
����������
�������

Citation: Granata, V.; Fusco, R.;

Setola, S.V.; De Muzio, F.; Dell’

Aversana, F.; Cutolo, C.; Faggioni, L.;

Miele, V.; Izzo, F.; Petrillo, A.

CT-Based Radiomics Analysis to

Predict Histopathological Outcomes

Following Liver Resection in

Colorectal Liver Metastases. Cancers

2022, 14, 1648. https://doi.org/

10.3390/cancers14071648

Academic Editor: Michael

I. Koukourakis

Received: 10 January 2022

Accepted: 21 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

CT-Based Radiomics Analysis to Predict Histopathological
Outcomes Following Liver Resection in Colorectal
Liver Metastases
Vincenza Granata 1,* , Roberta Fusco 2, Sergio Venanzio Setola 1, Federica De Muzio 3, Federica Dell’ Aversana 4,
Carmen Cutolo 5, Lorenzo Faggioni 6 , Vittorio Miele 7,8 , Francesco Izzo 9 and Antonella Petrillo 1

1 Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli,
80131 Naples, Italy; s.setola@istitutotumori.na.it (S.V.S.); a.petrillo@istitutotumori.na.it (A.P.)

2 Medical Oncology Division, Igea SpA, 80013 Napoli, Italy; r.fusco@igeamedical.com
3 Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;

demuziofederica@gmail.com
4 Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy;

federica.dellaversana@unicampania.it
5 Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy;

carmencutolo@hotmail.it
6 Department of Translational Research, University of Pisa, 56126 Pisa, Italy; lfaggioni@sirm.org
7 Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy; vmiele@sirm.org
8 Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
9 Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS

di Napoli, 80131 Naples, Italy; f.izzo@istitutotumori.na.it
* Correspondence: v.granata@istitutotumori.na.it

Simple Summary: The objective of the study was to assess the radiomic features obtained by
computed tomography (CT) examination as prognostic biomarkers in patients with colorectal liver
metastases, in order to predict histopathological outcomes following liver resection. We obtained
good performance considering the single significant textural metric in the identification of the front
of tumor growth (expansive versus infiltrative) and tumor budding (high grade versus low grade or
absent), in the recognition of mucinous type, and in the detection of recurrences.

Abstract: Purpose: We aimed to assess the efficacy of radiomic features extracted by computed
tomography (CT) in predicting histopathological outcomes following liver resection in colorectal
liver metastases patients, evaluating recurrence, mutational status, histopathological characteristics
(mucinous), and surgical resection margin. Methods: This retrospectively approved study included a
training set and an external validation set. The internal training set included 49 patients with a median
age of 60 years and 119 liver colorectal metastases. The validation cohort consisted of 28 patients
with single liver colorectal metastasis and a median age of 61 years. Radiomic features were extracted
using PyRadiomics on CT portal phase. Nonparametric Kruskal–Wallis tests, intraclass correlation,
receiver operating characteristic (ROC) analyses, linear regression modeling, and pattern recognition
methods (support vector machine (SVM), k-nearest neighbors (KNN), artificial neural network
(NNET), and decision tree (DT)) were considered. Results: The median value of intraclass correlation
coefficients for the features was 0.92 (range 0.87–0.96). The best performance in discriminating
expansive versus infiltrative front of tumor growth was wavelet_HHL_glcm_Imc2, with an accuracy
of 79%, a sensitivity of 84%, and a specificity of 67%. The best performance in discriminating
expansive versus tumor budding was wavelet_LLL_firstorder_Mean, with an accuracy of 86%, a
sensitivity of 91%, and a specificity of 65%. The best performance in differentiating the mucinous
type of tumor was original_firstorder_RobustMeanAbsoluteDeviation, with an accuracy of 88%, a
sensitivity of 42%, and a specificity of 100%. The best performance in identifying tumor recurrence
was the wavelet_HLH_glcm_Idmn, with an accuracy of 85%, a sensitivity of 81%, and a specificity of
88%. The best linear regression model was obtained with the identification of recurrence considering
the linear combination of the 16 significant textural metrics (accuracy of 97%, sensitivity of 94%,
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and specificity of 98%). The best performance for each outcome was reached using KNN as a
classifier with an accuracy greater than 86% in the training and validation sets for each classification
problem; the best results were obtained with the identification of tumor front growth considering
the seven significant textural features (accuracy of 97%, sensitivity of 90%, and specificity of 100%).
Conclusions: This study confirmed the capacity of radiomics data to identify several prognostic
features that may affect the treatment choice in patients with liver metastases, in order to obtain a
more personalized approach.

Keywords: radiomics analysis; liver metastases; computed tomography; prediction of histopathological
outcomes

1. Introduction

Using radiomics, it is possible to extract multiple quantitative datasets from medi-
cal images that can be indirectly linked to pathophysiological characteristics. Radiomic
features, if linked with pertinent outcomes elements, can provide precise, evidence-based
clinical-decision support systems (CDSS) [1–5]. The potential of radiomics to increase
CDSS is incontestable, and its application is evolving quickly [5–7]. The main theory of this
approach is based on the idea that quantitative data are more understandable in relation
to clinical endpoints than qualitative diagnostic evaluation [8,9]. Radiomic features have
significant advantages over qualitative evaluation, and this is evidently correlated with the
resolution of observers’ eyes. The main difficulty is finding the correct grouping and com-
bination of quantitative data sources that provide a method that accurately and robustly
allows outcome prediction as a function of the impending decisions [10–14]. Radiomic
features capture tissue and lesion characteristics, such as heterogeneity and shape, and
can be used to assess tissue heterogeneity, either alone or in combination with prognostic
data. Several studies have shown that radiomic characteristics are strongly correlated
with heterogeneity indices at the cellular level [1–8]. Radiomics can support cancer de-
tection, diagnosis, prognosis assessment, and response to treatment, as well as supervise
disease status [3].

Recently, there has been a significant increase in radiomics investigations, including in
the liver field: liver fibrosis assessment, characterization of malignant and benign lesions,
and prognosis [15–21].

Colorectal carcinoma (CRC) is the cancer with the third-highest incidence and second-
highest mortality rate [22]. The most common site of metastases is the liver, with 75–80%
of patients unfit for curative surgical resection of colorectal liver metastases (CRLMs) [23].
Although recent advances in the treatment of CRLM have extended the possibilities to
increase curability, the disease will still recur in many patients undergoing a potentially cu-
rative resection. The mean five-year survival of patients undergoing intentionally curative
surgery varies from 15% to 60% [23–27].

Biomarkers linked to the outcome can help the management of individual patients.
To this end, several prognostic biomarkers have been proposed to pilot treatment, mainly
founded on clinic-pathological characteristics. Multiple prognostic factors have been
identified in patients with CRLM, e.g., KRAS and BRAF mutational status, histopathological
characteristics (mucinous), and surgical resection margin.

Today, computed tomography (CT) is the most widely used diagnostic tool for CRC
patients, representing the first method for staging as well as a surveillance tool. In this
scenario, our purpose was to assess the efficacy of radiomic features, obtained by CT
examination, to predict histopathological outcomes following liver resection in colorectal
liver metastases, evaluating recurrence, mutational status, histopathological characteristic
(mucinous) and surgical resection margin. To the best of our knowledge, there are no studies
in the literature that report radiomics analysis using both a univariate and multivariate
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approach, while considering linear regression models and pattern recognition techniques to
predict histopathological outcomes related to the probability of developing liver metastases.

2. Materials and Methods
2.1. Dataset Characteristics

This retrospective analysis was approved by the local Ethical Committee board, and
did not require informed consent from the patients due to nature of the study.

A radiological information system was accessed between January 2018 and May 2021
in order to select patients that had CRC liver metastases at staging phase, who had not
been subjected to previous treatment. The inclusion criteria were (1) liver metastases with
histopathological proof; (2) CT images at baseline; (3) high-quality CT images; and (4) a
follow-up CT scan, taken at least six months after surgery. The exclusion criteria were
(1) discordance between imaging diagnosis and the histopathological diagnosis, (2) no
baseline CT images, and (3) no contrast CT images.

According to our protocol study, after liver surgery, we performed the first CT at one
month, three, six months, and then every six months for the first two years in the follow-up.

The external validation patient set was obtained from Careggi Hospital, Florence, Italy.
The cohort of patients included a training set and an external validation set. The

internal training set included 49 patients (18 women and 31 men) with a median age of
60 years (range 36–82 years) and 119 liver metastases. The validation cohort consisted of a
total of 28 patients with single lesion (9 women and 18 men) with a median age of 61 years
(range 42–78 years).

The characteristics of the patients and their metastases are summarized in Table 1.

Table 1. Characteristics of the study population (77 patients).

Patient Description Numbers (%)/Range

Sex
Men 50 (64.9%)

Women 27 (35.1%)

Age 61 year; range: 36–82 year

Primary cancer site

Colon 52 (67.5%)

Rectum 25 (32.5%)

Hepatic metastases description

Patients with single nodule 48 (62.3%)

Patients with multiple nodules 29 (37.7%)/range: 2–13 metastases

Nodule size (mm) median size 35.8 mm; range 7–58 mm

Front of tumor growth

Expansive 28 (36.4%)

Infiltrative 49 (63.6%)

Tumor budding

Absent 11 (14.3%)

Low grade 13 (16.9%)

High grade 53 (68.8%)

Mucinous carcinoma 25 (32.5%)

Recurrence presence 19 (24.7%)

RAS mutational status 39 (50.6%)
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2.2. CT Imaging Protocol

A 64-detector CT scanner (Optima 660, GE Healthcare, Chicago, IL, USA) set at
120 kVp and 100–470 mA (NI 16.36) was used to acquire CT images with slice thickness
of 2.5 mm and table speed of 0.98–1.00 mm/rotation. The liver protocol included the
same settings for each patient with unenhanced, arterial, portal, and equilibrium phases.
A nonionic contrast agent (120 mL of iomeprol (Iomeron 400, Bracco, Milan, Italy)) was
injected via an automatic power injector at a rate of 3 mL/s (Empower CTA, EZ-EM Inc.,
New York, NY, USA).

2.3. Image Processing

Regions of interest (ROIs) were manually segmented by two expert radiologists with
20 and 15 years of experience on liver CT, first separately, then in accordance with each other,
annotating all slices of the lesions. The ROIs were segmented while avoiding distortion
artifacts. Median values of features for each volume of interest were calculated. Each
patient had a different number of lesions (median and range values of liver lesions are
reported in Table 1).

The ROIs were delineated in the CT portal phase using the segmentation tool of
3DSlicer (https://www.slicer.org/, accessed on 16 May 2021).

2.4. CT Post-Processing with Pyradiomic Tool

Radiomic features were extracted by volume of interest as median values using PyRa-
diomics [28]. Radiomic features are subdivided into first-order statistics (19 features);
shape-based (3D) (16 features); shape-based (2D) (10 features); gray-level co-occurrence
matrix (24 features); gray-level run-length matrix (16 features); gray-level size-zone ma-
trix (16 features); neighboring gray-tone difference matrix (5 features); and gray-level
dependence matrix (14 features). The radiomic features comply with definitions of the
imaging biomarker standardization initiative (IBSI) [29]. The descriptions are reported in
(https://readthedocs.org/projects/pyradiomics/downloads/, accessed on 16 May 2021).

Radiomics analyses were performed blind to the clinical and histopathological data
on baseline CT before any chemotherapy/surgical treatment. No registration techniques
were applied to reduce artifacts; however, using the median value of extracted metrics, we
reduced the artifacts’ influence.

2.5. Statistical Analysis

Statistical analysis included univariate and multivariate approaches.

2.5.1. Univariate Analysis

An intraclass correlation coefficient was used to assess interobserver variability.
A nonparametric Kruskal–Wallis test was performed to identify statistically significant

differences in clinical parameters and radiomic metrics between two groups (front of tumor
growth: expansive versus infiltrative; tumor budding: high grade versus low grade or
absent; mucinous type; and presence of recurrence).

A receiver operating characteristic (ROC) analysis was performed and the Youden
index was considered to calculate the optimal cut-off value used to obtain the area under
the ROC curve (AUC), sensitivity, positive predictive value (PPV), negative predictive
value (NPV), and accuracy.

The statistical analyses were performed using the Statistics Toolbox of MATLAB
R2007a (MathWorks, Natick, MA, USA) and a p value < 0.05 was considered significant.

2.5.2. Multivariate Analysis

A multivariate analysis was performed in order to identify the combinations of vari-
ables that best predict the outcomes: (1) front of tumor growth: expansive versus infiltra-
tive; (2) tumor budding: high grade versus low grade or absent; (3) mucinous type; and
(4) presence of recurrence.

https://www.slicer.org/
https://readthedocs.org/projects/pyradiomics/downloads/
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Given the high number of textural features, the first selection of variables was made
considering only the features significant in the univariate analysis (p value < 0,05 at Kruskal–
Wallis test) and with high accuracy considering the cut-off value, reported in Table 2.

Table 2. (Sub) datasets, variable selection criteria, and predictor combinations.

Outcome Variable Predictors
Accuracy Threshold

on Univariate
Analysis

Dataset 1 Front of tumor growth

Significant radiomic
metrics on lesion by
univariate analysis

≥0.75

Dataset 2 Tumor budding ≥0.80

Dataset 3 Mucinous type ≥0.80

Dataset 4 Recurrence presence ≥0.80

Linear regression modeling was used to assess the best linear combination of signifi-
cant textural features for each outcome. ROC analysis with the Youden index was used to
identify the optimal cut-off value and to calculate AUC, accuracy, sensitivity, specificity,
PPV, and NPV.

Pattern recognition methods, including support vector machine (SVM), k-nearest
neighbors (KNN), artificial neural network (NNET), and decision tree (DT), were made
to assess the performance in a multivariate procedure [30]. The best multivariate model
was chosen considering the highest accuracy. Training was performed using 10 k-fold
cross-validation. Moreover, an external validation cohort was used to validate the findings
of the best classifier. Machine Learning Toolbox of MATLAB R2007a (MathWorks, Natick,
MA, USA) was used.

3. Results
3.1. Univariate Analysis Findings

The median value of intraclass correlation coefficients for features was 0.92 (range 0.87–0.96).
The lesion size did not affect the extracted metrics (p-value > 0.05 at the Kruskal–Wallis
test performed between the groups: patients with lesions < 3.6 cm and patients with
lesions ≥ 3.6 cm; the median size of lesions in our population). In addition, the RAS
mutational status did not affect the extracted metrics (p-value > 0.05 at the Kruskal–Wallis
test performed between the groups; therefore, considering the two groups homogeneous
regarding the extracted radiomic metrics, RAS mutational status was not considered for
the following analysis).

Among significant features that differentiate the front of tumor growth, seven tex-
tural parameters obtained an accuracy ≥75%. Among these seven features, the best
performance in discriminating expansive versus infiltrative front of tumor growth was
wavelet_HHL_glcm_Imc2 with an accuracy of 79%, a sensitivity of 84%, a specificity of 67%,
and a PPV and NPV of 83% and 69%, respectively, with a cut-off value of 0.13 (Table 3).

Among significant features that differentiate the tumor budding, 16 textural param-
eters obtained an accuracy ≥80%. Among these 16 features, the best performance in
discriminating expansive versus tumor budding was wavelet_LLL_firstorder_Mean with
an accuracy of 86%, a sensitivity of 91%, a specificity of 65%, and a PPV and NPV of 90%
and 68%, respectively, with a cut-off value of 215.32 (Table 3).

Among the significant features differentiating the mucinous type of tumor, 15 textural pa-
rameters obtained an accuracy ≥80%. Among these 15 features, the best performance in differen-
tiating the mucinous type of the tumor was original_firstorder_RobustMeanAbsoluteDeviation
with an accuracy of 88%, a sensitivity of 42%, a specificity of 100%, and a PPV and NPV of
100% and 86%, respectively, with a cut-off value of 20.34 (Table 3).
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Table 3. Findings by univariate analysis with ROC performance results.

Best Predictor at
Univariate Analysis

Respect to Tumor
Growth Front

Respect to Tumor
Budding Respect to Mucinous Type Respect to Recurrences

wavelet_HHL_glcm_
Imc2

wavelet_LLL_firstorder_
Mean

original_firstorder_
RobustMeanAbsoluteDeviation

wavelet_HLH_glcm_
Idmn

AUC 0.73 0.73 0.62 0.8

Sensitivity 0.84 0.91 0.42 0.81

Specificity 0.67 0.65 1.00 0.88

PPV 0.83 0.9 1.00 0.78

NPV 0.69 0.68 0.86 0.89

Accuracy 0.79 0.86 0.88 0.85

Cut-off 0.13 215.32 20.34 0.99

Among significant features that identify tumor recurrence on portal phase, 16 textural
parameters obtained an accuracy ≥80%. Among these 16 features, the best performance in
identifying tumor recurrence was wavelet_HLH_glcm_Idmn with an accuracy of 85%, a
sensitivity of 81%, a specificity of 88%, and a PPV and NPV of 78% and 89%, respectively,
with a cut-off value of 0.99 (Table 3).

3.2. Multivariate Analysis Findings
3.2.1. Linear Regression Analysis Findings

Linear regression models obtained good results, with accuracy of 84–97% (Table 4, Figure 1),
in each considered classification problem: (1) Front of tumor growth: expansive versus
infiltrative; (2) tumor budding: high grade versus low grade or absent; (3) mucinous
type; and (4) presence of recurrence. The best linear regression model was obtained in the
identification of recurrence considering the linear combination of the 16 significant textural
metrics extracted by the CT portal phase (AUC of 0.95, accuracy of 97%, sensitivity of 94%,
and specificity of 98%).

The linear combination of seven significant textural features in the detection of tumor
front growth reached an accuracy of 84%, with a sensitivity of 91% and a specificity of 70%;
the linear combination of the 16 significant textural parameters in the detection of tumor
budding reached an accuracy of 86%, with a sensitivity of 82% and a specificity of 100%.
The linear regression model of 15 significant textural metrics to differentiate mucinous
tumor obtained an accuracy of 86%, with a sensitivity of 89% and a specificity of 86%.

The coefficients of these linear models are reported in Table 5.
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Table 4. Linear regression and pattern recognition analysis with significant features from the portal phase.

Linear Regression of Significant Features AUC Sensitivity Specificity PPV NPV Accuracy Cut-Off

Linear regression of the textural features with respect
to the lesion front 0.74 0.91 0.70 0.85 0.81 0.84 1.51

Linear regression of the textural features with respect
to tumor budding 0.91 0.82 1.00 1.00 0.63 0.86 1.43

Linear regression of the textural features with respect
to the mucinous type 0.87 0.89 0.86 0.63 0.97 0.86 0.31

Linear regression of the textural features with respect
to recurrence 0.95 0.94 0.98 0.97 0.97 0.97 0.44

Pattern recognition analysis with significant features Dataset
AUC with 95% of

confidence
interval

Accuracy Sensitivity Specificity Training
time [sec]

Model type and
parameters

KNN

Training set 0.95 (0.92–0.97) 96.60 90.00 100.00 8.70

Weighted KNN; number of
neighbors: 10; distance

metric: Euclidean; distance
weight: squared inverse

Validation set 0.88 (0.85–0.90) 86.40 75.00 93.00

Training set 0.87 (0.82–0.91) 93.20 75.00 99.00 8.90

Validation set 0.80 (0.78–0.84) 90.90 75.00 100.00

Training set 0.94 (0.92–0.97) 93.20 100.00 68.00 9.10

Validation set 0.95 (0.91–0.96) 90.90 100.00 60.00

Training set 0.89 (0.85–0.92) 90.90 96.00 81.00 7.80

Validation set 0.95 (0.91–0.98) 86.40 87.00 86.00
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Figure 1. ROC curves of linear regression analysis with respect to the front of tumor growth (A),
tumor budding (B), tumor mucinous type (C), and recurrence presence (D) obtained considering
significant features.

Table 5. Linear regression model parameters.

Linear regression of the textural features with respect to the front of
tumor growth Coefficients p-value p-value

Intercept 0.34 0.81

0.00

original_firstorder_RootMeanSquared 0.00 0.12

wavelet_LLH_firstorder_Skewness 0.09 0.00

wavelet_HHH_glcm_JointEntropy 2.87 0.06

wavelet_HHH_glcm_Imc2 −2.23 0.10

wavelet_HHH_glcm_Imc2 −9.22 0.12

wavelet_HHL_glcm_MCC −0.70 0.16

wavelet_HHL_glcm_Imc2 2.54 0.07
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Table 5. Cont.

Linear regression of the textural features with respect to tumor budding Coefficients p-value p-value

Intercept −0.21 0.86

0.00

original_firstorder_Median 0.20 0.04

original_firstorder_RootMeanSquared 0.58 0.00

original_firstorder_10Percentile 0.09 0.03

original_firstorder_Mean −0.82 0.00

wavelet_LHL_glcm_Imc2 6.70 0.00

wavelet_LLH_glcm_ClusterShade 0.00 0.58

wavelet_HHH_gldm_SmallDependenceHighGrayLevelEmphasis −0.20 0.01

wavelet_HHL_glcm_MCC −0.55 0.54

wavelet_HHL_glcm_Imc2 4.69 0.04

wavelet_HHL_ngtdm_Strength −5.58 0.22

wavelet_LLL_firstorder_Uniformity 34.99 0.08

wavelet_LLL_firstorder_Median −0.04 0.25

wavelet_LLL_firstorder_RootMeanSquared −0.22 0.00

wavelet_LLL_firstorder_10Percentile −0.03 0.04

wavelet_LLL_firstorder_Mean 0.27 0.00

wavelet_LLL_glrlm_GrayLevelNonUniformityNormalized −44.55 0.06

Linear regression of the textural features respect to the mucinous type Coefficients p-value p-value

Intercept 0.35 0.42

0.00

original_firstorder_Median −0.02 0.75

original_firstorder_RobustMeanAbsoluteDeviation 0.02 0.46

original_firstorder_RootMeanSquared 0.15 0.07

original_firstorder_10Percentile 0.01 0.80

original_firstorder_Mean 0.00 1.00

wavelet_LLH_glcm_Imc2 0.33 0.52

wavelet_LLH_ngtdm_Strength −0.03 0.48

wavelet_HLH_ngtdm_Strength −1.13 0.29

wavelet_HLH_ngtdm_Busyness 0.00 0.02

wavelet_HHH_glcm_Imc2 0.69 0.60

wavelet_HHH_ngtdm_Strength 3.47 0.14

wavelet_LLL_firstorder_Median 0.01 0.75

wavelet_LLL_firstorder_RootMeanSquared −0.06 0.07

wavelet_LLL_firstorder_10Percentile 0.00 0.99

wavelet_LLL_firstorder_Mean 0.00 0.95
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Table 5. Cont.

Linear regression of the textural features with respect to recurrences Coefficients p-value p-value

Intercept −0.70 0.77

0.00

wavelet_LHH_gldm_DependenceVariance 0.01 0.59

wavelet_HLH_gldm_LargeDependenceHighGrayLevelEmphasis 0.00 0.01

wavelet_HLH_glcm_ClusterShade −1.60 0.02

wavelet_HLH_glcm_Idmn −26.27 0.00

wavelet_HLH_glcm_Idn 29.13 0.00

wavelet_HLH_glcm_ClusterProminence 0.06 0.04

wavelet_HLH_firstorder_Skewness 0.29 0.01

wavelet_HLH_firstorder_Maximum 0.00 0.17

wavelet_HLH_firstorder_Range −0.01 0.01

wavelet_HLH_firstorder_Kurtosis 0.01 0.01

wavelet_HLH_glrlm_LongRunHighGrayLevelEmphasis 0.01 0.17

wavelet_HLH_glszm_GrayLevelVariance 0.14 0.13

wavelet_HLH_glszm_HighGrayLevelZoneEmphasis 0.04 0.00

wavelet_HLH_ngtdm_Complexity 0.01 0.34

wavelet_LLL_glszm_SizeZoneNonUniformityNormalized 5.74 0.03

wavelet_LLL_glszm_SmallAreaEmphasis −2.23 0.30

3.2.2. Pattern Recognition Approaches Findings

Considering significant textural metrics tested with pattern recognition approaches,
the best performance for each outcome ((1) front of tumor growth: expansive versus
infiltrative; (2) tumor budding: high grade versus low grade or absent; (3) mucinous type;
and (4) presence of recurrence) was reached using KNN as a classifier considering the
significant features extracted by the CT portal phase.

The accuracy for each classification problem was greater than 86% (Table 4) in the
training and validation sets, and the best results were obtained in the identification of
tumor front growth with the seven significant textural features (AUC of 0.95, an accuracy
of 97%, sensitivity of 90%, and a specificity of 100%).

The KNN of 16 significant textural features in the detection of tumor budding reached
an accuracy of 93%, with a sensitivity of 75% and a specificity of 99%; the KNN of the
15 significant textural parameters in the differentiation of mucinous type reached an ac-
curacy of 93%, with a sensitivity of 100% and a specificity of 68%. The KNN classifier of
16 significant textural metrics to detect recurrences obtained an accuracy of 91% with a
sensitivity of 96% and a specificity of 81% (Figures 2 and 3).
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4. Discussion

Several studies evaluating radiomics and radiogenomics data in CRLM patients
pointed out their use in early detection, treatment assessment, and prognosis. Regarding
the prognosis, the assessment and prediction of response to systemic neoadjuvant treatment
or liver resection are crucial in preventing a delay in the choice of alternative therapies.
Additionally, in patients unfit for surgery, predicting the response to therapy may prevent
unsuccessful treatment regimens and major side effects.

Several studies showed that low skewness was associated with a high response rate
to chemotherapy with FOLFOX or FOLFIRI; these data were validated in an external
cohort [31]. Giannini et al. showed that heterogeneity features were related to dual
anti-Her2 treatment response [32]. Several studies showed that high entropy and low
homogeneity were related to earlier response, showing an association between entropy and
prognosis [33–38]. Andersen et al. showed a correlation between homogeneity features and
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worse overall survival (OS) [34]. However, Rahmim et al. showed heterogeneity obtained
by FDG PET was related to lower OS [39].

Lubner et al. demonstrated that the degree of skewness was inversely correlated to
KRAS status, and entropy with OS [36]. In addition to the survival benefits of several data,
the possibility of stratifying patients for recurrence in liver has been demonstrated [37–41].
Ravanelli et al. correlated high uniformity and low OS and PFS in CRLM patients [41].

According to Simpson et al. [37], we obtained good performance considering the single
textural significant metric in the identification of the front of tumor growth (expansive
versus infiltrative) and tumor budding (high grade versus low grade or absent), in the
recognition of mucinous type, and in the detection of recurrences. At univariate analysis,
the best performance in discriminating expansive versus infiltrative front of tumor growth
was wavelet_HHL_glcm_Imc2 with an accuracy of 79%, a sensitivity of 84%, and a speci-
ficity of 67%. The best performance in discriminating expansive versus tumor budding was
wavelet_LLL_firstorder_Mean with an accuracy of 86%, a sensitivity of 91%, and a speci-
ficity of 65%. The best performance in differentiating the mucinous type of the tumor was
original_firstorder_RobustMeanAbsoluteDeviation with an accuracy of 88%, a sensitivity of
42%, and a specificity of 100%. The best performance in identifying tumor recurrence was
wavelet_HLH_glcm_Idmn with an accuracy of 85%, a sensitivity of 81%, and a specificity
of 88%. However, considering a linear regression model or a neural network classifier
in a multivariate approach, it was possible to increase the performance. The best linear
regression model was obtained with the identification of recurrence considering the linear
combination of the 16 significant textural metrics extracted by CT portal phase, which
reached an AUC of 0.95, an accuracy of 97%, a sensitivity of 94%, and a specificity of 98%.
The best results with KNN were obtained with the identification of tumor front growth
with the seven significant textural features, which reached an AUC of 0.95, an accuracy of
97%, a sensitivity of 90%, and a specificity of 100%. Computer-based image analysis, such
as texture analysis, has the potential to detect changes in liver parenchymal enhancement.
TA quantifies heterogeneity at the pixel level in CT images. The texture features of liver
parenchyma may be altered by occult malignancy and may represent a potential surrogate
for later recurrent disease [37]. Unlike Simpson et al. [37], our data were not influenced by
any type of treatment, as we evaluated native patients. Our results confirmed the capacity
of radiomics data to identify several prognostic features that may affect the treatment
choice in patients with liver metastases, in order to obtain a more personalized approach
and avoid unnecessary treatments [42–50]. The ability to obtain a prognostic biomarker
allows the multidisciplinary team to correctly manage the patient.

These results were confirmed by an external validation dataset. Nevertheless, several
limits of radiomics analysis cause difficult standardization in clinical settings. The main
limit is related to the different software evaluations in distinct investigations, together with
the variety of imaging devices in different diagnostic centers. Another limit is the lesion
segmentation, which may affect results.

The present study has several limits: the small population size evaluated; the retro-
spective nature of the study; and the manual segmentation that, in our opinion, is more
realistic, despite several studies supporting automatic segmentation to avoid inter-observer
variability. Moreover, we did not assess the impact of CT contrast administration and the
different phases of contrast study. Disease recurrence should be the topic of a future paper
with an adequate validation cohort.

5. Conclusions

We obtained good performance considering the single significant textural metric in
the identification of the front of tumor growth (expansive versus infiltrative) and tumor
budding (high grade versus low grade or absent), in the recognition of mucinous type,
and in the detection of recurrences. Additionally, considering a linear regression model
or a neural network classifier in a multivariate approach, it was possible to increase the
performance. The best linear regression model was obtained with the identification of
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recurrence considering the linear combination of the 16 significant textural metrics extracted
by the CT portal phase, which reached an AUC of 0.95, an accuracy of 97%, a sensitivity
of 94%, and a specificity of 98%. The best results with a KNN were obtained with the
identification of tumor front growth considering seven significant textural features, which
reached an AUC of 0.95, an accuracy of 97%, a sensitivity of 90%, and a specificity of 100%.
Our results confirmed the capacity of radiomics data to identify several prognostic features
that may affect the treatment choice in patients with liver metastases, in order to obtain a
more personalized approach. These results were confirmed by external validation dataset.
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