCX2-YW-M02), Chinese Natural Science
Foundation (39925018, 30270293, 90508002 and 30700138)
and National Institutes of Health (DK56292). Dr. Xuebiao
Yao is a GCC Eminent Scholar.

Acknowledgements

The authors thank two anonymous reviewers for their helpful suggestions.
The authors thank Kai Yuan and Dezhi Hou for their evaluation of the
CSS-Palm 2.0 beta version. The authors also thank Dr. Christopher Korey
(Charleston, USA) for his constructive suggestions during the CSS-Palm 2.0
development.

References
Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z. and Miller,W.

(1997) Nucleic Acids Res., 25, 3389–3402.

Bijlmakers,M.J. and Marsh,M. (2003) Trends Cell Biol., 13, 32–42.
Bologna,G., Yvon,C., Duvaud,S. and Veuthey,A.L. (2004) Proteomics, 4,

1626–1632.
Casey,P.J. (1995) Science, 268, 221–225.
Chakrabandhu,K., Herincs,Z., Huault,S., Dost,B., Peng,L., Conchonaud,F.,

Marguet,D., He,H.T. and Hueber,A.O. (2007) EMBO J., 26, 209–220.
Dietrich,L.E. and Ungermann,C. (2004) EMBO Rep., 5, 1053–1057.
Draper,J.M., Xia,Z. and Smith,C.D. (2007) J. Lipid Res., 48, 1873–1884.
Eisenhaber,B., Bork,P. and Eisenhaber,F. (1999) J. Mol. Biol., 292,

741–758.
Eisenhaber,F., Eisenhaber,B., Kubina,W., Maurer-Stroh,S., Neuberger,G.,

Schneider,G. and Wildpaner,M. (2003) Nucleic Acids Res., 31,
3631–3634.

Eisenhaber,B., Schneider,G., Wildpaner,M. and Eisenhaber,F. (2004) J. Mol.
Biol., 337, 243–253.

el-Husseini Ael,D. and Bredt,D.S. (2002) Nat. Rev. Neurosci., 3, 791–802.
Fankhauser,N. and Maser,P. (2005) Bioinformatics, 21, 1846–1852.
Greaves,J. and Chamberlain,L.H. (2007) J. Cell Biol., 176, 249–254.
Hancock,J.F., Magee,A.I., Childs,J.E. and Marshall,C.J. (1989) Cell, 57,

1167–1177.
Li,W. and Godzik,A. (2006) Bioinformatics, 22, 1658–1659.
Linder,M.E. and Deschenes,R.J. (2007) Nat. Rev., 8, 74–84.
Maurer-Stroh,S., Eisenhaber,B. and Eisenhaber,F. (2002) J. Mol.Biol., 317,

541–557.
Maurer-Stroh,S., Eisenhaber,B. and Eisenhaber,F. (2002) J. Mol. Biol., 317,

523–540.
Maurer-Stroh,S. and Eisenhaber,F. (2005) Genome Biol., 6, R55.
Nadolski,M.J. and Linder,M.E. (2007) FEBS J., 274, 5202–5210.
Podell,S. and Gribskov,M. (2004) BMC Genomics, 5, 37.
Resh,M.D. (2006) Sci STKE, 2006, re14.
Resh,M.D. (2006) Nat. Chem. Biol., 2, 584–590.
Roth,A.F., Feng,Y., Chen,L. and Davis,N.G. (2002) J. Cell Biol., 159,

23–28.
Roth,A.F., Wan,J., Bailey,A.O., Sun,B., Kuchar,J.A., Green,W.N., Phinney,B.S.,

Yates,J.R., III and Davis,N.G. (2006) Cell, 125, 1003–1013.
Smotrys,J.E. and Linder,M.E. (2004) Annu. Rev. Biochem., 73, 559–587.
Wan,J., Roth,A.F., Bailey,A.O. and Davis,N.G. (2007) Nat. Protoc., 2,

1573–1584.
Xue,Y., Chen,H., Jin,C., Sun,Z. and Yao,X. (2006) BMC Bioinformatics, 7,

458.
Zhou,B., Liu,L., Reddivari,M. and Zhang,X.A. (2004) Cancer Res., 64,

7455–7463.
Zhou,F., Xue,Y., Yao,X. and Xu,Y. (2006) Bioinformatics, 22, 894–896.

Received March 27, 2008; revised June 16, 2008;
accepted June 20, 2008

Edited by Rebecca Wade

J.Ren et al.

644

D
ow

nloaded from
 https://academ

ic.oup.com
/peds/article/21/11/639/1592142 by guest on 21 August 2022


