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Abstract 
Objective To develop a nonenhanced CT-based radiomic signature for the differentiation of iodinated contrast extravasation 
from intraparenchymal haemorrhage (IPH) following mechanical thrombectomy.
Methods Patients diagnosed with acute ischaemic stroke who underwent mechanical thrombectomy in 4 institutions from 
December 2017 to June 2020 were included in this retrospective study. The study population was divided into a training 
cohort and a validation cohort. The nonenhanced CT images taken after mechanical thrombectomy were used to extract 
radiomic features. The maximum relevance minimum redundancy (mRMR) algorithm was used to eliminate confounding 
variables. Afterwards, least absolute shrinkage and selection operator (LASSO) logistic regression was used to generate the 
radiomic signature. The diagnostic performance of the radiomic signature was evaluated by the area under the curve (AUC), 
accuracy, specificity, sensitivity, positive predictive value (PPV), and negative predictive value (NPV).
Results A total of 166 intraparenchymal areas of hyperattenuation from 101 patients were used. The areas of hyperattenua-
tion were randomly allocated to the training and validation cohorts at a ratio of 7:3. The AUC of the radiomic signature was 
0.848 (95% confidence interval (CI) 0.780–0.917) in the training cohort and 0.826 (95% CI 0.705–0.948) in the validation 
cohort. The accuracy of the radiomic signature was 77.6%, with a sensitivity of 76.7%, a specificity of 78.9%, a PPV of 
85.2%, and a NPV of 68.2% in the validation cohort.
Conclusions The radiomic signature constructed based on initial post-operative nonenhanced CT after mechanical thrombec-
tomy can effectively differentiate IPH from iodinated contrast extravasation.
Key Points • Radiomic features were extracted from intraparenchymal areas of hyperattenuation on initial post-operative 
CT scans after mechanical thrombectomy.
• The nonenhanced CT-based radiomic signature can differentiate IPH from iodinated contrast extravasation early.
• The radiomic signature may help prevent unnecessary rescanning after mechanical thrombectomy, especially in cases 
where contrast extravasation is highly suggestive.

Keywords Radiomics · Tomography, X-ray computed · Thrombectomy · Intracranial haemorrhage · Extravasation of 
diagnostic and therapeutic materials
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NPV  Negative predictive value
NGTDM  Neighbouring grey tone difference matrix
PPV  Positive predictive value
ROC  Receiver operating characteristic
ROI  Region of interest

Introduction

Mechanical thrombectomy has a high recanalisation rate 
for large vessel occlusion, significantly improves the func-
tional independence of patients [1–7], and may provide the 
opportunity for recanalisation of patients who do not meet 
the strict eligibility criteria for intravenous thrombolysis 
[8]. However, the rate of symptomatic intracerebral haem-
orrhage after mechanical thrombectomy ranges from 0 to 
7.7% [9]. Early haemorrhagic transformation after treatment 
may continue to evolve, leading to a marked deterioration 
in some patients [10–12]. Therefore, the early identification 
of intraparenchymal haemorrhage (IPH) after mechanical 
thrombectomy provides the possibility to limit haemorrhagic 
growth, which can provide significant value in the manage-
ment of post-operative patients [12, 13].

Following mechanical thrombectomy, nonenhanced 
computed tomography (CT) scans are often performed to 
determine the success of therapy, especially the presence of 
intracerebral haemorrhage. In this case, intraparenchymal 
hyperattenuation on CT after mechanical thrombectomy is 
a common occurrence. However, it is difficult to distinguish 
intracerebral haemorrhage from contrast extravasation on 
CT because of the similar radiologic appearance of both 
pathologies. The contrast remains visible on imaging for 
24 + h before it is cleared from circulation [14]. Therefore, 
the persistence of hyperattenuation on CT after 24 h can be 
considered haemorrhage [15]. However, patients presenting 
with hyperattenuation between 0 and 24 h after mechanical 
thrombectomy fit within a diagnostic grey area. As such, 
life-saving treatments such as anticoagulation or antiplatelet 
therapy are often delayed [16, 17].

Radiomics is a powerful method to extract key param-
eters from medical images and is a powerful tool for guid-
ing diagnosis and treatment in modern medicine [18–20]. 
Currently, the application of radiomics in intracerebral 
haemorrhage is a growing field, and quantitative analysis 
of haematoma heterogeneity using radiomics is a feasible 
method [21–24]. As contrast material and blood contents 
have different viscosities, radiomics may be used to deter-
mine the composition of hyperattenuation on CT following 
mechanical thrombectomy.

This study was designed to determine the possibility of 
using radiomics to delineate IPH (haemorrhage alone and 
mixed haemorrhage and iodinated contrast material) from 
iodinated contrast extravasation.

Materials and methods

Patient selection

This retrospective study was approved by our institutional 
review board, which waived the requirement for informed 
consent. From December 2017 to June 2020, 257 patients 
with acute ischaemic stroke who underwent mechanical 
thrombectomy at four institutions were retrospectively 
enrolled, including 30 patients from The First Affiliated 
Hospital of Zhejiang Chinese Medical University, 55 
patients from the Affiliated Jinhua Hospital, Zhejiang Uni-
versity School of Medicine, 114 patients from The Sec-
ond Affiliated Hospital and Yuying Children’s Hospital 
of Wenzhou Medical University, and 58 patients from the 
Lishui Hospital of Zhejiang University. The inclusion cri-
teria were as follows: (1) patients underwent nonenhanced 
head CT after mechanical thrombectomy; (2) initial post-
operative nonenhanced head CT was performed within 1 h 
after mechanical thrombectomy; and (3) intraparenchymal 
area of hyperattenuation, which was defined as an area with 
an objectively higher density than the surrounding grey or 
white matter [25], could be seen on the initial nonenhanced 
head CT after mechanical thrombectomy. The exclusion cri-
teria were as follows: (1) the follow-up time of nonenhanced 
head CT after mechanical thrombectomy was less than 24 h; 
(2) artefacts (e.g. metal artefacts or motion artefacts) [26] 
affected the intraparenchymal areas of hyperattenuation in 
CT images; and (3) patients underwent craniotomy after 
mechanical thrombectomy, which made it difficult to iden-
tify the intraparenchymal area of hyperattenuation.

All intraparenchymal areas of hyperattenuation of the 
included patients were randomly divided into training and 
validation cohorts (7:3). Stratified random sampling was 
used to keep the same proportion of IPH and iodinated 
contrast extravasation in both the training and validation 
cohorts.

Image interpretation

The intraparenchymal area of hyperattenuation was consid-
ered to represent iodinated contrast extravasation if the area 
of hyperattenuation was entirely or almost entirely cleared 
within 24–48 h after the procedure. If the area of hyperat-
tenuation persisted or increased for more than 48 h, it was 
classified as IPH [25, 27]. The intraparenchymal area of 
hyperattenuation may remain after 24–48 h in patients with 
renal dysfunction [28]. According to the pharmacokinet-
ics of iodinated contrast agents and CT imaging of intrac-
ranial haemorrhage [28–30], the hyperattenuating area of 
patients with renal dysfunction was considered to represent 
contrast extravasation if it was entirely or almost entirely 
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cleared within 7 days after the procedure. All nonenhanced 
CT images were analysed by two experienced radiologists.

CT data acquisition

All images of the initial post-operative nonenhanced head 
CT were obtained from 7 multislice CT scanners (Aquilion 
ONE, Toshiba Medical Systems; Brilliance 16 or Bril-
liance iCT, Philips Healthcare; SOMATOM Definition 
AS + , SOMATOM Emotion 16 or SOMATOM Force, Sie-
mens Healthcare; uCT 710, United Imaging Healthcare). 
The scanning parameters were as follows: tube voltage: 
SOMATOM Force 90 kVp, SOMATOM Emotion 16 130 
kVp, other CT scanners 120 kVp; tube current: SOMATOM 
Definition AS + 226 mA, uCT 710 228 mA, Aquilion ONE 
230 mA, Brilliance 16 250 mA, Brilliance iCT 400 mA, 
other CT scanners automatic tube current modulation; 
matrix size: 512 × 512; field of view (FOV): Brilliance 16 
250 mm, other CT scanners FOV was adapted to the patient 
size; section thickness: Brilliance 16 and SOMATOM 
Definition AS + 6 mm, SOMATOM Emotion 16 9.6 mm, 
other CT scanners 5 mm; section interval: Brilliance 16 and 
SOMATOM Definition AS + 6 mm, SOMATOM Emotion 
16 9.6 mm, other CT scanners 5 mm.

ROI segmentation

All regions of interest (ROIs) were determined using ITK-
SNAP 3.6.0 [31]. One radiologist (reader A, with 6 years of 
experience in diagnostic neuroradiology and blinded to the 
ultimate diagnosis) manually segmented the images along 
the intraparenchymal areas of the hyperattenuation contour 
on each transverse section (Fig. 1). Referring to a guide-
line of selecting and reporting intraclass correlation coef-
ficients (ICCs) for reliability research [32], thirty lesions 
were randomly selected to evaluate the intraobserver and 
interobserver agreement of feature extraction. The 30 lesions 
were re-segmented by reader A 1 month later to evaluate the 
intraobserver agreement. A senior radiologist (reader B, with 
more than 10 years of experience in diagnostic neuroradiol-
ogy, also blinded to the ultimate diagnosis) re-segmented the 
30 lesions to evaluate the interobserver agreement. Intraclass 
and interclass ICCs were used to determine the intraobserver 
and interobserver agreement of feature extraction. Any ICCs 
larger than 0.80 were considered to indicate good agreement.

Radiomic feature extraction

A total of 1316 radiomic features were extracted using the 
PyRadiomics module inserted in AK software (Artificial 
Intelligence Kit; GE Healthcare) [33]. All extracted fea-
tures can be subdivided into the following classes: first order 
statistics, shape-based, grey level co-occurrence matrix 

(GLCM), grey level size zone matrix (GLSZM), grey level 
run length matrix (GLRLM), neighbouring grey tone differ-
ence matrix (NGTDM), and grey level dependence matrix 
(GLDM). A detailed description of the radiomic features can 
be found on the PyRadiomics documentation website (http:// 
pyrad iomics. readt hedocs. io).

Radiomic model engineering

The features obtained were normalized, and the unit limit 
was removed. For radiomic features with high reproducibil-
ity (intraobserver and interobserver ICCs > 0.80), the maxi-
mum relevance minimum redundancy (mRMR) algorithm 
was used to assist in the removal of confounding factors. The 
extracted features were indexed in accordance with their rel-
evance-redundancy indexes. Afterwards, the top ten features 
were retained. Least absolute shrinkage and selection opera-
tor (LASSO) logistic regression [34] was then applied to 
determine the best features to build the radiomic signature. 
Features with nonzero coefficients were chosen using ten-
fold cross-validation. The radiomics score (Rad-score) was 
generated by calculating the weighted sum of the features 
to determine the probability of haemorrhage. The radiomic 
signature was constructed based on the training cohort and 
evaluated in the validation cohort.

Statistical analysis

Statistical analyses were performed using SPSS 24.0 soft-
ware and R software (version 3.5.0; www.R- proje ct. org). 
The receiver operating characteristic (ROC) curve was used 
to determine the diagnostic performance of both cohorts. 
The area under the curve (AUC), accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative 
predictive value (NPV) were then determined using the 
Youden index [35]. Calibration curves along with the Hos-
mer–Lemeshow test were used to determine the calibration 
of the radiomic signature [36].

Results

Demographics

A total of 166 intraparenchymal areas of hyperattenuation 
from 101 patients were selected for this study (Fig. 2). All 
the areas of hyperattenuation were randomly assigned to the 
training cohort (n = 117) and the validation cohort (n = 49). 
Of the 166 intraparenchymal areas of hyperattenuation, 64 
were IPH and 102 were iodinated contrast extravasation. 
Of the 101 patients, 64 were males and 37 were females. 
The mean age of the patients was 72.0 ± 11.0 years (range 
39–92 years).

4773European Radiology (2022) 32:4771–4779

http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io
http://www.R-project.org


1 3

Radiomic signature construction

Of the 1316 radiomic features, 981 features with intrao-
bserver and interobserver ICCs > 0.80 were retained. Of 
the 981 stable radiomic features, redundant and irrelevant 
features were eliminated by mRMR, and 10 features were 
retained. The mean intraobserver and interobserver ICCs of 
the retained features were 0.950 (95% confidence interval 
(CI) 0.907–0.994) and 0.974 (95% CI 0.938–1.000), respec-
tively. On the basis of the training cohort, the 9 most signifi-
cant features were selected to build the radiomic signature 
by LASSO logistic regression. The equation was as follows:

The feature names and corresponding coefficients are 
displayed in Fig. 3. Figure 4 shows the waterfall plots of the 
radiomic signature to differentiate IPH from iodinated con-
trast extravasation. The cutoff value of radiomic signature 
was − 0.365.

Diagnostic ability of the radiomic signature

In the training cohort, the AUC of the radiomic signature 
was 0.848 (95% CI 0.780–0.917, p < 0.001). In the valida-
tion cohort, the AUC of the radiomic signature was 0.826 
(95% CI 0.705–0.948, p < 0.001). Further information can 
be found in Table 1 and Fig. 5a and b. The calibration curve 
indicated a strong level of agreement between the actual 
and predicted diagnoses in both cohorts (Fig. 5c, d). The 
results of the Hosmer–Lemeshow test were not statistically 
significant, with a p value of 0.692 for the training cohort 
and 0.633 for the validation cohort.

Rad − score = −0.487(constant) + coeff icients × features

Discussion

Intracerebral haemorrhage is a common complication fol-
lowing mechanical thrombectomy. IPH with a mass effect 
can cause clinical deterioration and greatly impair prog-
nosis [37, 38]. The identification of IPH after mechanical 
thrombectomy is of great significance for the adjustment 
of treatment [12, 13]. In the early phase after mechanical 
thrombectomy, conventional CT has a limited ability to dif-
ferentiate IPH from iodinated contrast extravasation [11, 
39–41]. From a pathophysiological standpoint, contrast 
extravasation is caused by a breakdown of the blood–brain 
barrier [42]. The early differentiation between IPH and 
iodinated contrast extravasation is important for the adjust-
ment of therapy after mechanical thrombectomy, which will 
determine whether anticoagulation or antiplatelet therapy 
should be performed as early as possible [16, 17]. Therefore, 
this study attempted to use radiomics to help rapidly diag-
nose the composition of hyperattenuation to guide further 
treatment.

In this study, a preliminarily constructed radiomic sig-
nature based on initial post-operative nonenhanced CT 
after mechanical thrombectomy to differentiate IPH from 
iodinated contrast extravasation was used. ROC analysis 
revealed that the performance of the radiomic model was 
high. In the training and validation cohorts, the AUCs of this 
radiomic signature were 0.848 and 0.826, respectively. The 
results indicated that there was a significant difference in 
heterogeneity between IPH and iodinated contrast extravasa-
tion. The selected radiomic features may be able to predict 
the differences between IPH and contrast extravasation on 
nonenhanced CT images.

Conventional CT imaging is a cornerstone of diagnostic 
imaging due to its ease of access. Xu et al. determined that 

Fig. 1  Delineation of the hyperattenuating areas using ITK-SNAP 
software. a A hyperattenuating area in the left lentiform nucleus on 
nonenhanced CT. b Manual segmentation along the hyperattenuating 
area contour on the transverse section. c The ROI of the hyperattenu-

ating area on a transverse section is displayed as the red area. d 3D 
ROI for the whole hyperattenuating area. 3D three-dimensional, CT 
computed tomography, ROI region of interest
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noncontrast CT performed immediately following mechani-
cal thrombectomy can predict parenchymal haemorrhage 
at 24 h with metallic hyperdensity, but this sign was only 
visible in some patients [41]. It is still difficult to differ-
entiate IPH from iodinated contrast extravasation based on 
conventional CT. Our radiomic signature was constructed 
based on routine CT scans and can be used to diagnose all 
intraparenchymal areas of hyperattenuation, proving its ver-
satility. Magnetic resonance imaging (MRI) is costly in both 
time and financial capital in terms of obtaining interpretable 
images [17]. However, dual-energy CT is able to reliably 
diagnose intracerebral haemorrhage vs. contrast extravasa-
tion [25, 27, 43]. This radiomic signature may serve as a 
practical solution for clinics without dual-energy CT scan-
ners or situations where dual-energy CT examinations were 
not performed. The predictive result of the radiomic signa-
ture can be obtained based on the initial post-operative non-
enhanced CT to prevent unnecessary rescanning, especially 
in cases where contrast extravasation is highly suggestive. 
Therefore, the use of radiomics on nonenhanced CT images 
to differentiate IPH from iodinated contrast extravasation 
can improve both the accuracy of and access to diagnostic 
tools.

The CT images used to construct the radiomic signature 
were obtained from 7 multislice CT scanners at 4 institu-
tions, resulting in a variety of CT acquisition parameters. 
The use of multivendor images to evaluate artificial intel-
ligence algorithms is advocated [44]. However, differences 
between scanners and between image acquisition settings 
limit the predictive potential of radiomic models [45–47]. 
The predictive ability of radiomic models may be improved 
by using stringent image acquisition protocols or correct-
ing for the parameters of the scanner during data analysis 
[45, 47]. Therefore, further optimisation of CT acquisition 
parameters may improve the performance of radiomic sig-
nature–based diagnostic systems.

While the findings presented herein offer promising 
insight, several limitations are present. As a small study, the 
sample size is one issue. As this study was retrospective, fol-
low-up CT data after mechanical thrombectomy were often 
insufficient. Therefore, further external validation should 
be performed in a prospective study with a larger cohort. 
Second, all ROIs in this study were manually segmented, 
which is an intensive process. Automatic segmentation still 
has a long way to go before its accuracy and reproducibility 
rival those of manual segmentation. Finally, the diagnos-
tic performance of our algorithm in distinguishing contrast 

Fig. 2  Flowchart of the study 
shows the recruitment pathway 
for patients. ICE iodinated 
contrast extravasation, IPH 
intraparenchymal haemorrhage
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extravasation from IPH was not validated. The diagnostic performance of radiomic models constructed by other algo-
rithms needs to be further studied.

In conclusion, our nonenhanced CT-based radiomic 
signature can effectively differentiate IPH from iodinated 
contrast extravasation in the early phase after mechanical 
thrombectomy, which may be helpful for the post-operative 
management of patients.
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Fig. 3  Selected radiomic 
features and their corresponding 
coefficients

Fig. 4  Waterfall plots of the radiomic signature. The waterfall plot 
shows the distribution of the adjusted Rad-scores and diagnoses of 
each patient in the training cohort (a) and the validation cohort (b). 
The default is set to IPH (the yellow bar) above the baseline and ICE 
(the purple bar) below the baseline. This plot depicts the association 
between the predicted and actual diagnoses in which mismatching of 
the colour coding indicates misclassification by the Rad-score. Rad-
score minus the cutoff value is the adjusted Rad-score. ICE iodinated 
contrast extravasation, IPH intraparenchymal haemorrhage, Rad-score 
radiomics score
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