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Abstract. Upon photoexcitation by a short light pulse, molecules can reach regions of the configuration
space characterized by strong nonadiabaticity, where the motion of the nuclei is strongly coupled to the
motion of the electrons. The subtle interplay between the nuclear and electronic degrees of freedom in
such situations is rather challenging to capture by state-of-the-art nonadiabatic dynamics approaches,
limiting therefore their predictive power. The Exact Factorization of the molecular wavefunction, though,
offers new perspectives in the solution of this longstanding issue. Here, we investigate the performance of a
mixed quantum/classical (MQC) limit of this theory, named Coupled Trajectory-MQC, which was shown to
reproduce the excited-state dynamics of small systems accurately. The method is applied to the study of the
photoinduced ring opening of oxirane and the results are compared with two other nonadiabatic approaches
based on different Ansätze for the molecular wavefunction, namely Ehrenfest dynamics and Ab Initio
Multiple Spawning (AIMS). All simulations were performed using linear-response time-dependent density
functional theory. We show that the CT-MQC method can capture the (de)coherence effects resulting from
the dynamics through conical intersections, in good agreement with the results obtained with AIMS and
in contrast with ensemble Ehrenfest dynamics.

PACS. XX.XX.XX No PACS code given

1 Introduction

In the field of quantum dynamics, trajectory-based schemes
are perhaps the most powerful simulation approaches to
get a glimpse at the dynamics of molecules. Microscopic
systems are governed by quantum mechanics, but unfortu-
nately a full quantum dynamical treatment of molecules
is presently not computationally tractable when it goes
beyond a few degrees of freedom. A trajectory-based ap-
proach, instead, offers access to a wide range of processes
and properties at the cost of providing only an approx-
imate solution to the problem. When describing time-
dependent phenomena in molecules, classical trajectories
are generally used to reproduce the evolution of the nuclei,
while electrons are treated quantum mechanically. This
strategy is computationally advantageous, as it allows for
the calculation of electronic properties, i.e., ground- and
excited-state energies, forces, and couplings, only for the
nuclear configurations visited during the dynamics. The
numerical advantage of trajectory-based approaches is,
however, confronted with a very fundamental and still
highly debated issue [1,2]: how can classical nuclei be
properly coupled, dynamically, to quantum-mechanical elec-
trons? Other than being an intriguing theoretical chal-

lenge in itself, this issue has also important practical im-
plications related to the description of inherently quan-
tum mechanical properties, such as decoherence, dephas-
ing, or interferences [3–5], by means of trajectory-based
approaches.

In the adiabatic case, i.e., in the Born-Oppenheimer
(BO) regime [6], the procedure for coupling classically-
moving nuclei and quantum mechanical electrons is well-
established: by “freezing” the electrons in their ground
state, their coupling to the nuclear motion can be de-
scribed by a potential energy contribution to the nuclear
Hamiltonian. However, the BO picture is only valid as
far as the system of interest does not visit regions of the
configuration space with a small, or eventually vanishing,
energy gap between electronic states [7]. Improvements
to this approximation have been proposed in the litera-
ture [8–10], still maintaining the very intuitive picture of
classical nuclei moving on a single potential energy surface
(PES). Beyond the adiabatic regime, this simple represen-
tation does not hold any longer (in the BO framework):
the PESs become strongly coupled in regions where the
corresponding electronic states are close or degenerate in
energy. Several trajectory-based schemes [11–29,1,30–39]
have been devised to guide classical trajectories in the
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presence of such nonadiabatic couplings. Trajectories can
for instance hop and switch from one adiabatic PES to
another [15], can evolve on a mean-field potential [17,16],
or can spawn in region of strong nonadiabatic coupling in-
ducing coupling among them [34]. From all these studies
it emerges that within the post-Born-Oppenheimer pic-
ture there is no unique and unambiguous definition of a
trajectory-based classical limit of nuclear dynamics.

Recently, the concept of an exact force that drives the
(classical) nuclear dynamics in nonadiabatic conditions
rose [40–42] from the framework of the exact factoriza-
tion of the electron-nuclear wavefunction [43,44]. Starting
from the quantum-mechanical, fully interacting electron-
nuclear problem, a time-dependent Schrödinger equation
for a nuclear wavefunction can be derived, and time-de-
pendent scalar and vector potentials now completely ac-
count for electron-nuclear coupling effects, allowing to un-
ambiguously define the classical forces acting on the nu-
clei. The exact-factorization framework has been employed
to derive the coupled-trajectory mixed quantum-classical
(CT-MQC) scheme [45,18,46], that makes use of the time-
dependent potentials to determine an approximation to
the exact nuclear forces and to guide trajectories through
regions of strong nonadiabaticity.

In this paper, we employ CT-MQC dynamics to ana-
lyze the photoactivated ring-opening of the molecule oxi-
rane. In a previous work [46], we described this process
by means of CT-MQC dynamics and compared the results
with trajectory surface hopping [15,47], stressing the abil-
ity of the new algorithm to capture quantum decoherence
effects [48,47,49–53,47,54–58]. In the following, we aim at
investigating in more detail the same photochemical pro-
cess with the CT-MQC approach and validate, as far as
it is possible, our observations with results obtained using
Ab Initio Multiple Spawning (AIMS) [36]. Both methods
have the interesting property of incorporating all quantum
mechanical coherence/decoherence effects of the nuclear
wavepacket dynamics. In addition, some of the CT-MQC
results will also be compared to ensemble Ehrenfest dy-
namics [59], in order to shed further light on the relevance
of the coupling among trajectories. We start in Section 2
by briefly recalling the exact factorization and the proce-
dure leading to the derivation of the CT-MQC quantum-
classical equations, which is the main focus of this work.
AIMS is introduced in Section 3 and is used to compare
and rationalize the CT-MQC results. Numerical details
are provided in Section 4, whereas our analysis of the pho-
toinduced ring-opening process in oxirane is discussed in
Section 5. Conclusions are summarized in Section 6.

2 The exact factorization and its
quantum-classical approximation

The time-dependent molecular wavefunction, Ψ(r,R, t),
is the solution of the time-dependent Schrödinger equa-
tion (TDSE) ĤΨ = ih̄∂tΨ , with Hamiltonian Ĥ(r,R) =

T̂n(R)+ĤBO(r,R), containing the nuclear kinetic energy,

T̂n, and the electronic Born-Oppenheimer (BO) Hamilto-

nian, ĤBO, defined as the sum of the electronic kinetic
energy and of the interaction potentials. Here, the sym-
bols r,R indicate all electronic and nuclear coordinates,
respectively. The full wavefunction can be exactly writ-
ten [43,44] as the product

Ψ(r,R, t) = χ(R, t)ΦR(r, t), (1)

with χ(R, t) the nuclear wavefunction, yielding the ex-
act nuclear many-body density (and current density), and
ΦR(r, t) an electronic factor that parametrically depends
on the nuclear configuration. To guarantee that |χ(R, t)|2

reproduces at all times the nuclear density, the partial nor-
malization condition

∫
dr|ΦR(r, t)|2 = 1 ∀R, t is imposed.

When inserted into the TDSE, and by using the par-
tial normalization condition [60,61], the exact factoriza-
tion given in Eq. (1) yields coupled evolution equations
for the two components of the molecular wavefunction,
namely

[
ĤBO + Û coup

en − ǫ
]
ΦR(r, t) = ih̄∂tΦR(r, t) (2)

[
Nn∑

ν=1

[−ih̄∇ν +Aν ]
2

2Mν

+ ǫ

]
χ(R, t) = ih̄∂tχ(R, t). (3)

Nuclear masses are indicated by the symbol Mν , with the
index ν running over the Nn nuclei. In the electronic equa-
tion (2), the electron-nuclear coupling operator Û coup

en [ΦR, χ]
[62,63] couples the electronic evolution to the nuclear dy-
namics, as it depends on the nuclear wavefunction,

Û coup
en [ΦR,χ] =

Nn∑

ν=1

1

Mν

[
[−ih̄∇−Aν ]

2

2

+

(
−ih̄∇νχ

χ
+Aν

)
(−ih̄∇ν −Aν)

]
. (4)

The scalar potential, or time-dependent potential energy
surface (TDPES) [40–42,64–69], ǫ(R, t), and the time-
dependent vector potential [65,8,10,70,71,9], Aν(R, t),
are defined as

ǫ(R, t) = 〈ΦR(t)| ĤBO + Û coup
en − ih̄∂t |ΦR(t)〉

r
, (5)

and

Aν(R, t) = 〈ΦR(t)| −ih̄∇νΦR(t)〉
r
, (6)

respectively. The symbol 〈 · 〉r stands for an integration
over electronic coordinates. In the nuclear TDSE (Eq. (3)),
the time-dependent potentials fully account for electronic
nonadiabatic effects, i.e., excited-state effects, on nuclear
motion.

The product form of the molecular wavefunction, Eq.
(1), is clearly invariant under a (R, t)-dependent phase
transformation of the electronic and nuclear components.
Therefore, uniqueness of the solution of Eqs. (2) and (3) is
guaranteed only by choosing a condition to fix the gauge
freedom.
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If the nuclear wavefunction is written in polar form,
that is, χ(R, t) = exp[(i/h̄)S(R, t)] |χ(R, t)|, the nuclear
TDSE (Eq. (3)) yields the coupled evolution equations for
the phase

∂tS = −

[
∑

ν

[∇νS +Aν ]
2

2Mν

+ ǫ

]
−
∑

ν

−h̄2

2Mν

∇2
ν |χ|

|χ|
(7)

and for the density Γ (R, t) = |χ(R, t)|2

∂tΓ = −
∑

ν

∇ν ·

(
∇νS +Aν

Mν

Γ

)
, (8)

of the wavefunction. Neglecting the last term in Eq. (7),
this Hamilton-Jacobi equation can be solved independently
from the continuity equation (Eq. (8)). We determine the
characteristics of the Hamilton-Jacobi equation (Eq. (7)),
that are, as it is well-known [72], generated by classical
Hamilton’s equations

Ṙν =
Pν +Aν

Mν

=
P̃ν

Mν

for ν = 1, . . . , Nn (9)

˙̃
Pν = −∇ν

(
ǫ+

Nn∑

ν′=1

Ṙν′ ·Aν′

)
+ Ȧν . (10)

The gauge freedom is fixed by the condition ǫ+
∑

ν′ Ṙν′ ·
Aν′ = 0.

The trajectories generated by Eqs. (9) and (10) are
coupled to the electronic equation (Eq. (2)) where the
(conditional) electronic wavefunction ΦR(r, t) is expanded
in the adiabatic basis, i.e., in the basis formed by the
eigenstates of the BO Hamiltonian ĤBO. With this final
ingredient, the CT-MQC equations are

Ṙ(I)
ν (t) =

P̃
(I)
ν (t)

Mν

(11)

˙̃
P

(I)

ν (t) = F
(I)
ν,Eh(t) + F(I)

ν,qm(t) (12)

Ċ
(I)
k (t) = Ċ

(I)
k,Eh(t) + Ċ

(I)
k,qm(t). (13)

All R-dependent quantities have been labeled by an index
(I), indicating their dependence on the position of the tra-
jectory: these equations are solved along a trajectory, or

characteristic, (I). The symbol C
(I)
k (t), with k = 1, . . . , n,

stands for the position-dependent coefficients of the ex-
pansion of the electronic wavefunction ΦR(r, t) on the
n adiabatic states. A detailed derivation of these equa-
tions and the underlying approximations can be found in
Refs. [18,46].

Eqs. (12) and (13) have been decomposed as the sum
of two terms, respectively labeled Eh and qm. The former
are Ehrenfest-like terms, specifically,

F
(I)
ν,Eh =−

∑

k

∣∣∣C(I)
k

∣∣∣
2

∇νǫ
(k),(I)
BO

−
∑

k,l

C
(I)
l

∗

C
(I)
k

(
ǫ
(k),(I)
BO − ǫ

(l),(I)
BO

)
d
(I)
lk,ν (14)

and

Ċ
(I)
k,Eh = −

i

h̄
ǫ
(k),(I)
BO C

(I)
k −

Nn∑

ν=1

Ṙ(I)
ν ·

∑

l

d
(I)
kl,νC

(I)
l . (15)

The eigenvalues of the BO Hamiltonian are indicated by

the symbol ǫ
(k),(I)
BO . They are the adiabatic, or BO, PESs

evaluated along the trajectory; the coupling among the
electronic states is given by the nonadiabatic coupling vec-

tors d
(I)
kl,ν . The latter terms in Eqs. (12) and (13) depend

on the quantum momentum Qν(R, t), defined via

−ih̄∇νχ

χ
+Aν = (∇νS +Aν) + i

−h̄∇ν |χ|
2

2|χ|2
(16)

=MνṘν + iQν , (17)

which appears in Eq. (4). Their expressions are

F(I)
ν,qm =

∑

k

∣∣∣C(I)
k

∣∣∣
2
(

Nn∑

ν′=1

2Q
(I)
ν′

h̄Mν′

· f
(I)
l,ν′

)

×

[
f
(I)
k,ν −

∑

l

∣∣∣C(I)
l

∣∣∣
2

f
(I)
l,ν

]
(18)

Ċ
(I)
k,qm =

Nn∑

ν=1

Q
(I)
ν

h̄Mν

·

[
f
(I)
k,ν −

∑

l

∣∣∣C(I)
l

∣∣∣
2

f
(I)
l,ν

]
C

(I)
k , (19)

with the R-dependent quantum momentum evaluated at

the position of the trajectory, Qν(R, t) → Q
(I)
ν (t), and

with f
(I)
k,ν(t) =

∫ t
[−∇νǫ

(k),(I)
BO ]dt′, the integral over time of

the adiabatic force, implicitly depending on time via the
dependence on the trajectory.

3 Ab Initio Multiple Spawning

Full Multiple Spawning (FMS) [32–34,19,35,36,38,73] em-
ploys a Born-Huang representation of the molecular wave-
function and portrays the nuclear dynamics by using a
swarm of coupled frozen multidimensional Gaussians [74].
The Gaussians follow classical trajectories and their num-
ber can be adapted during the dynamics to ensure a proper
support to the nuclear wavepacket propagation. Within
this picture, the Born-Huang representation reads

Ψ(r,R, t) =
∑

k

NTBFs,k∑

I

C̃
(k)
I (t)

×χ̃
(k)
I

(
R;R

(k)

I (t),P
(k)

I (t), γ
(k)
I (t),α

)
ϕ
(k)
R

(r) ,

(20)

where χ̃
(k)
I

(
R;R

(k)

I (t),P
(k)

I (t), γ
(k)
I (t),α

)
are the trajec-

tory basis functions (TBFs) I evolving on state (k) with

mean position R
(k)

I (t), momentum P
(k)

I (t), phase γ
(k)
I (t),

and frozen width α. C̃
(k)
I (t) is the complex coefficient for
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the TBF I evolving on electronic state (k). The TDSE can
be rewritten in the basis of the TBFs, leading to a set of
coupled equations of motion for the complex coefficients.
It is important to note that the number of TBFs can be
extended every time a nonadiabatic coupling is detected,
ensuring an accurate description of the nuclear amplitude
transfer between electronic states resulting from nonadia-
baticity (more details on the spawning algorithms can be
found in Refs. [36,75,73]). If a sufficiently large number of
TBFs is used, FMS is formally exact. However, it requires
the evaluation of multidimensional Gaussian integrals in-
cluding electronic quantities like energies or nonadiabatic
couplings, meaning that FMS is not directly suitable for
ab initio nonadiabatic molecular dynamics.

Ab Initio Multiple Spawning (AIMS) proposes to ap-
proximate the coupling between TBFs in two different
ways: the integrals are approximated by expanding any
electronic quantity in a Taylor expansion of order zero
(saddle point approximation) and the TBFs employed to
describe the nuclear wavepacket at time t = 0 (the par-
ent TBFs) are considered uncoupled (independent first
generation approximation, IFGA). For details and discus-
sions on these two approximations, the reader is referred
to Refs. [36,76,73]. AIMS has been coupled with different
electronic-structure methods such as SA-CASSCF [77,78],
MS-CASPT2 [79], FOMO-CASCI [80], or linear-response
TDDFT (LR-TDDFT) [81].

4 Computational details

CT-MQC and Ehrenfest calculations are performed with
the plane-waves based electronic structure package CP-
MD [82], employing the PBE [83] functional for ground-
state and excited-state calculations. LR-TDDFT calcu-
lations [84–86] are based on the Tamm-Dancoff approx-
imation [87,88] (TDA). While the adiabatic approxima-
tion [89], inherent to a practical use of LR-TDDFT, pre-
cludes an accurate description of conical intersections be-
tween S1 and S0 [90], the dynamics presented here is only
concerned with the coupling between the excited states S1

and S2. Conical intersections between excited states are
adequately captured by LR-TDDFT, even within the adi-
abatic approximation. For more information on this sub-
ject, we refer to Ref. [89,91]. Furthermore, studies have
showed that, for the case of oxirane, LR-TDDFT with the
TDA provides a good description of the S1/S0 branching
plane [91]. The Kleinman-Bylander [92] pseudo-potential
has been used for all atom species together with a plane-
wave cutoff of 70 Ry. Initial conditions, i.e., positions and
momenta, have been sampled from an ab initio ground-
state trajectory of 2 ps at 300 K. Ntr = 100 trajectories
are propagated with a time step of 0.12 fs (5 a.u.). The
Ehrenfest dynamics was obtained by using the CT-MQC
algorithm implemented in CPMD while neglecting the qm
terms in the equations for the force, Eq. (12), as well as in
the evolution equation for the BO coefficients, Eq. (13).

The populations of the electronic adiabatic states are
estimated via the expression

ρk(t) =
1

Ntr

Ntr∑

I=1

∣∣∣C(I)
k (t)

∣∣∣
2

with k = 0, 1, 2, (21)

that is an average of the populations associated to each
trajectory (I). In Section 5 we will also report the indica-
tor of decoherence [45,18,46], defined by the expression

ηkl(t) =
1

Ntr

Ntr∑

I=1

∣∣∣C(I)
k

∗

(t)C
(I)
l (t)

∣∣∣
2

. (22)

The quantum-mechanical (exact) expression correspond-
ing to Eq. (22) is

ηex.kl (t) =

∫
dR |C∗

k(R, t)Cl(R, t)|
2
|χ(R, t)|

2
. (23)

The relation between the two expressions can be easily de-
rived by replacing the nuclear density with its “classical”
expression as a sum of δ-functions centered at the posi-
tions of the trajectories, i.e., |χ(R, t)|2 = (Ntr)

−1
∑

I δ(R−

R(I)(t)). By virtue of the exact factorization (Eq. (1)),
a nuclear wavepacket χl(R, t) propagating “on” the BO
PES l is χl(R, t) = Cl(R, t)χ(R, t), therefore Eq. (23) can
also be written as

ηex.kl (t) =

∫
dR |χ∗

k(R, t)χl(R, t)|
2
, (24)

thus ηex.kl (t) is clearly related to the overlap of nuclear
wavepackets corresponding to different electronic states.
With this definition of the decoherence indicator, decoher-
ence can be related to the spatial separation of different
wavepackets, and thus of different bundles of trajectories,
“loosing memory” of each other while evolving along di-
verging paths.

In Section 5 we will also analyze the gauge-invariant
part of the TDPES, namely

ǫGI(R, t) = 〈ΦR(t)| ĤBO + Û coup
en |ΦR(t)〉

r
, (25)

that translates to ǫ
(I)
GI(t) =

∑
k |C

(I)
k (t)|2ǫ

(k),(I)
BO within the

quantum-classical approximations. This quantity gives in-
formation about “which adiabatic PES” drives nuclear
trajectories far away from the nonadiabatic coupling re-
gions.

Ab Initio Multiple Spawning simulations were carried
on with GPU-accelerated LR-TDDFT [93], using as for
CT-MQC the PBE functional and the TDA. The initial
wavepacket is composed of 20 parent TBFs, whose initial
positions and momenta are similar to those employed for
the CT-MQC dynamics. AIMS dynamics was performed
within the IFGA and the saddle-point approximation of
order zero, leading to an overall swarm of 68 TBFs. Three
states were considered in the dynamics (S0, S1, S2), the
time step for the classical propagation is 20 a.u. (reduced
to 5 a.u. in coupling regions, with the possibility to employ
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an adaptive time step if required [77]). A major difference
between the CT-MQC and the AIMS dynamics is found in
the basis set employed for the electronic structure calcu-
lation. While CT-MQC uses the plane-wave code CPMD,
AIMS is interfaced with the GPU-accelerated and Gaus-
sian-based electronic structure code TeraChem [94–96].
Hence, all AIMS simulations are performed with a 6-31G∗

basis set [97] for the electronic degrees of freedom. While
the state ordering is similar between the two approaches,
the energy gap between the S1 and S2 states varies, which
implies that the comparison between the two methods can
only be considered qualitative.

In AIMS, the population of electronic state k is given
by:

ρk(t) =
1

NIC

NIC∑

β=1

N
β

TBFs,k∑

I=1,J=1

(
C̃

(k)
Iβ (t)

)
∗

C̃
(k)
Jβ (t)〈χ̃

(k)
Iβ |χ̃

(k)
Jβ 〉R ,

(26)
with NIC the number of initial conditions. We also define
the normalized incoherent population of a TBF I evolving
on state k as

n
(k)
I (t) =

∣∣∣C̃(k)
I (t)

∣∣∣
2

∑
k

∑NTBFs,k

J=1

∣∣∣C̃(k)
J (t)

∣∣∣
2 . (27)

Due to the different nature of the methods – travelling
Gaussians (AIMS) vs trajectories (CT-MQC) – we use
the approximate off-diagonal elements of the electronic
density matrix as a local measure of decoherence in AIMS.
These are defined as

ηAIMS
kl (t) =

1

NIC

NIC∑

β=1

|〈Ψβ |ϕ
(k)
R

〉〈ϕ
(l)
R
|Ψβ〉|

2

=
1

NIC

NIC∑

β=1

∣∣∣
N

β

TBFs,k∑

I

N
β

TBFs,l∑

J

(
C̃

(k)
Iβ (t)

)
∗

C̃
(l)
Jβ(t)

× 〈χ̃
(k)
Iβ |χ̃

(l)
Jβ〉R

∣∣∣
2

, (28)

and informs on the overlap between TBFs on the two dif-
ferent states k and l considered (in this case, k corresponds
to S1 and l to S2).

While a detailed computational performance analysis
of the different methods goes beyond the scope of this
work, we comment here on the number of electronic struc-
ture calls required, as well as on the nature of the elec-
tronic structure properties evaluated at each call. For each
nuclear integration step: (i) CT-MQC requires Ntr elec-
tronic structure calls for the calculation of the energy,
the gradient and the nonadiabatic coupling vectors of all
electronic states considered; (ii) AIMS requires NTBFs ×
(NTBFs+1)/2 electronic structure calls for the calculation
of the energy, the gradient and the nonadiabatic couplings
associated to the single electronic state on which the TBF
runs. In average, while the number of electronic structure
calls in AIMS is larger than in CT-MQC, the number of

electronic structure quantities required per step is smaller.
This leads to an additional computational overhead for
CT-MQC compared to AIMS.

5 Ring-opening process in oxirane

Our simulations start at the time in which, upon absorb-
ing a photon, an oxirane molecule is photoexcited from its
ground electronic state S0 to the lowest-lying bright state,
S2. Such photoexcitation induces ultrafast rearrangements
of the molecular structure that eventually drive the system
through a conical intersection between S2 and S1 within 7
to 15 fs according to TSH and CT-MQC [46]. This process
is illustrated in Fig. 1, which shows (in the upper panel)
the average population of the electronic states. When the
molecule reaches the intersection seam, we observe popu-
lation transfer from S2 (fully populated at time t = 0) to
the first excited state S1, which is completed after about
25 fs. After that, the dynamics carriers on until a coni-
cal intersection between S1 and S0 is eventually reached.
However, this second event will not be further discuss in
this work.

Slightly different results are obtained when employ-
ing Ehrenfest dynamics, as the transfer does not involve
a complete population transfer from S2 to S1. However,
the time scale of the crossing of the conical intersection
agrees closely with the one obtained with CT-MQC. This
does not come as a surprise, as a single crossing event is in
general easy to capture in terms of electronic populations.
Furthermore, the additional term in the electronic time-
evolution of CT-MQC (Eq. (13)), which includes effects
beyond Ehrenfest theory, only builds up during and after
the nonadiabatic event, meaning that the initial popula-
tion transfer (before and at the surface crossing) is similar
in both CT-MQC and Ehrenfest dynamics.

Additional information about the S2-to-S1 transfer pro-
cess can be extracted from the analysis of the decoher-
ence indicator presented in the lower panel of Fig. 1. The
quantity η12(t) (black line in Fig. 1), defined by Eq. (22),
shows two pronounced peaks, indication that two groups
of CT-MQC trajectories funnel through the S1/S2 coni-
cal intersection at subsequent times. Similarly to previous
observations [46] based on surface hopping, we see that
also Ehrenfest dynamics is unable to capture the oscilla-
tions in the indicator of decoherence and the final decay.
In fact, η12(t) computed using the Ehrenfest scheme re-
mains constant after the 15 fs of dynamics. The qualita-
tive mismatch with CT-MQC is associated to the lack of
decoherence channels in the equation for the evolution of

the BO coefficients, C
(I)
k (t).

In order to understand if the time delay between differ-
ent passages through the conical intersection has an effect
on the overall dynamics, the indicator of decoherence has
been decomposed in different contributions, discriminated
according to the nature of the corresponding final molec-
ular configurations. We observe four final product struc-
tures, (i) a right-open ring structure (observed with prob-
ability 36%), (ii) a left-open ring structure (observed with
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Fig. 1. Upper panel: CT-MQC electronic populations of S0

(orange), S1 (dark-green) and S2 (red) as functions of time.
Lower panel: CT-MQC (normalized) indicator of decoherence
for the element S1/S2 (thick black line), and its decomposition
in contributions arising from three sets of trajectories. The tra-
jectory sets labeled with C1O (cyan line) and C2O (magenta
line) lead to a final configuration where the oxirane ring opens
via the breaking of one of the two equivalent CO bonds; the
set of trajectories labeled C1C2 (blue line) yields final config-
urations where the ring opens through the elongation of the
CC bond. Thin black lines and corresponding grey error-bars
refer to Ehrenfest results. The error-bars are evaluated from
the standard deviations of the data points.

probability 47%), (iii) a CC-extended bond structure (ob-
served with probability 10%), and (iv) a closed-ring struc-
ture (observed with probability 7%). All reported values
are computed as the ratio between the number of trajec-
tories ending up in the target configuration and the total
number of trajectories (Ntr = 100). Structures (i) and
(ii) are equivalent, and we expect that the observed dif-
ference in percentage can be reduced by improving the
statistics. In these two cases, the ring-opening of oxirane
is obtained through the breaking of one of the two CO
bonds. In structure (iii), the oxirane ring opens via the
elongation of the CC bond. A few number of trajectories,
identified as structure (iv), are not reactive and remains
close to the original molecular configuration. For our anal-
ysis, we first selected the “reactive trajectories”, namely
those trajectories yielding the ring-opening of oxirane, and
we then decomposed η12(t) into contributions associated
to the three sets of structures (i), (ii), and (iii). Based on
this decomposition, we observe that the first peak (cyan
and magenta curves in Fig. 1) between 6 and 12 fs is pro-
duced by trajectories that lead to the breakage of one of
the two CO bonds. However, these curves do not decay
monotonically. Instead, the curves corresponding to the

C1O and C2O groups both contribute to the second peak
(between 12 fs and 17.5 fs), indicating that the first group
of trajectories (associated to the first peak) is reached by
a second group while funnelling through the conical inter-
section. The main contribution to the second peak (blue
line in Fig. 1) between 12 and 16 fs is however produced by
trajectories yielding to a CC bond breaking. These trajec-
tories clearly encounter the nonadiabatic region with some
delay when compared to the sets of trajectories of sets (i)
and (ii), and go through the conical intersection in a single
step.

The different reaction channels are clearly a conse-
quence of the topology of the TDPES in configuration
space. Therefore, we will now scrutinize the TDPES along
the different groups of trajectories. We remind that, even
though the adiabatic basis has been used to expand the
conditional electronic wavefunction of the exact factoriza-
tion, the nuclear dynamics is still governed by the TDPES
and by the time-dependent vector potential of Eq. (3), in
their approximate quantum-classical form. The electronic
adiabatic basis has been used merely for convenience, as
several electronic structure packages are equipped with
tools to compute electronic energies, forces and nonadia-
batic couplings within this representation of the electronic
states.

A representative trajectory has been selected for the
groups (i) and (ii). The populations of the electronic states
and the adiabatic potential energy for each configuration
visited along the trajectories are reported in Fig. 2 (upper
and lower panels, respectively). Fig. 3 shows analogous

Fig. 2. Upper panels: populations of the electronic states S0,
S1, and S2 as functions of time for two selected trajectories of
type (i) (left) and of type (ii) (right). The color code is the
same used in Fig. 1. Lower panels: energy profiles (in eV) along
the selected trajectories, as in the upper panels. The zero is set
to be the value of the energy of S0 at time t = 0. In the upper
panels, oxirane at the final time is shown.

results for the groups (iii) (left panels) and (iv) (right
panels). The upper panels of Figs. 2 and 3 confirm that
the region of strong coupling between states S2 and S1 is
encountered by trajectories of type (i) and (ii) at earlier
times when compared to trajectories of type (iii). This
is also the case for group (iv), which undergoes an even
slower and smoother transition from S2 to S1 than group
(iii). In fact, the populations of the electronic states cor-
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Fig. 3. Same as in Fig. 2, but for the groups of trajectories
labeled as (iii) (left) and (iv) (right).

Fig. 4. The time series of the S0 (orange), S1 (blue) and S2

(red) adiabatic PESs computed for a bundle of 100 trajecto-
ries started from a ground state thermal ensemble at 300K.
The corresponding CT-MQC curves are shown in black. The
inset reports a blow-up of the region where most of the S1/S2

crossings occur. The thicker lines describe the time evolution
of the different PESs for a selected trajectory.

responding to groups (i) and (ii) sharply switch at the
conical intersection at around 10 fs. This behavior is the
consequence of the different shapes of the TDPES, rep-
resented as dotted lines in Figs. 2 and 3. The trajecto-
ries of groups (iii) and (iv) are driven by a TDPES that
is initially flat for about 10-15 fs, following the shape of
S2 adiabatic state, until it smoothly approaches and then
switches to S1. Later, these trajectories continue on S1

without showing a clear tendency for S1/S0 gap closing,
pointing towards the presence of a slopped conical inter-
section between these two states. By contrast, the TDPES
sampled by the trajectories of groups (i) and (ii) follows a
steeper path that bring to a fast closure of the S2/S1 gap
(within about 15 fs) and subsequently of the S1/S0 gap
(after about 25 fs), suggesting the presence of a funneling
process that guides the trajectories to the ground state.

In Fig. 4 we superpose the adiabatic energy profiles
for all trajectories (colored lines) and compare them to
the TDPES (black lines), computed along the CT-MQC
trajectories. We see that while at the initial times the TD-
PES follows exactly S2, later the trajectories branch: some
remain at an energy similar to the initial one, whereas oth-
ers rapidly relax and lose nearly 3 eV.

We now move to the analysis of the excited-state dy-
namics of oxirane as obtained from AIMS. The 20 parent
TBFs portray the initial nuclear wavepacket in the sec-
ond excited-state S2. Their initial conditions for the CT-
MQC dynamics are taken from a subset of those. Upon
excitation in S2, AIMS predicts that the wavepacket ap-
proaches rapidly the intersection seam and continues in
the first excited state, in agreement with what observed
using CT-MQC (Fig. 5). While the time window during

Fig. 5. Time trace of the electronic population in AIMS (blue
curve) with corresponding standard error (light blue area). The
population obtained with CT-MQC and reported in Fig. 1 is
reproduced here for clarity (palatinate line). The dashed palati-
nate line represents the CT-MQC population curve shifted
by -6.5 fs for comparison with the AIMS curve. The inset
shows histograms of the S2/S1 energy gap of all initial con-
ditions for LR-TDDFT/PBE/TDA/6-31G∗ (blue) and LR-
TDDFT/PBE/TDA/plane-wave (palatinate). The AIMS local
decoherence, ηAIMS

S1S2
, (see text) is indicated with a red dashed

line.

which the transfer takes place is nearly identical between
the two methods, the AIMS wavepacket appears to reach
the intersection seam sooner (by 6.5 fs) than in the case
of CT-MQC. This observation is likely related to the dif-
ferent representation of the electronic structure used in
the two approches (6-31G∗ for AIMS and plane waves for
CT-MQC), as the S2-S1 energy gap distribution at the
initial geometries (at t = 0) has a larger spread (and is
slightly shifted towards smaller values) when using the
atom-centered basis set (inset of Fig. 5). As mentioned
above, due to the different nature of the AIMS (Gaussian-
based method) and CT-MQC (trajectory-based) approaches,
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we defined a new, local decoherence indicator for AIMS
(Eq. (28)). Therefore, care should be taken when compar-
ing these two quantities, ηkl(t) of Eq. (22) and ηAIMS

kl (t)
of Eq. (28).

The time-evolution of ηAIMS
S1S2

(dashed red line in Fig. 5)
clearly shows an initial sharp rise that corresponds to the
strong overlap of TBFs in the nonadiabatic region at 2.5 fs.
This agrees with the first peak observed in CT-MQC (re-
calling that the CT-MQC results should be shifted by
about −6.5 fs in order to allow for a direct comparison
with AIMS results). This overlap, however, rapidly de-
creases when TBFs move away from each other (see also
discussion below on the spawning of TBFs), showing how
AIMS naturally encodes decoherence effects. Additional
peaks are observed, first at a time delay of about 2.5 fs,
and later at a slightly larger delays. These revivals can
probably be associated to the peak(s) arising from the sec-
ond group of CT-MQC trajectories (i) and (ii)and group
(iii), respectively. Although, due to the different natures of
the decoherence indicators, a direct comparison between
CT-MQC and AIMS is not possible, AIMS results quali-
tatively validate the dynamics generated by CT-MQC.

The dynamics of the AIMS nuclear wavepacket is ana-
lyzed by projecting the TBFs onto the two degrees of free-
dom associated with the CO bonds in oxirane. In Fig. 6
(right), each TBF is represented by a line of different
color, where the thickness is proportional to the popu-

lation (n
(k)
I (t), see Eq. (27)) carried by the corresponding

TBF. This analysis reveals that following the excitation
of the nuclear wavepacket in S2 the CO dissociation is
an important relaxation pathway, in close agreement with
the findings reported using the CT-MQC and TSH [46]
approaches. We also observe that the breaking of a single
CO bond is the dominating deexcitation channel (the in-
set of Fig. 6 depicts the set of molecular structures at the
spawning points and highlights a distribution of CO bond
stretches where the spawns, and therefore nonadiabatic
transitions, can take place.). A few TBFs exhibit a con-
certed elongation of both CO bonds (diagonal in Fig. 6,
right), but they only carry a rather small population am-
plitude. Overall, the dynamics of the nuclear wavepacket
in AIMS is therefore in good agreement with the dynamics
observed with CT-MQC (Fig. 6, left), where the largest
fraction of the coupled trajectories also follows a single
CO bond dissociation.

In contrast to CT-MQC, AIMS is based on the Born-
Huang representation of the molecular wavefunction (see
Section 3). As such, the TBFs picture nuclear amplitudes
evolving on different time-independent electronic states.
When reaching a region of strong nonadiabatic coupling
(i.e., when reaching a region where the energy difference
between two electronic states becomes small) a parent
TBF has the possibility, if necessary, to spawn a new func-
tion on the coupled state. This spawn leads to an increase
of the number of TBFs, and not to a hop of the TBF
from one state to the other. Hence, a spawned TBF will
follow its own classical dynamics under the action of the
driving state on which it was created. This spawning pro-
cedure allows for an amplitude transfer between the two

states and to account for decoherence effects between the
wavepacket on two PESs. To exemplify the spawning pro-
cedure and to contrast it with the TDPES of the CT-MQC
dynamics discussed above, we present the AIMS dynamics
of one parent TBF (S2), leading to three spawns to the

S1 state. In the lower panel of Fig. 7, TBF
(S2)
1 represents

the parent TBF initiated at t = 0 on S2. It first spawns
a TBF on S1 after 2.3 fs of dynamics (orange line with
gray circles), a second one after 10.9 fs (orange line with
brown circles), and a third TBF after 14.2 fs (orange line
with green circles). Interestingly, this third spawn takes
place at a geometry that corresponds to an extended CC
bond (larger than 1.7 Å), reminiscent to the swarm of CT-
MQC trajectories reaching the intersection seam at later
time (see comments to Fig. 1). The lines in Fig. 7 show
the potential energy of the TBF evolving in its electronic
state and describe their individual dynamics. This comes
in strong contrast to TSH, for example, where amplitudes
are propagated along a single trajectory. In AIMS, each
TBF carries an amplitude and all TBFs are coupled via

the TDSE.
The overall population of this AIMS run, defined as

ρk,β(t) =

N
β

TBFs,k∑

I=1,J=1

(
C̃

(k)
Iβ (t)

)
∗

C̃
(k)
Jβ (t)〈χ̃

(k)
Iβ |χ̃

(k)
Jβ 〉R , (29)

is depicted in the upper panel of Fig. 7 and shows the
relation between spawned TBFs and population transfers
(β here label a specific AIMS run). While AIMS indicates
that the nuclear wavepacket rapidly reaches the nonadia-
batic region, Fig. 7 shows that additional spawning events,
i.e., population transfer, can take place at later times, as
observed in the CT-MQC dynamics.

6 Conclusions

In this work, we presented a detailed analysis of the photo-
initiated ring-opening process in oxirane based on CT-
MQC dynamics, namely the trajectory-based algorithm
derived from the Exact Factorization. In particular, we
demonstrated the capability of the algorithm to capture
decoherence effects related to the nonadiabatic character
of the electron-nuclear dynamics in the vicinity of a con-
ical intersection. To this end, we compared the CT-MQC
dynamics with Ehrenfest results, proving that the missing
ingredient for decoherence in Ehrenfest is associated to the
coupling among the trajectories. In fact, CT-MQC equa-
tions merely add an additional term to Ehrenfest equa-
tions, which tracks the spreading of the trajectories. The
inclusion of such correction is sufficient to induce quantum
decoherence.

The indicator of decoherence, introduced to prove the
qualitative difference between Ehrenfest and CT-MQC,
shows oscillations that have been related to the differ-
ent reaction channels followed by the trajectories, which
lead to the different photoproducts. A validation of the
CT-MQC approach has been obtained using Ab Initio
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Fig. 6. Projection of the CT-MQC trajectories (left) or the AIMS TBFs (right) onto the two different C-O bonds of oxirane.
For the AIMS plot, the thickness of each line is proportional to the normalized incoherent population of TBF I evolving on

state k, n
(k)
I (t). Note that propagation time of each trajectory/TBFs can be different. The inset (right) presents all the S2/S1

spawned AIMS geometries.

Fig. 7. Example of a typical AIMS run. Upper panel: pop-
ulation of the S2 state (ρS2,β) for this run β. Lower panel:

electronic energies for each of the first four TBFs. TBF
(S2)
1 is

the parent TBF initiated at t = 0 on S2 (red line with blue

circles) that is spawning three TBFs: TBF
(S1)
2 (orange line

with gray circles), TBF
(S1)
3 (orange line with brown circles),

TBF
(S1)
4 (orange line with green circles). Each spawning time

is highlighted by a colored star on the time axis and the cor-
responding molecular geometry is given as inset.

Multiple Spawning, a trajectory-based approach to nona-
diabatic dynamics able to treat decoherence effects. The
good agreement between AIMS and CT-MQC, given the
difference in basis set employed, appears to validate the
interpretation of the ring-opening process based on CT-
MQC. This work therefore provides a first appraisal of

the CT-MQC method for the description of nonadiabatic
molecular dynamics processes.
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A 79, 053416 (2009)
29. M. Richter, P. Marquetand, J. González-Vázquez, I. Sola,
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