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As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and

mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of

therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways

in a large number of subjects is of great research interest. Due to its high resolution in temporal and

spatial domains, computed tomography (CT) has been widely used in clinical practices for studying

the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demon-

strate the benefits in light of the cost and radiation dose associated with CT examinations performed

for the purpose of airway analysis. Whereas a single CT examination consists of a large number

of images, manually identifying airway morphological characteristics and computing features to

enable thorough investigations of airway and other lung diseases is very time-consuming and sus-

ceptible to errors. Hence, automated and semiautomated computerized analysis of human airways

is becoming an important research area in medical imaging. A number of computerized techniques

have been developed to date for the analysis of lung airways. In this review, we present a summary

of the primary methods developed for computerized analysis of human airways, including airway

segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided

clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of

these approaches are discussed, while highlighting areas that may require additional work. VC 2012

American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4703901]

Key words: human airway, morphological analysis, computer-aided diagnosis, computed tomography

I. INTRODUCTION

Airway related diseases (e.g., asthma and chronic bronchitis)

are extremely common in the United States and worldwide.1,2

This is not surprising when considering that lung airways are

the primary conductive structure for gas exchange between

the human body and the external environment. Because the

airways are directly exposed to chemicals, viruses, pollutants,

and allergens present in the environment, every individual,

regardless of age, gender, or race, is susceptible to the devel-

opment of airway diseases, albeit smoking and prolonged

exposure to pollutants increases the risk of developing airway

diseases. In the past two decades, the prevalence of airway

diseases has been increasing. For example, the prevalence of

asthma alone has doubled and it now affects approximately

25 million individuals in the United States and 300 million

individuals around the world.3 Hence, there has been a great

interest and effort in investigating factors that could cause

airway diseases.

Anatomically, human airways appear as a treelike branch-

ing network of tubes that enable airflow into the lungs

through the trachea. From the trachea to the terminal bron-

chioles, an airway tree consists of approximately 17 genera-

tions of branches,4 beyond which alveoli begin to appear and

ultimately terminate at the alveolar sacs where most gas

exchange occurs. Due to the specific structural characteristic
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of the airway tree, airway diseases are typically associated

with morphological changes that may affect the ability of the

lungs to exchange gas. For example, a reduction in airway

lumen size may result in an overall decrease in pulmonary

function.5 Whether specific airway diseases are caused by

well recognized possible genetic factors, or not, remains

unknown.6,7 Yet, it is widely recognized that accurate quan-

titative measurements of airway morphometry may be

helpful for clinically relevant assessments of different patho-

logical conditions associated with airway diseases and for

monitoring therapeutic efficacy of interventions.8 Whereas

computed tomography (CT) technology enables the visual-

ization of lung anatomical structures in significant detail, it

has been widely used in pulmonary clinical practice for non-

invasively assessing lung abnormalities, in general, and

airway related abnormalities, in particular, Refs. 9–11. How-

ever, in clinical practice, a single CT examination typically

consists of a large number of CT images, ranging from 100

to 600 slices, depending on the reconstructed slice thickness.

Hence, it is a very tedious and time consuming task to man-

ually trace and analyze the airways depicted on CT images.

Sonka et al. reported12 that manual segmentation of the air-

way tree in a single CT examination (slice thickness in their

study was 3.0 mm) required approximately 7 h of analysis.

At the same time, large variability in performance exists

among human experts,13 and it is almost impossible for an

expert or different experts to manually delineate consistently

and repeatedly the boundaries of a region-of-interest on large

sets of images. This variability could lead to different diag-

noses and thereby clinical decisions. In particular, Sonka

et al.12 noted that computer-based methods may actually

achieve a higher degree of accuracy than a manually gener-

ated “gold standard.” Hence, it is extremely desirable to

develop fully- or semiautomated computerized schemes

aimed at performing these tasks.

In the past decade, computerized identification and analysis

of the airways depicted on CT images has become an active

research area. Technically, it covers a number of related

topics, including: (1) airway segmentation; (2) airway identifi-

cation, matching, and labeling; and (3) airway morphometry.

Whereas airway morphometry may provide important infor-

mation related to pulmonary physiology and pathophysiology,

these techniques may also lead to, or aid in, other clinical

investigations and applications, such as virtual bronchoscopy

(VB) and investigations of the development and/or prognosis

assessment of specific airway diseases. An overview of these

topics and their current state of development follows.

II. AIRWAY TREE SEGMENTATION

Accurate, automated identification of the human airway

tree as depicted in CT examinations is a building block for

most computerized airway related analyses. Because there is

a relatively high contrast between the airway lumen and the

airway wall, a straightforward way of extracting an airway

tree from CT images is to use a three-dimensional (3D)

region-growing procedure specifically designed to identify

lumen regions. However, in the presence of partial volume

effects and/or image noise (artifacts), a purely region-

growing based operation frequently leads to leakage into the

lung parenchyma (i.e., a sudden explosion) under a given

(fixed or constant) threshold (Fig. 1). This leakage often

occurs in small airways and in cases with severe lung disease

(e.g., emphysema), thereby leading to an early termination

of the progressive airway tree detection process. Although

schemes (e.g., front propagation14) have been developed to

prevent leakage associated with region growing, there is no

strategy available that can completely prevent it from

occurring.

When applying a region-growing approach, a threshold and

a seed location needs to be specified. Given the fact that CT

examinations may be acquired under different scanning condi-

tions and/or depict different diseases, it is difficult, if not

impossible, to determine an optimal threshold for all cases. To

determine an appropriate threshold, Mori et al.15 proposed an

intuitive approach of gradually increasing the threshold until a

sudden “explosion” appears, indicating the occurrence of a

leakage. Similarly, Nakamura et al.16 proposed to adaptively

change the threshold based on CT values [Hounsfield (HU)]

of the seed area projected from adjacent images. When speci-

fying a seed for region growing, the general idea is to locate

the trachea regions that are typically defined as regions with

low intensity and circular shapes.15,17,18 Whereas it is difficult

to guarantee that the regions satisfying these criteria are

FIG. 1. An illustration of leakage that frequently occurs during region-growing operations. (b) shows the image after application of a thresholding operation.

When an improper threshold is selected and applied as shown in (b), there may be leakage into the parenchyma (a sudden explosion) at the leakage site. (c)

shows a segmented airway tree with leakage.
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always representative of the trachea, robust and efficient iden-

tification of the trachea region is not always an easy task.

Hence, an interactive selection of a seed is often implemented

for this purpose.16,19–21

Despite these limitations, the region-growing approach is

very simple and efficient in implementation. Hence, many of

the available airway segmentation methods17–36,38 employ

this procedure as an initial step for large airway identification

and thereafter implement additional procedures to identify

smaller airways while preventing potential leakage. Accord-

ing to their primary characteristics in terms of methodology,

available airway segmentation methods can be roughly clas-

sified into five categories (Table I): (1) morphological based

methods,17,22–24 (2) knowledge or rule based meth-

ods,12,21,25,26 (3) template matching based methods,19,27–30

(4) machine learning classifiers based methods,31–33 and (5)

shape analysis based methods.20,34–38 A brief description of

these methods follows.

II.A. Morphological methods

Whereas the tubular characteristic of an airway tree makes

it often appear as circular regions on CT image slices, identi-

fication of an airway tree may be transformed into a task of

detecting two-dimensional (2D) circular structures and then

reconstructing them as a 3D airway tree. In nature, the mor-

phological method aims to explore the specific shape, size,

and intensity of the airways, as well as their spatial relation-

ship on neighboring slices for airway identification. This type

of method generally consists of two primary steps: (1) identi-

fication of 2D candidate airway locations in a slice-by-slice

manner and (2) 3D airway reconstruction using various mor-

phological operations. The initial airway candidate identifica-

tion can be either achieved by using a region-growing

operation or other methods. For example, Aykac et al.17 iden-

tified the original airways by applying a threshold to the dif-

ference between the reconstructed image and the original

image and locating the local extrema. The reconstruction step

may work on the gray-scale CT image22 or its transformation

(e.g., gradient image23). The most basic morphological opera-

tions are dilation and erosion. However, the reconstruction

performance based on basic morphological operations largely

depends on the continuous detection of the detected airway

candidates in space. Otherwise, there will be discontinuity

when stacking the segmented 2D slices for the reconstruction

of a 3D airway tree. Rather than using a traditional morpho-

logical operation, Fetita et al.24 derived a mathematical mor-

phology operator based on the concept termed “connection

cost,” namely, the selective marking and depth-constrained

connection cost (SMDC connection cost), for a complete air-

way reconstruction. The connection cost considers three

types of regions related to airways, including (1) lumen, (2)

airway walls, and (3) adjacent parenchyma tissue.

II.B. Knowledge or rule based methods

To take advantage of known properties specific to the air-

ways, various anatomical knowledge or rule based approaches

have been utilized for airway identification. The explored

rules include (1) adjacency to vessels,12,21 (2) low airway in-

tensity,12,21 (3) the degree of airway wall existence,21 (4) no

existence of a closed loop among airway branches,25 (5) no

abrupt change in branching angle,25 and (6) a progressive

decrease in diameter.26 In practice, the combination of these

rules may be used to achieve a better performance. Consider-

ing that airways are adjacent to vessels, Sonka et al.13 defined

a set of rules with regard to the spatial relationship between

airways and vessels to aid in the detection of airways in a

TABLE I. Summary and comparison of several airway segmentation methods.

Studies Case# Section thickness Method 2D/3D Auto Performance

Aykac et al. (Ref. 17) 8 3 mm Morphological reconstruction 2D Fully 1) Sensitivity: 73%

2) Total 364 branches

Bartz et al. (Ref. 19) 22 1.0 mm 3D region growing, 2D wave

propagation, and 2D template

matching

2Dþ 3D Semi 2) 7th generation

2) 20�100 s

Fabijańska (Ref. 23) 10 0.625 mm Region growing and morphological

operation

3D Fully 1) �9th generation

2) �10 min

Fetita et al. (Ref. 24) 30 0.6 mm Energy based reconstruction 3D Fully 1) Sensitivity is �91%

Graham et al. (Ref. 20) 23 N/A 3D region growing and graph

optimization

3D Semi 1) �3 min

2) >7th generations

Kiraly et al. (Ref. 22) 30 0.6 mm 3D region growing and mathematical

morphology

3D Fully 1) 2�25 min

2) 12 generations per case

3) 182 branches per case

Mayer et al. (Ref. 27) 22 1.25 mm 3D region growing, 2D wave

propagation, 2D template

matching

2Dþ 3D Fully 1) Sensitivity: 86%� 94%

2) 27 s

Pu et al. (Ref. 38) 75 0.6–2.5 mm Differential geometry method 3D Fully 1) �11 generations

2) 30 min

Sonka et al. (Ref. 13) 44 3.0 mm 3D region growing, rules, anatomical

knowledge

2Dþ 3D Fully 1) Sensitivity: 69%�87%

Tschirren et al. (Ref. 28) 22 0.6 mm Fuzzy connectivity 3D Fully 1) 27.06 4.4 segments
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slice-by-slice manner. The assessment of this approach on

five CT examinations showed a sensitivity ranging from 69%

to 84% when compared with a sensitivity of 48% as achieved

by the conventional region-growing approach. However, as

pointed out in Ref. 21, this method results in a large number

of false positive identifications, because the predefined rules

do not necessarily correspond to the existence of actual adja-

cent airways. Park et al.21 improved this method using a set of

fuzzy rules that increased the specificity of the method25 with-

out compromising its sensitivity. An example of the rules is,

“If (BRIGHTNESS is LOW) and (ADJACENCY is HIGH)

and (DEGREE_OF_WALL_EXISTENCE is HIGH), then the

region is an airway with a VERY HIGH confidence.”26 The

fuzzy rules are organized using a table to determine the

confidence-level of actually detected airways. In practice, it is

very difficult to numerate all rules associated with airways,

and these rules may not give acceptable confidence-levels of

actually being airways. Such a limitation makes it difficult to

use solely these rules for a robust identification of airways,

but the rules may be used along with other approaches for

removing potential false positive identifications.

II.C. Template matching methods

Template matching methods use a set of 2D/3D predefined

masks (templates) to search for airway regions with similar

shapes. Because of the tubular shape of airways, the com-

monly used masks are 2D circular templates with a range of

sizes and intensity levels.19,27 In order to identify airways in

each image slice, shape matching is typically used. However,

airways appear circular in cross sections only when the air-

ways travel perpendicular to the scanning plane. Otherwise,

there will be a variety of generally elliptical shapes, thereby

making it difficult to use a limited number of templates to

fully describe the airways in a cross-sectional form. At the

same time, the variability in airway sizes also imposes a chal-

lenge when one defines a limited number of templates. These

limitations may lead to inaccurate detection of airways. In

particular, the frequent attachment of the airways with other

surrounding structures (e.g., blood vessels) and the presence

of lung diseases (e.g., emphysema) may result in inaccurate

detection. In attempt to overcome the limitations associated

with 2D circular templates, investigators28–30 used a 3D cy-

lindrical shape to progressively obtain the airways starting

from the trachea by adaptively predicting the orientation,

size, and position of the airway tree branches. The use of a

3D cylindrical shape as a template may keep the segmenta-

tion in a small area and may also prevent leakage.

II.D. Machine learning methods

The motivation for using machine learning methods is to

capture the underlying probability distribution of specific

airway characteristics by automatically summarizing the

possible patterns and determining if these represent true air-

ways. To identify candidate airway regions, Lo et al.31,32

developed a classifier that used several image appearance

based features and a K-nearest neighbor (KNN) classification

approach to differentiate airways from nonairways at varying

scales. Only the features that maximize the area under the re-

ceiver operating characteristics (ROC) curve of the KNN

classifier were regarded as optimal. The involved training

procedure is based on a cost function that considers several

measures, including airway shape, airway orientation, and an

airway probability map. Recently, Lo et al.33 improved the

approach using a combination of an airway appearance

model and a vessel orientation similarity measure. The

appearance model uses a classifier that is trained with a set

of easily acquired incomplete airway tree segmentations and

is used to differentiate airways and nonairways. Whereas a

training process is involved, the selected features and the di-

versity of the prelabeled data play a critical role in the ulti-

mate performance of the airway tree identification.

II.E. Geometric shape analysis methods

Since the human airways appear as a tubularlike shape, a

number of shape based analysis methods have been devel-

oped to identify airways. The eigen-value analysis of the

Hessian matrix at each voxel, or pixel, in image space has

been widely used for distinguishing nodules, vessels, and air-

way walls from each other.34–36 However, due to the use of

second derivatives, this Hessian matrix based filter is quite

sensitive to the existence of image noise and presence of dis-

ease. In addition, when computing the derivatives, a Gaus-

sian convolution filter is often applied to the CT images.

Due to its blurring effect, the Gaussian convolution filter

may reduce the contrast between the airway wall and the air-

way lumen, ultimately leading to the possible misses of

small airways. To alleviate the blurring effect caused by

Gaussian filtering, Bauer et al.37 proposed to replace the

multiscale computation of the gradient vectors by the gradi-

ent vector flow (GVF). As claimed by Bauer et al.,37 the

advantage of the GVF is the avoidance of diffusion of nearby

structures into one another. In the past, Pu et al.38 developed

an approach for airway segmentation from a different per-

spective. The method first models the lung anatomical struc-

tures using the well-known marching cubes algorithm and

then uses both principal curvatures and principal directions

in differentiating airways from other structures (tissues) in

geometric space. Unlike previous methods, this approach

identified the airways in geometric space rather than in

image space. Because it does not require the tracing of the

airways paths, as do region-growing strategies, there are vir-

tually no leakage or obstruction issues associated with this

method. Disconnected airways due to obstructions may be

detected using this approach (Fig. 2). In addition, as demon-

strated in Ref. 38, this approach can also be used to identify

the vascular tree. Recently, Graham et al.20 developed a pro-

gressive approach to identify airway trees. The approach

uses an elliptic shape analysis on 2D transverse, coronal, and

sagittal views, for the identification of the regions with a

high probability of being airways.

II.F. Summarization

Although we classified the available approaches into dif-

ferent categories, we note that the majority of the approaches
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are actually not based on a single strategy. Rather, the

schemes often combine two or more of the above strategies

to achieve better performance. For example, the method

developed by Bartz et al.19 involved several different proce-

dures, including 3D region growing, 2D wave propagation,

and 2D template matching. A comparison of performance

levels of several, albeit not all, of these methods is summar-

ized in Table I. We emphasize that comparisons should not

be made simply based on the listed measures, as different

datasets and different criteria were used for testing, in addi-

tion to different references or gold standards. However, these

performance measures provide an overall perspective of the

performance levels of these schemes in identifying the air-

ways. In order to directly compare the performances of the

different approaches, the second international workshop on

pulmonary image analysis provided 40 publicly available

cases for developing, training, and testing purposes.39 A total

of 15 teams participated in a competition, testing their

schemes against this common dataset. Detailed information

regarding the results of the competition was reported in

Ref. 39. Unfortunately, the generated “reference standard” is

not publicly available. Hence, there is no way for the commu-

nity to preliminarily test newly developed airway segmentation

schemes using this dataset as a “standardized” benchmark.

III. AIRWAYANATOMICAL LABELING,
SKELETONIZATION, AND MATCHING

Given a 3D segmented airway tree, it is not easy to visu-

ally locate or follow a specific region, because of the

involved large number of generations and branches and the

associated self-occlusion in space.40,41 A possible solution

is to assign names to the corresponding airway regions. The

labeled information may act as a “map” or a “scout” for

visual navigation purposes. This information also enables a

relatively efficient and easy way to skip (“jump”) directly

to the targeted diagnostic sites and thereby help with

the semantic registrations of multiple airway trees, as well

as provide a better understanding of the lung anatomy.

In addition, for advanced computer-aided diagnostic

applications, the labeled information may be used in the

assessment of disease state and progression.

To assign predefined labels to the airway tree, a straight-

forward solution is to automatically match a segmented tree

to a prelabeled airway model (i.e., a reference airway tree).

Whereas the airways appear as a treelike structure, it is natu-

ral and useful to have the curved skeletons (centerlines) of

the airways before performing a matching procedure. Hence,

computerized airway labeling typically involves the follow-

ing basic steps:42 (1) the airway skeletonization and (2) tree-

structure matching.

III.A. Skeletonization

Skeletonization, frequently referred to as medial axis

extraction or the thinning operation, is widely used in shape

analysis for specific emphasis of the topological property of

an object to describe low-level shape. There have been a

large number of general methods developed for skeletoniza-

tion of an arbitrary shape in the field of computer graphics

and computer vision.43–46 Although in theory these general

skeletonization algorithms may be applied directly to obtain

the centerlines of the airways, most of these require high

computational cost in space and time, and are typically sen-

sitive to noise. In practice, some characteristics specific to

the airways are often explored to improve efficiency and

robustness of the skeletonization approach being used.

Considering that the airways appear as a bifurcation tree,

Aykac et al.17 used a linked list data structure to identify the

branching points by assessing the changes of airway connec-

tivity in neighboring image slices. If a list node had no

“children,” it represents a branch endpoint; if a list node had

two or more children, it represents a bifurcation point. Mori

et al.40 applied the Euclidean distance transform to obtain

the centerlines of an airway tree and then represented these

as a graph. The voxels (nodes) of the graph were classified

into three types of voxels according to the number of voxels

connected to the one in question. For example, a connecting

voxel has exactly two connected voxels, a branching voxel

has more than two connected voxels, and a terminating voxel

FIG. 2. Examples illustrating the performance of the method in Ref. 39 in identifying airway trees.
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has only one connected voxel. Alternatively, considering

that the magnitude of the GVF vanishes at medial curves of

a tubular region, Bauer et al.37 proposed a medial curve

extraction method in their attempt to identify the centerlines.

In methodology, it is similar to identifying the ridges in a

vector field. The regions with GVF values less than a prede-

fined threshold were regarded as the ridges, as the magnitude

of the GVF may decrease toward the medial lines of an

object, but never to zero. Ma et al.47 developed a parallel 3D

thinning algorithm and demonstrated its efficacy in airway

skeletonization. The underlying idea was to erode the vol-

ume in question from the outermost surface in a layer-by-

layer manner until only a centerline remains. A total of 38

erosion templates were designed and any voxel that fit one

of the templates was removed. At the same time, preserva-

tion conditions were designed to prevent the removal of

the end points of the skeleton. An iterative operation of this

removal procedure would result in a skeleton of a given

volume. Whereas there could be disconnected regions due to

high sensitivity of Ma et al.’s algorithm47 to small perturba-

tions, Chaturvedi et al.48 improved the approach by using a

simple dilation operation with a 5� 5� 5 spherical kernel at

the break regions in order to assure connectivity. In addition,

Swift et al.49 proposed a semiautomated axes-generation

algorithm that consisted of two stages. They first computed a

discrete model to capture top-level topological structures of

the airway tree and then used this model to obtain detailed

smooth airway axes. Although the semiautomated method

may be an optional methodology for identifying the center-

lines of the airways, in practice, it is typically not feasible,

and, in reality, fully automated methods are extremely desir-

able for this purpose.

III.B. Tree matching

To date, only a limited number of investigations have

been performed in regard to airway tree matching (labeling).

Given the centerlines of a reference airway tree with labeled

information and a target airway tree to be labeled, an intui-

tive approach to tree matching is to traverse the airway tree

from the “root” node to the “leaves” nodes in a depth-/

width-first search manner. The dynamic programming based

algorithm used in Ref. 50 followed this strategy for tree

matching. However, additional false positive skeleton seg-

ments caused by noise and anatomical variability among dif-

ferent subjects could lead to incorrect branch matching.

Another example that used a depth-/width-first search

method is the Kitaoka et al.’s branch-point labeling algo-

rithm,42 in which a mathematical phantom was used as a ref-

erence. Labels were assigned by matching the target tree

against the phantom. However, this method was also not

able to automatically manage false branches and these had to

be pruned manually.

Different variations of graph theory have also been devel-

oped in order to match and label an airway tree. Tschirren

et al.41 first performed a pruning step in order to improve

their comparability and subsequently imposed a rigid regis-

tration in order to map the trees onto the same coordinate

system. Thereafter, a hierarchical approach using an associa-

tion graph was applied to the data to accomplish the match-

ing. While this approach performs well for some trees, there

are two major drawbacks: (1) the method requires robust

detection of airway branch points of the trees, and (2) it

relies on the invariance of the topological distance. The for-

mer may be possible in the case of major branching points,

but difficult for small ones, and the latter is extremely sus-

ceptible to erroneous skeletonization due to possible false

positive/negative identification of small airways. Experi-

ments showed an accuracy of 92.9% in branch point match-

ing when applied to 17 pairs of CT examinations. Each pair

was acquired on the same subject at different expiration

stages. Similarly, Kitaoka et al.42 proposed to match two

trees by searching for subtrees with maximum similarity on

the basis of a tree association graph (TAG). This algorithm

was originally developed by Pelillo et al.51 as a tree-

structure matching algorithm that had been applied success-

fully in the matching of shock trees and shape-axis trees.

Details of the definition of similarity between subtrees

and the searching algorithm can be found in Refs. 41 and 51.

When applied to nine CT examinations, 95% of the detected

airways could be accurately labeled. Bartoli et al.52 proposed

an extension of the association graph approach to achieve

both many-to-one and many-to-many matching of attribut-

able trees.

To leverage the knowledge that airway trees always start

from the trachea and usually appears in a bifurcation form,

Mori et al.40 labeled anatomical names to the airway tree

using a knowledge based approach that has a set of prede-

fined rules for assigning names. The knowledge based

approach contained information of the tag name of a branch,

the anatomical name, the parent branch name, the position,

and the direction. Similarly, Kawai et al.53 described an

automated anatomical labeling algorithm of the bronchial

branches. However, information regarding the procedure

was not described in detail in Ref. 53. These proposed algo-

rithms were applied specifically to incomplete trees with

about 30 branches, and the built-in knowledge base did not

include anatomical variations.

IV. AIRWAY MORPHOMETRYANALYSIS

As a conductive structure, morphological changes of the

airways can affect airflow and thus change the gas exchange

ability of the lungs. Therefore, the airway morphometry is

particularly important. Changes in airway morphometry may

also serve as an index for disease progression over time, as

well as for assessment of response to specific treatments.54

As Berger et al.55 found, mean airway internal area (IA) was

significantly different in smokers with chronic obstructive

pulmonary disease (COPD) than in those without COPD. As

explained in Ref. 56, COPD is defined as lung disease that

has the co-occurrence of chronic bronchitis and emphysema,

and its characteristic is the association of narrowed airways.

In principle, given an airway tree with an individual branch

labeled, it would be relatively easy to measure some global

parameters, such as airway generation and/or branch
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number, airway length/volume, cross-sectional areas or cir-

cularity of the airway lumen, and airway bifurcation angles.

Wood et al.57 developed an approach that measured the

branch length, angle, and diameters of an airway tree on the

basis of airway segmentation and centerline extraction.

However, in order to measure some parameters, such as the

remodeling of the airway wall and/or the bronchoarterial

ratio,58–60 additional efforts are needed to detect the outer

airway wall, because available airway segmentation algo-

rithms described in Sec. II are designed primarily for airway

lumen identification.

Investigations showed that bronchial wall thickening is a

well described sign of COPD and remodeling of the airway

wall may be used to classify the severity of disease.61–63

Originally, airway wall measurements were performed man-

ually by properly adjusting image intensity values using win-

dow levels.64–66 Repeatedly using manual-tracing techniques

is very challenging and time-consuming to perform accu-

rately, due to the large number of slices involved in a single

examination. Therefore, there have been a number of com-

puterized algorithms developed to aid in the identification

and measurement of airway walls depicted on CT images,

including the following.

IV.A. Full-width at half maximum (FWHM) or half-max
method

By shooting a number of rays from the center of the air-

way lumen outward to the parenchyma, the FWHM method

estimates the inner and outer wall locations by studying in-

tensity profiles along these rays.67 Specifically, FWHM

assumes that the outer and inner airway wall is located half-

way between the local minimum value within the lumen and

the maximum value within the wall (i.e., the FWHM loca-

tion) as shown in Fig. 3. As mentioned in these studies,68,69

this method depends solely on the gray-scale profile along a

ray, which may be affected by different factors, such as a

partial volume effect or the blurring introduced by the recon-

struction method, as well as the orientation of the airways,

thus leading to a potential overestimation of the airway wall

measures. For small airways, the half-max method may result

in an obvious estimation bias. Specifically, King et al.70

found that the accuracy of this method depends on an object’s

shape and the scanner’s point-spread function (PSF).

IV.B. 2D model-based method

Reinhardt et al.69 developed a 2D model-based method to

estimate the airway inner and outer walls by matching a pre-

dicted ray profile with an actually observed profile in the data

set. Typically, a calibration step was needed to estimate the

parameters of the 2D PSF Sðx; yÞ of the scanner, and Gaus-

sian blurring was the de-facto model for the point-spread

function. This calibration was implemented by modeling the

response Rðx; yÞ of an ideal scanner as a 2D convolution

between Sðx; yÞ and the density function Dðx; yÞ of an ideal

airway model [Eq. (1)]. A maximum-likelihood method (i.e.,

a nonlinear optimization technique) was used to minimize the

difference between the model and the observed data. The

developed model was intended to simulate the scanning

process of an ideal airway, and it assumed that the airway is

circular in a plane and its axis is perpendicular to the scan

plane. If the airway is scanned off-axis, the model could lead

to errors in the measurement. Also, the PSF of a scanner may

not be a Gaussian function in practice and may vary among

different manufacturers

Rðx; yÞ ¼ Cþ A

ð1

�1

ð1

�1

Dðx; yÞSðx� t; y� tÞdxdy;

where A and C are constants: (1)

IV.C. 3D model-based method

To overcome the limitations of 2D model-based meth-

ods,69 Saba et al.71 used an elliptical rather than a circular

model and a full 3D PSF rather than a 2D PSF for this pur-

pose. A least squares approach was used to fit ellipses to the

inner and outer airway walls, and the tilt angle was then esti-

mated using the major and minor axes. The resulting airway

model was then convolved with the 3D scanner PSF to gen-

erate a predicted image. After a nonlinear optimization pro-

cedure, the parameters of the resulting airway model were

used to estimate the inner and outer airway walls. This

improved strategy allows for measuring airways that are

nonperpendicular to the scanned plane. Similar to the 2D

version,69 the computational complexity of this method was

relatively high.

IV.D. Integral based method

When measuring relatively thin structures depicted on CT

images, Weinheimer et al. assumed that the integral of a CT

system’s PSF is equal to 1 in all directions, eliminating the

need to approximate the PSF using a Gaussian function. For

the airway walls, the authors modeled the intensity profile

along a path using a linear system as shown in Eq. (2), where

a is the path length within the lumen, b is the path length

within the airway wall, c is the path length outside the air-

way, c denotes the airway wall intensity, and d denotes the

nonairway wall intensity. For computing the profile integral

FIG. 3. An illustration of the FWHM method as used in airway wall identifi-

cation. The curve denotes the intensity profile from a point located in the air-

way lumen outward.
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along a path, the authors used the 10% value of the rising

edge and the 10% value of the trailing edge as the start and

end points. Solving this linear system leads to a unique solu-

tion for airway wall thickness estimation. To compensate for

potential errors resulting from the finite integration, a correc-

tion factor k was introduced. However, this approach is scan-

ning parameters dependent (e.g., reconstruction kernel);

hence, it requires a proper manual adjustment (a correction

factor) and a proper estimation of the density of the material

being measured. The performance of this integral (or sum-

mation) based method was initially evaluated using a phan-

tom with difference sizes of tubes. The method was also

tested by Achenbach et al. when studying correlation

between airway wall thickness in COPD patients and pulmo-

nary function tests (PFTs) (Ref. 62)

a � 0þ b � cþ c � d ¼ k

ð10% trailing edge

10% rising edge

f ðtÞdt

aþ bþ c ¼ 10% rising edge; 10% trailing edgej j

a� c ¼ 0

8

>

>

>

>

<

>

>

>

>

:

: (2)

IV.E. Phase congruency method

Unlike methods that depend on a specific model of the air-

way (e.g., circular or elliptical) or a specific function of the

scanner in question (e.g., PSF), Estépar et al.72 used phase

congruency to detect the inner and outer airway walls by tak-

ing advantage of the fact that phase congruency is present at

the scanner level when reconstructing data with different

reconstruction kernels, is a normalized measure of phase var-

iance across scales, and appears as a smooth function with

local maxima at locations where the local phase is consistent

across scales. Hence, under phase congruency, the inner/outer

airway wall edge related features may be located at the

regions where local phase exhibits maximal coherence. This

method defined the wall boundaries by considering the point

with half intensity with respect to the peak intensity inside the

wall. In implementation, Estépar et al.72 introduced a feature

dependent congruency wh and located the inner/outer airway

wall by maximizing wp=2 and w3p=4, respectively. As noted in

Ref. 72, the advantage of this method was a lower sensitivity

to different reconstruction kernels and noise levels. The

scheme is able to locate the airway walls relatively accurately.

IV.F. Contour matching method

In order to overcome some of the segmentation difficulties

that stem from vessels adjacent to airways, as well as wall

irregularities, Saragaglia et al.73 developed a method based

on mathematical morphology combined with energy-based

contour matching. To reduce the dependence on pixel value

variations, this algorithm first used the FWHM to normalize

the native image. Thereafter, with the aid of the airway cen-

terlines, the outer airway wall is computed in a slice-by-slice

manner by progressively extending an initial “closed” con-

tour (e.g., a set of connected pixels) until a predefine energy

reaches a state of equilibrium. In implementation, the energy

function is defined as a combination of several morphological

measures, such as grayscale gradient and distance to the

neighborhood. In this method, the inner wall contours are

used as the initial closed contour to automatically identify the

outer wall. This method depends on the accuracy of the cen-

tral axes of the airways, as these are used to generate the

cross-sectional images at specific bronchial locations.

IV.G. 3D geometric deformable model

In most of the methods described above for airway mor-

phometry analysis, measurements are typically restricted to

airways that are largely perpendicular to the scanning plane.

This may lead to obvious bias in the airway measurement, as

the majority of airways depicted on axial images are actually

oblique to the axial plane. In addition, these methods primar-

ily focus on the identification of airway wall regions that are

directly attached to the parenchyma while ignoring regions

between the bronchial wall and adjacent vessels. Due to the

similar intensity of the bronchial wall and the adjacent ves-

sels, it is quite complicated to correctly identify the bounda-

ries between the structures. To overcome these limitations,

Ortner et al.74 described a novel geometric method based on

an explicit 3D triangle mesh surface model. The model

deforms in a deformation force field defined by gradient vec-

tor flow according to simplified Lagrangian dynamics. In

particular, the model allows for local adaptive time step inte-

gration, has no self-intersections during deformation, is

independent to the airway orientation with respect to the

scanning plane, and can deal with adjacent vessels automati-

cally. However, this approach74 requires a balloon force

based on the image intensity to prohibit the surface stopping

at the inner surface of the airway wall. While the image in-

tensity of an airway wall may vary substantially, it is hard to

select a constant parameter for the balloon force.

According to Estépar et al.,72 these methods can also be

classified into two categories, namely, parametric methods

and nonparametric methods, based on whether any mecha-

nism/model (e.g., the PSF) is used to alleviate the blurring

affect caused by a scanner. It is not easy to reliably measure

some airway features, and the measurement process is hin-

dered by variations in airway caliber, wall thickness, and ori-

entation. Nonhomogeneous airway surroundings, such as

adjacent airways, lung parenchyma, blood vessels, heart, and

chest wall, further complicate the process. Of equal impor-

tance are the partial volume effects which are the result of

the finite size of the image voxel. Due to partial volume

effects, fine details and small objects (relative to pixel size)

can be largely lost. Many of the mentioned techniques

designed to assess airway wall thickness were validated

using phantom studies, and all seem to work better for air-

ways with a diameter larger than 2 mm. However, in reality,

small airways play an important role in COPD and other

respiratory related diseases caused by heavy smoking.

V. VIRTUAL BRONCHOSCOPY

As an approach to visually examine the airways, bron-

choscopy is widely used for diagnostic and therapeutic
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assessment purposes in current clinical practice, allowing for

inspection of abnormalities (e.g., tumors, inflammation, and

foreign bodies) for diagnosis, as well as for performance of

biopsies and surgical planning. However, the invasive nature

of the conventional rigid/flexible bronchoscopy is associated

with some risk to the patients and may not be suitable for all

patients (e.g., young children or severely ill patients). In

addition, due to physical limitations, conventional bronchos-

copy can only reach the first few generations of an airway

tree, and there is no guarantee that the exact designated site

of the lung will be reached. The advent of sophisticated com-

putational techniques in computer graphics, combined with

high resolution CT imaging in a volumetric data acquisition

mode, led to the development of VB techniques. As a result,

it is now possible to noninvasively, efficiently, and safely

perform a bronchoscopy in a clinical setting for all types of

patients through a virtual “fly through” of the centerlines of

the airway branches. With this approach, a clinician is able

to study suspicious lesions from any desired direction and

viewpoint without any time limit, albeit, without the ability

to biopsy identified anomalies or suspicious areas. The appli-

cations of VB in studying a number of lung diseases in

clinical settings have been described in detail in several

reviews.75–78

In terms of technique, a VB system can be comprised of

two primary components:77 (1) robust airway tree identifica-

tion and centerline extraction for path planning and (2) inter-

active virtual navigation along the path. Initially, due to

limitations in computer graphical techniques, it was rela-

tively difficult to perform the virtual navigation in real time,

and as a result, clinical applications and the actual use of VB

were quite limited.79 With advances in computer techniques

(both hardware and software), it became relatively easy to

have either a real-time surface rendering or a real-time vol-

ume rendering (Fig. 4). Hence, VB has been widely accepted

and is now in routine clinical use. There have been a number

of studies79 investigating the feasibility and usefulness of

VB in clinical practices, and all studies verified that VB is a

promising and feasible approach for studying a number of

diseases, but there remains a limitation in identifying subtle

lesions. For example, after reviewing the findings in 18

consecutive patients, Dheda et al.80 found that VB missed

mucosal and infiltrative changes despite its adequate capabil-

ity in identifying suspicious lung cancer and laryngotracheal

pathology, as well as in determining the size of stenosis.

Similarly, Finkelstein et al.81 compared findings using VB

with fiberoptic bronchoscopy on 32 consecutive patients and

concluded that with the use of VB one was not able to detect

subtle lung lesions. In particular, Haliloglu et al.82 investi-

gated the usefulness of VB in assessing suspected foreign

body aspirations in children and concluded that VB should

be performed only in specific situations, namely, where chest

radiograph is negative but the clinical indication is highly

suggestive of an aspirated foreign body.

In order to develop an easy-to-use and practical VB sys-

tem, there are primarily three issues that need to be addressed:

(1) Accurate identification of small airways: As mentioned,

small airways always constitute a region-of-interest for

investigating various lung airway diseases, but full

advantage of the approach cannot always be reached due

to unreliable CT based segmentation of smaller airways.

(2) Efficient and natural human–computer interface for per-

forming the needed navigational tasks: With a proper

user interface, the strengths of real-time rendering tech-

niques could be better exploited for achieving optimal

performance in visualization of the airways and the

surrounding lung tissues. For example, Seemann et al.83

compared different surface models (i.e., a triangle-

surface rendering model, a shaded-surface rendering

model, and a transparent shaded-surface rendering

model) and found that each of the models had strengths

and weaknesses. In principle, these models can be

switched freely in implementation by incorporating a

toggling function into the user interface. Also, an inter-

active adjustment of the transfer function for volume

rendering, or the thresholding for surface rendering, may

reveal additional details of a specific region-of-interest.

In addition, the existence of a mechanism for interactive

measurement during navigation may be helpful in study-

ing the characteristic of a lesion.22 Unfortunately, there

are few investigations on the design of a natural and effi-

cient user interface for VB systems. In the future, special

efforts should be made to improve the clinical utility

through improving VB interpretation, in combination

FIG. 4. Examples of different presentation approaches to virtual bronchoscopy: (a) volume rendering with lighting, (b) volume rendering without lighting, and

(c) surface rendering with lighting.

2611 Pu et al.: Computerized airway analysis review 2611

Medical Physics, Vol. 39, No. 5, May 2012



with automated morphometry techniques for aiding in

the identification of small lesions (e.g., mild stenosis or

small tumors).

(3) A seamless conjunction with a real bronchoscope: One

of the main challenges of VB when used in an interven-

tional setting in conjunction with a real bronchoscope is

to robustly estimate the current position of the true bron-

choscope (TB) using a direct comparison between TB

and VB. If this registration issue could be robustly

resolved for real time use, perhaps with additional track-

ing devices, it would constitute an important step toward

a possible wider clinical utilization of VB.

VI. CORRELATION ANALYSES AMONG AIRWAY
MORPHOMETRY, AIRWAY DISEASES, AND
PULMONARY FUNCTION

The primary goal in developing computational techniques

as described herein is to accelerate knowledge discovery of

the underlying mechanisms of specific lung diseases. It has

been widely recognized that lung structures and their mor-

phological variations may be highly correlated with pulmo-

nary function. In the past, there have been numerous

investigations on the relationship, if any, between airways

morphological characteristics in vivo and pulmonary func-

tion, or disease status in order to assess structural abnormal-

ities and track changes over time or in response to treatment.

Despite extensive effort in this regard, only a limited number

of airway morphological features were investigated, includ-

ing airway wall thickness, lumen area, trachea dimensions,

and branch counts.

Many of these61,62,84–88 demonstrated that measurements

of airway wall thickness on CT images were reasonably pre-

dictive of lung function and thicker airway walls tended to

be found in subjects with reduced airflow. For example,

Hogg et al.63 showed that COPD progression was strongly

associated with an increase in the volume of tissue in the

wall and with accumulation of inflammatory mucus exudates

in the lumen of airways less than 2 mm in diameter. By

studying the central airway wall dimensions in the apical

segmental bronchus of the upper right lobe in smokers,

Nakano et al.67 found that the percentage of total airway

(lumen plus wall) that represented airway wall area [wall

area percent (WA%)] correlated with forced expiratory vol-

ume in 1 second (FEV1), forced expiratory vital capacity

(FVC), and the ratio between residual volume (RV) and total

lung capacity (TLC), but not with a diffusing capacity of

lung for carbon monoxide (DLCO). Multiple logistic regres-

sion analyses performed by Arakawa et al.88 showed that air

trapping and bronchial wall thickening were significant inde-

pendent determinants of obstructive PFTs. Leader et al.89

studied the association between lung function and airway

wall computed attenuation (“density”) in 200 COPD screen-

ing subjects. For the purpose of this study, the presence of

COPD was defined as FEV1/FVC< 0.7 with the presence of

emphysema or airway obstruction (remodeling), or both.

Airway morphometry parameters (i.e., lumen area, lumen

perimeter, and wall area percent) had a slightly stronger

correlation with lung function as compared with airway wall

density (i.e., mean and maximum HU). In particular, there

was a significantly stronger association for measurements

computed from small airways when compared to larger air-

ways in the investigated population. Achenbach et al.62

correlated wall thickness of large and small airways with

functional parameters related to airflow obstruction in

COPD patients using a new quantification procedure from a

3D approach of the segmentation of the bronchial tree.

When compared with proximal airways, a higher correlation

between function and distal airways was observed.

In addition to the airway wall, there are a limited number

of investigations that considered other morphological airway

features, such as lumen area, trachea dimensions, and airway

branch numbers, during investigations of possible correla-

tions, if any, with lung function. Bokov et al.90 found that

inspiratory airway resistance correlated with lumen area of

the sixth bronchial generation of the right lung and peak ex-

piratory flow (PEF) correlated with the area of the third gen-

eration. Considering that emphysema and emphysematous

lungs tend to have fewer visible small airways than those

with less parenchyma destruction, Diaz et al.91 studied the

relationship between airway branch number and severity of

emphysema and found that the total airway count was lower

in subjects with more severe emphasematous destruction,

suggesting that airway branch numbers might be a predictor

of severity of COPD in smokers. To evaluate the correlation

between measured tracheal features in emphysema patients

and PFT before and after a lung volume reduction surgery

(LVRS), Leader et al.92 computed a set of tracheal features

(e.g., tracheal length, axial plane area, circularity index, tra-

cheal length, and volume) and compared these with PFT

results. Experiments on a dataset of 43 patients showed that

combining PFT and anatomical features, such as tracheal

features, could potentially provide a more accurate assess-

ment of disease status, as well as disease progression. Handa

et al.93 verified this observation in a different study and

showed that there was a positive correlation between tra-

cheal area corrected for body surface area and peak expira-

tory flow (%PEF), and a negative correlation between

airway wall area (WA%)/total airway area and %PEF. How-

ever, trachea measures may be affected by the scanning posi-

tion, and as a result, the computed trachea measures may be

over or under estimated.

Although the correlation between extent of emphysema

and severity of airflow obstruction is well recognized, Cox-

son et al.94 pointed out that “none of the studies published to

date show ‘excellent’ correlations between lung function and

CT measures of emphysema and airway wall remodeling.”

Specifically, Hasegawa et al.85 did not show a correlation

between the right apical segmental bronchus and FEV1 but

did show an improved correlation with FEV1 when more

distal airways were considered. Coxson et al.94 verified in an

independent study that there was no correlation between

airway wall dimensions and the segmental bronchi except

in the airways of the fifth generation. It is not difficult to

infer that the conclusions reached by these investigations

are largely determined by the robustness and accuracy of
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the computational techniques used for segmenting and meas-

uring airway structures. Available relevant computational

techniques are still not mature enough for the purpose of accu-

rately measuring small airways, while in fact it is these very

regions that may alter airflow and may actually play an impor-

tant role in airway obstruction as observed in COPD. We note

that as a “global” measure of lung function, PFT results that

are used in many of the studies as referenced are actually

influenced by a large number of factors/variables than solely

the airways.

VII. DISCUSSION AND CONCLUSIONS

In this review, we attempted to provide an overview of

available computational techniques as related to the airways

depicted on CT examinations. Despite intensive effort, virtu-

ally none of the problems we describe have been adequately

addressed, thereby limiting significantly the possible clinical

use of these techniques. First, available airway tree segmen-

tation schemes still miss a large fraction of small airways.

Whereas airway segmentation is the underlying technical ba-

sis for a number of purposes (e.g., morphometry analysis

and airway labeling) and different applications (e.g., VB),

further improvements in the quality and accuracy of airway

segmentation will be necessary before associated techniques

can be confidently used in routine clinical practice. Second,

airway labeling is not sufficiently robust due to the presence

of false positive and false negative identifications. When

compared with the level of effort in airway tree segmenta-

tion, relatively minor effort has been dedicated to other

technical developments, such as airway labeling and mor-

phometry analysis. For example, many of the investigations

related to airway morphometry focus exclusively on thick-

ness measurements of the airway wall while ignoring other

parameters, such as the branching patterns of the airway tree

(e.g., the global shape of an airway tree) and the spatial rela-

tionships, if any, between various airway measures and other

anatomical structures (e.g., the distribution of airways in

individual lobes). Although airway trees typically appear as

bifurcation trees, there are significant differences in their

global shape and branching patterns as shown in the exam-

ples in Fig. 5. Accurate description of these shapes may

actually be useful for gaining a deeper understanding of the

underlying mechanisms of airway disease progression, as

well as the potential impact on lung function. Also, available

airway measures are typically computed as mean values for

the entire lung. This approach may not adequately represent

the heterogeneous depiction of patterns, in particular, as

related to airway abnormalities. Therefore, a more detailed

investigation of various morphological features may be

required.

During the development of the techniques described in

this survey, an unavoidable and unresolved problem is the

difficulty in robust and reproducible performance validation,

as unavailability of a gold standard results in the majority of

investigations typically using phantoms, or manually delin-

eating the boundaries of lung airway structures, and then

performing a comparison of results to those obtained by dif-

ferent computerized schemes. Indeed, phantom studies could

provide an alternative solution to this problem, but the artifi-

cial characteristics of these phantoms, as related to variations

in these studies that are not comparable to variability in

human lungs, make these assessments relatively simplistic in

nature, in particular, as related to the presence of lung dis-

eases. In addition, for a manually generated “gold standard,”

a large effort is needed, as a very large and diverse dataset is

required for this purpose, and each examination contains a

large number of CT images. This requirement may limit the

number of examinations used for this purpose leading to a

serious limitation of the “gold standard.” For an example,

FIG. 5. Examples demonstrating the variability in morphology of airway trees.
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Table I lists the number of lung CT examinations collected

for testing purposes and generally these numbers are rela-

tively small compared with the diversity of lung airways in

normal and abnormal subjects. A future possible solution to

this problem may be the public sharing of datasets ascer-

tained by different research groups. To the best of our

knowledge, there is no accepted and available “gold stand-

ard” related to lung airways that is openly shared in the

research community. We note that EXACT’09 (Ref. 39) did

assemble a “gold standard;” however, this “gold standard” is

not available to the public. Manual delineation also typically

suffers from a relatively large inter- and/or intrareader vari-

ability, in particular, as related to small airways. Hence, per-

formance assessments that are based on manual results are

not reliable in a strict sense.

One very important issue, namely, the human–computer

user interface, has been largely ignored in the past. In fact,

many of the problems we face in medical image analysis are

highly interactive in nature and typically need a user

friendly interface before any of the approaches described in

this paper could be practically and widely used by most

clinicians. For example, when characterizing morphological

features (e.g., airway wall) in the airway tree, it would be

desirable to display the computed results directly, superim-

posed on the CT images while allowing the user to interac-

tively specify the region-of-interest, as well as the types of

features he/she is interested in. Although some studies

attempted to address several of the issues highlighted here

in an implicit manner, specific investigational effort may be

needed in order to enable optimal use of these approaches in

clinical practice.
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thickness: appropriate window settings for thin-section CT and radiologic-

anatomic correlation,” Radiology 199(3), 831–836 (1996).
66M. Okazawa, N. Müller, A. E. McNamara, S. Child, L. Verburgt, and P. D.
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