

CTA-aware Prefetching for GPGPU

Hyeran Jeon, Gunjae Koo, Murali Annavaram

Computer Engineering Technical Report Number CENG-2014-08

Ming Hsieh Department of Electrical Engineering – Systems

University of Southern California

Los Angeles, California 90089-2562

October 2014

CTA-Aware Prefetching for GPGPU

Hyeran Jeon Gunjae Koo Murali Annavaram

Ming Hsieh Department of Electrical Engineering
University of Southern California

Los Angeles, CA

{hyeranje, gunjae.koo, annavara}@usc.edu

Abstract

In this paper, we propose a thread group-aware stride prefetching
scheme for GPUs. GPU kernels group threads into cooperative
thread arrays (CTAs). Each thread typically uses its thread index
and its associated CTA index to identify the data that it operates
on. The starting base address accessed by the first warp in a CTA is
difficult to predict, since that starting address is a complex function
of thread index and CTA index and also depends on how the
programmer distributes input data across CTAs. But threads within
each CTA exhibit stride accesses. Hence, if the base address of
each CTA can be computed early, it is possible to accurately predict
prefetch addresses for threads within a CTA. To compute the base
address of each CTA, a leading warp is used from each CTA.
The leading warp is executed early by pairing it with warps from
currently executing leading CTA. The warps in the leading CTA
are used to compute the stride value. The stride value is then
combined with base addresses computed from the leading warp
of each CTA to prefetch the data for all the trailing warps in
the trailing CTAs. Through simple enhancements to the existing
two-level scheduler, prefetches can be issued sufficiently ahead
of time before the demand requests. CTA-aware prefetch predicts
addresses with over 99.27% accuracy and is able to improve GPU
performance by 10%.

1. Introduction

Long latency memory operation is one of the most critical per-
formance hurdle in any computation. Graphics processing units
(GPUs) rely on dozens of concurrent warps for hiding the per-
formance overhead of long latency operation by quickly context
switching among all the available warps. When warps issue a long
latency load instruction they are descheduled to allow other ready
warps to issue. Several warp scheduling methods have been pro-
posed to efficiently select ready warps and to deschedule long la-
tency warps so as to minimize wasted cycles of a long latency op-
eration. For instance, recently proposed two-level schedulers [13]
employ two warp queues: pending queue and ready queue. Only
warps in the ready queue are considered for scheduling and when a
warp in the ready queue encounters a long latency operation, such
as a load instruction, it is pushed out into the pending queue. Any
ready warp waiting in the pending queue is then moved to the ready
queue.

In spite of these advancements, memory access latency is still
a prominent bottleneck in GPUs, as has been identified in prior
works [7, 19, 28, 33]. To tackle this challenge researchers began
to adopt memory prefetching techniques, which have been stud-
ied extensively in the CPU domain, to the GPU domain. Recent
GPU-centric prefetching schemes [16, 17, 20, 21, 29] can be cat-
egorized into three categories: intra-warp stride prefetching, inter-
warp stride prefetching, and next line prefetching.

1.1 GPU Hardware and Software Execution Model

Before describing the applicability and limitations of these three
approaches and the need for the proposed prefetching scheme, we
first provide a brief overview of GPU architecture and application
execution model. Figure 1a shows the GPGPU hardware architec-
ture composed of multiple streaming multiprocessors (SMs) and
memory partitions [27]. Each SM has 32 single instruction multi-
ple thread (SIMT) lanes where each SIMT lane has its own execu-
tion units, also called a CUDA core. Each SM is associated with its
own private memory subsystem, a register file and level-1 texture,
constant, data and instruction caches. SMs are connected to level-2
cache partitions that are shareable across all SMs via an intercon-
nection network. L2 cache banks connect to a larger DRAM-based
global memory through one or more memory controllers where
each controller is associated with one or more L2 cache partitions.
If requested data is serviced by an external DRAM chip, the la-
tency, which varies with memory traffic congestion, is hundreds or
even thousands of GPU core cycles [37].

The GPU software execution model is shown in Figure 1b. A
GPU application is composed of many kernels, which are basic task
modules that exhibit significant amount of parallelism. Each kernel
is split into groups of threads called thread blocks or concurrent
thread arrays (CTA). A CTA is a basic workload unit assigned to
an SM in a GPU. Threads in a CTA are sub-grouped into a warp,
the smallest execution unit sharing the same program counter. In
our baseline hardware, a warp contains 32 threads. For memory
operations, a memory request can be generated by each thread
and up to 32 requests are merged when these requests can be
encapsulated into a cache line request. Therefore, only one or two
memory requests can be generated if requests in a warp are highly
coalesced.

1.2 CTA distribution

GPU compilers estimate the maximum number of concurrent CTAs
that can be assigned to an SM by determining the resource usage
information of each CTA, such as the register file size and shared
memory usage – the available resources within an SM must meet or
exceed the cumulative resource demands of all the CTAs assigned
to that SM. Furthermore, the GPU hardware itself places a limita-
tion on the number of warps that can be assigned to each SM. For
example, NVIDIA Fermi can run up to 48 warps in an SM. Thus if
a kernel assigns 24 warps per CTA, each SM can accommodate up
to two concurrent CTAs. For load balancing, current GPUs assign a
CTA to each SM in a round-robin fashion until all SMs are assigned
up to the maximum concurrent CTAs that can be accommodated in
an SM. Once each SM is assigned the maximum allowed CTAs
then future allocation of CTAs to an SM are purely demand-driven.
A new CTA is assigned to an SM only when an existing CTA on
that SM finishes execution.

SMSM

Core Core

. . .

L1 L1

SMSM

Core Core

L1 L1

SM

Core

L1

Interconnection

. . .

Memory controller Memory controller

DRAM DRAM

L2 L2 L2 L2

(a) GPGPU architecture

Application

Kernel0 Kernel1 Kernel2

Kernel
CTA0 CTA1

. . .

CTA2 . . .

CTA
Warp0 :

Warp1 :

Warp2 : . . .

(b) GPU application structure

Figure 1: GPGPU hardware and software architecture

time

CTA 0

CTA 7

CTA 1

CTA 9

CTA 2

CTA 6

SM 0

SM 1

SM 2

CTA 3

CTA 4

CTA 5

CTA 8

CTA 10

CTA 11

Figure 2: Example CTA distribution across SMs where each SM
runs two concurrent CTAs and the kernel has 12 CTAs. Each
rectangle presents the execution of the denoted CTA.

Figure 2 shows an example CTA distribution across three SMs.
Assume that a kernel consists of 12 CTAs each SM can run two
concurrent CTAs. In the beginning of the kernel execution, SM 0,
1, and 2 are assigned two CTAs, one at a time in a round-robin
fashion; CTA 0 to SM 0, CTA 1 to SM 1, CTA 2 to SM 2, CTA 3 to
SM 0 and so on. Once the six CTAs are first allocated to all the SMs,
the remaining six CTAs are assigned whenever any of the assigned
CTAs terminates. When CTA 5 execution is finished first, CTA 6 is
assigned to SM 2. The next CTA to finish execution is CTA3 and
thus CTA 7 is assigned to SM 0. Therefore, CTA assignments to an
SM are determined dynamically based on CTA termination order.

2. Limitations of Prefetches in GPUs

With the above background, we now describe the limitations of
existing GPU prefetchers and how one can overcome these chal-
lenges.

2.1 Intra-warp stride prefetching

Prefetching of strided data requests is a basic prefetching method
that was explored for CPUs and has been shown to be effective
when array data is accessed with regular indices in a loop [5, 12].
In the context of a GPU application if each thread within a warp
loads array data from memory repeatedly in a loop then stride
prefetching is initiated to prefetch data for future loop iterations
of each thread. Since each prefetch targets the load instruction of
a future loop iteration of the same thread within the warp, this
approach is called intra-warp stride prefetching. Intra-warp stride
prefetching was recently proposed for graph algorithms running on
GPUs [20]

The effectiveness of intra-warp stride prefetching depends on
the presence of load instructions that are repeatedly executed in
loops to access array structures. But there is a growing trend to-
wards replacing deep loop operations in a GPU applications with
parallel thread operations with just a few loop iterations in each

0

2

4

6

8

10

LPS BPR HSP PTH MRQ SGE STE CNV HST MC JC1 FFT MD BFS KMN MM

N
u

m
e
r

o
f

it
e
ra

ti
o

n
s

1
9

9
9

1
0

2
4

9
9

1
2

4

7
2

2
4

6
2

1
2

8

9
9

3

1
5

2/4 0/14 0/2 1/2 0/7 2/18 8/12 0/10 1/1 1/1 0/4 0/16 2/5 5/9 10/144 2/2

1
2

8

6
2

6
2

Figure 3: Average number of iterations for load instructions in a
kernel. Repeated load instructions / total load instructions (by PC)
under names of benchmarks

thread. Thus deep loop operations are being replaced with thread-
level parallelism with reduced emphasis on loops.

Figure 3 shows the average number of times the four com-
mon load instructions executed in a given warp in each of the se-
lected benchmarks (benchmarks and simulation methodology are
described in detail in Section 5). We counted how often each load
instruction, distinguished by the PC value, was executed in a warp.
If a load instruction is part of a loop body then that PC would have
repeatedly appeared in the execution window. Also the total num-
ber of load instructions that appeared as part of a loop body over
the total load instructions is also shown for each benchmark under
the benchmark name on X-axis. The results show that only a few
loads appear in a loop body.

These results show that when a loop intensive C program is
ported to CUDA (or OpenCL), loops are reduced to leverage mas-
sive thread level parallelism. For example, whereas matrix multi-
plication A×B requires rowA×colA×colB iterations for each load
with a naive serial program, each load instruction is executed 5
times in a kernel for the GPU program. This observation has also
been made in a prior study that showed that deep loop operations
are seldom found in GPU applications [24, 25].

CUDA and OpenCL favor vector implementation over loops
because of its scalability. By enabling thread level parallelism the
software becomes more scalable as the hardware thread count in-
creases. For instance, if the number of hardware threads double
then each hardware thread is assigned half the number of vector op-
erations without re-writing the code. Favoring thread parallelism,
over loops, results in loss of opportunities for intra-warp stride
prefetching. Thus a prefetch scheme should not only capture iter-
ative loads appearing in a load, but it should also target loads that
are not part of any loop body.

2.2 Inter-warp stride prefetching

The stride detector based on the same PC per warp can be extended
to an inter-warp stride prefetcher [21, 29] to account for more
thread level parallelism. If regular offsets of memory addresses
are detected between different warps, then inter-warp prefetching
detects base address and stride value across different warps based
on warp-id. Thus inter-warp stride prefetcher issues prefetches for a
future warp from a current warp using the base address and warp-id
differences.

The CTA distribution algorithms employed in current GPUs
limits applicability of inter-warp stride prefetching to warps within
a CTA. As shown in Figure 2, SMs are not assigned consecutive
CTAs. Thus within a CTA all the warps are able to see stride ac-
cesses but the prefetcher is unable to prefetch across CTAs assigned
to the same SM. Thus accurate prefetch is limited to warps within
a CTA. Inter-warp prefetching will be more effective if there are a
larger number of warps in a CTA. Table 1 shows CTA statistics for
the 15 benchmarks used in our study. The column titled warps/CTA

CTA3 SM0CTA2 SM2CTA1 SM1CTA0 SM0

W0W0 W1W1 W2W2 W0 W1 W2 W0 W1 W2 W3W3 W4W4 W5W5

Δ Δ Δ Δ Δ Δ Δ Δ
D

Figure 4: An example of distance of memory addresses among
warps (W#). Each CTA contains 3 warps and strides of memory
addresses of warps within a CTA are the same. However, distance
between W2 of CTA0 and W3 of CTA3 is different even though
they are consecutive warps in an SM.

0
50
100
150
200
250
300
350
400
450

0%

20%

40%

60%

80%

1 2 3 4 5 6 7 8 9 10
Ga

p
(c

yc
les

)

Ac
cu

ra
cy

 (%
)

Distance between load instructions

Chart Title

Accuracy Gap

Figure 5: Accuracy with stride-based inter-warp prefetch and cycle
gaps by distance of load instructions

shows the average number of warps in each CTA. Most benchmarks
have fewer than 10 warps per CTA and at most 16 warps are as-
signed in a CTA, limiting the effectiveness of inter-warp prefetch-
ing. Having more CTAs than having warps per CTA also improves
scheduling ability since each CTA is assigned to execute on one
SM.

Application
Tot.
CTAs

Conc.
CTAs

Warps
/CTA

Application
Tot.
CTAs

Conc.
CTAs

Warps
/CTA

LPS 100 8 4 HST 4370 8 2
BPR 4096 6 8 MC 128 8 4
HSP 1849 3 8 JC1 16 6 8
PTH 463 6 8 FFT 256 8 2
MRQ 512 3 16 MD 48 4 8
SGE 528 8 4 BFS 1954 3 16
STE 1024 8 4 KMN 512 8 16
CNV 18432 8 2 MM 50 4 8

Table 1: CTA statistics

Figure 4 shows an example of disruptions to regular striding
between two consecutive warps when these warps straddle CTA
boundaries. In this example, each CTA has three warps and SM 0
is assigned CTA 0 and CTA 3. The stride of memory addresses
between consecutive warps within the CTA is ∆. However, the
distance of memory address between warp 2 and warp 3 is not
∆ because they straddle CTA boundaries. With a simple inter-
warp stride prefetching wrong prefetches are issued for warp 3.
Note that a well designed stride prefetcher detects this change and
eventually corrects the new base address and stride for CTA 3. But
this correction disturbs the prefetch timeliness which is critical for
performance. Thus every time a correction is made to the stride
prefetcher the timeliness of prefetching is compromised.

Figure 5, shows the tradeoff between prefetch timeliness and
prefetch accuracy for the simplest and most stride-friendly bench-
mark matrixMul. From Table 1 we can infer that matrixMul (la-
belled as MM in the table) has 50 CTAs and each CTA has 8 warps.
The X-axis in the figure shows how far ahead a prefetch is issued.
A value of one means that warp Wn prefetches for Wn+1, a dis-
tance of two means that warp Wn prefetches for Wn+2. When the
distances are short then accuracy is high. Accuracy is defined as

the fraction of prefetch addresses that match the demand addresses
that are generated later. The primary Y-axis shows the accuracy.
The line plot shows the prefetch gap, which is the number of cy-
cles between between prefetch and demand fetch, on the secondary
Y-axis. If the distance is just one, Wn prefetches for Wn+1, then
the number of cycles between the prefetch and demand fetch is
just few tens of cycles. Since global memory access takes hundreds
of cycles a short prefetch gap cannot hide the access latency. In
order to increase the gap between prefetch and demand fetch one
has to increase the distance. But as we move along the X-axis the
prefetch accuracy drops gradually and then suffers a steep drop at
a distance of seven. As the distance increases one has to cross CTA
boundaries between the prefetch and demand fetch. Since MM has
8 warps per CTA, at the distance of seven every prefetch crosses the
CTA boundary; note that we need two warps to be executed first to
compute the base address and stride before issuing a prefetch. Once
the prefetch crosses the CTA boundary the accuracy drops dramat-
ically.

2.3 Next-line prefetching

The last category of GPU prefetching is next line prefetching,
which fetches the next one or two consecutive cache lines alongside
the demand line on a cache miss. The basic next line prefetch
is agnostic to application access patterns and hence it leads to a
significant increase in wasted bandwidth. Next line prefetching in
conjunction with warp scheduling polices for GPUs was proposed
in [16, 17]. The proposed warp scheduler assigns consecutive warps
to different scheduling groups. The warp in one scheduling group
can prefetch data for the logically consecutive warp which will be
scheduled later in different scheduling group. While the cache miss
rate is in fact reduced with this scheme, as we show later in our
results section, prefetches are issued too close to the demand fetch,
resulting in small performance improvements.

3. Where Did My Strides Go?

In this section we provide some insights into how GPU execution
model perturbs stride access patterns that may be seen at the ap-
plication level. Figure 6 shows two example codes, from the LPS
and BFS benchmarks, that do not use loop iterations to execute
loads. The bold code lines (also shown in red color) of the left
hand side code box are the CUDA code statements that calculate
the indices used in accessing the array data (array d u1 in LPS,
and arrays g graph mask, g graph nodes, g cost in BFS). The
right hand side shaded blue box represents the corresponding equa-
tion to show how the array index will be eventually computed using
various parameters. Many GPU kernels use thread id and block id
(also called CTA id) to compute the index values for accessing the
data that will be manipulated by each thread. CTA parameters such
as BLOCK X and BLOCK Y are compile-time known values that
can be treated as fixed values across all the CTAs within each ker-
nel. Parameters such as blockId.X and blockId.Y are CTA-specific
values that are constant only across all the threads within a CTA.
Thus load address computations rely on a mix of parameters, that
are constant across all CTAs, such as BLOCK X and BLOCK Y,
and CTA-specific parameters such as blockId.X and blockId.Y and
thread-specific parameters within each CTA. In the example, values
computed from CTA-specific parameters are represented as C1 and
C2. The pitch value, C3, is essentially the parameter value which
is constant across all threads in the kernel. Thus each CTA needs
to compute its own C1 and C2 values first to compute the base ad-
dress which is represented as θ = C1+C2×C3 in these examples.
Once a CTA’s base address is computed each thread can then use its
thread id (represented by threadId.x and threadId.y) and the stride
value represented by C3 to compute the effective array index.

#define INDEX(i,j,j_off) (i +__mul24(j,j_off))

__shared__ float u1[3*KOFF];

i = threadIdx.x;
j = threadIdx.y;

i = INDEX(i,blockIdx.x,BLOCK_X);
j = INDEX(j,blockIdx.y,BLOCK_Y);
indg = INDEX(i,j,pitch);

active = (i<NX) && (j<NY);

if (active) u1[ind+KOFF] = d_u1[indg];
......

Indg = threadIdx.x + blockIdx.x * BLOCK_X +
(threadIdx.y + blockIdx.y * BLOCK_Y) * pitch

C1 blockIdx.x * BLOCK_X
C2 blockIdx.y * BLOCK_Y
C3 pitch

= threadIdx.x + C1 + (threadIdx.y + C2) * C3
= threadIdx.x + threadIdx.y * C3 + (C1 + C2 * C3)
= threadIdx.x + threadIdx.y * C3 + Θ

Warps within a CTA have fixed distances

(a) LPS

int tid = blockIdx.x * MAX_THREADS_PER_BLOCK + threadIdx.x;
if(tid<no_of_nodes && g_graph_mask[tid])
{

g_graph_mask[tid]=false;
for(int i=g_graph_nodes[tid].starting;

i<(g_graph_nodes[tid].no_of_edges+g_graph_nodes[tid].starting); i++)
{

int id = g_graph_edges[i];
if(!g_graph_visited[id]) {

g_cost[id]=g_cost[tid]+1;
g_updating_graph_mask[id]=true;

}
}

}

g_graph_mask[tid] = g_graph_mask[0] +
(blockId.x * MAX_THREADS_PER_BLOCK + threadIdx.x) * 4

C1 g_graph_mask[0]
C2 blockId.x*MAX_THREADS_PER_BLOCK
C3 4

= (C1 + C2 * C3) + threadIdx.x * C3
= Θ + threadIdx.x * C3

Likely, g_graph_nodes[tid] and g_cost[tid] are predictable

(b) BFS

Figure 6: Load address calculation example (LPS [6] and BFS [8])

For example, the CTA of LPS consists of a (32, 4) two dimen-
sional thread group. Given that a warp consists of 32 threads, each
CTA has four warps. The threads in the same SIMT lane position in
all four warps have the same thread x dimension id (from 0 to 31),
and the y dimension id distance between consecutive warps is one.
Therefore, the load distance between two consecutive warps within
each CTA is a fixed value, represented by the C3 in the equation.
This distance can be easily calculated at runtime by subtracting the
load addresses of any two consecutive warps in the same CTA. This
distance then can be used across all the CTAs. However, the CTA-
specific constant values C1 and C2 must be computed for each CTA
separately.

Note that the base address of CTA is cannot be predicted easily
even if it appears to be a function of CTA id. Because this func-
tion itself varies from one load to another load instruction in the
same kernel, and differs across kernels in the benchmark, and most
certainly differs across benchmarks as is clear from the LPS and
BFS computations. Also inter-CTA distances (difference of base
addresses between two CTAs) in a SM is irregular. For example,
CTAs (0,0), (3,3), (7,2) and (11,1) are all initiated in the same SM
for LPS in our simulation run. Thus the example load shown in
the LPS figure when executed in the same warp ids across differ-
ent CTAs do not exhibit any stride behavior across CTAs. For in-
stance, the distance between the load address executed in warp0
in CTA(0,0) and CTA(3,3) is 5184, while the distance between the
same load in CTA(3,3) and CTA(7,2) is 6272.

Based on these observations, the prefetch address of all the
warps within each CTA can be calculated only once the base ad-
dress and stride values are computed. The stride value can be com-
puted by subtracting the load addresses of two consecutive warps
(based on warp-ids) within the CTA for the load. But the base ad-
dress must be computed first by at least one warp associated with
each CTA.

Across a range of GPU applications we evaluated, the stride
value in fact can be computed from two consecutive warps within
the CTA. One exception is the indirect references that graph appli-
cations normally use to find neighboring node and edges as shown
in Figure 6b. g graph edges, g graph visited, g cost[id] and
g updating graph mask are indexed by variable i which is a
value loaded from g graph nodes[tid]. Therefore, the address
of these indirectly referenced variables cannot be predicted using
stride prefetcher. However, the metadata addresses (g graph mask
[tid], g graph nodes[tid] and g cost[tid]) are all thread-specific
references and these addresses can be calculated using thread id
and CTA id as illustrated in the blue box.

4. CTA-aware Prefetch

CTA-aware prefetcher (CTAA) exploits the regularity of memory
access patterns among warps within a CTA, similar to inter-warp
stride prefetching. However, unlike inter-warp stride prefetching,
CTAA detects base address changes across CTA boundaries to
increase the accuracy of prefetching.

4.1 Scheduling Algorithm Overview

We first describe our prefetching approach at the algorithmic level
and then provide the necessary architectural support details later.

CTAA tracks the base address for a given CTA, say CTAtrail,
by executing one warp, say Wlead, early in another CTA, CTAlead.
We call the warp that computes the base address of a given CTAtrail

as the leading warp, and CTAtrail itself is called the trailing CTA.
The CTAlead where the leading warp is executed early is called the
leading CTA. Thus for every CTA there is one leading warp that
is executed first in a leading CTA to compute the prefetch base
address.

The conventional two-level scheduler initially enqueues warps
from each CTA to the ready queue in CTA order; warps of the first
CTA are first enqueued to the ready queue and then the warps of
the following CTAs are enqueued until the ready queue is filled
up. In order to detect the base address and stride information as
early as possible, the two-level warp scheduler [13] is modified.
The CTAA scheduler initially picks one CTA arbitrarily, amongst
all the assigned CTAs to the SM, as the CTAlead. It then selects one
warp Wlead from each CTA that is currently scheduled for execution
on the SM, and then places them in the ready queue. The reason for
selecting the leading warps to be placed first in the ready queue
is to enable early calculation of CTA base addresses. Once all the
Wleads for all CTAs are placed in the ready queue then the CTAA
scheduler places as many of the remaining warps from the CTAlead

into the ready queue to fill up the ready queue. These warps are
called trailing warps (Wtrail) and used for the stride calculation,
which will be explained shortly.

The second necessary component is the calculation of the stride.
Stride information can be extracted by calculating the distance
between two successive warps in the same CTA. Once Wlead of
a CTA computes the base address of the load instruction, the stride
distance can be calculated when one of the Wtrails of the same
CTA is scheduled and computes its own load address for the same
load instruction. In many applications, CTAs typically use the same
stride for the same load instruction. Therefore, the stride that is
computed by the Wlead and Wtrail of CTAlead is used for calculating
the prefetch addresses of the warps in CTAtrails.

Figure 7 is the simplified illustration of the modified scheduling
order. Each rectangle of the figure indicates a warp. Assume that a
CTA consists of four warps and there are three CTAs. Suppose that

CTA0: B0

W0W0 W1W1 W2W2

Δ
3Δ

W3W3

2Δ

CTA1: B1

W4 W5

Δ

CTA2

W8

CTA0

W0W0

CTA1

W4

CTA0

W1W1 W2W2 W3W3

Δ

B0 B1 B2

Figure 7: CTAA scheduling order: One leading warp of each trail-
ing CTA is scheduled alongside a leading CTA to compute the base
address and stride

LD/ST UnitInstruction
Queue

PC, Address,
CTA id, warp id

Base address,
Stride

Two-level
Scheduler for CTAA

Leading
CTA/warp
selector

DIST Table

PerCTA Table

Prefetch
Request

Generator

L1 Cache

Figure 8: Hardware structure of CTA-aware prefetcher

the ready queue size is six. The figure shows the ordering of the six
warps in the ready queue. The left hand side figure shows the order
in which warps are placed in the ready queue using conventional
two-level scheduling algorithm. In this priority ordering, prefetch
requests for W5, W6 and W7 cannot be issued until W4 computes
the base address, B1, for CTA1. Furthermore, prefetch addresses
for warps from CTA2 cannot be even initiated until at least one of
the warps from CTA2 is promoted into the ready queue. The right
hand side figure represents the modified CTAA scheduler where
leading warps of CTA0, CTA1 and CTA2 are scheduled with higher
priority followed by trailing warps (W1, W2 and W3) of the leading
CTA (CTA0). Prefetch addresses (B1+∆ and B2+∆) for trailing
warps of the trailing CTAs (CTA1 and CTA2) can be calculated
right after the ∆ is computed from W0 and W1 in the leading CTA
(CTA0).

We describe how prefetches are launched and inaccuracies are
controlled using the base address and stride values in Section 4.2.

4.2 Microarchitectural Support for CTAA Scheduling and
Prefetching

Figure 8 shows hardware structure of our CTAA scheduler and
prefetcher. To detect the base address and stride values, two struc-
tures are added: DIST table and PerCTA table. A prefetch request
generator is added, which is a simple adder logic block that issues
a prefetch instruction.

Table Fields Total bytes

DIST PC (4B), stride (4B), mispredict counter (1B) 9B
PerCTA PC (4B), leading warp id (1B), base address (4×4B) 21B

Table 2: Database entry size of prefetch engine

PerCTA table: The purpose of the PerCTA table is to store the
base address of a targeted load from each CTA using the early base
address computation of a leading warp. Since each CTA has its own
base address it is necessary to store this information on a per CTA
basis. Even though each leading warp in a CTA has 32 threads and
hence can potentially compute 32 distinct base addresses (one per
each thread) our empirical evaluations showed that prefetching is
ineffective when the load instruction generates many uncoalesced
memory accesses. Thus we only target those loads that generate

no more than four coalesced memory accesses. A single 4×4 byte
base address vector is used to store the base address of a targeted
load within each CTA.

In our design we only target prefetching at most two distinct
loads (identified by their program counters) within each CTA.
Hence, the PerCTA table has two entries. Each entry of PerCTA
table stores the load PC, leading warp id, and base addresses. When
a warp executes a load, the PC is used to search the two entries in
the corresponding PerCTA table. If the load PC is not found in the
table then it indicates that no warp in that CTA has reached that
load PC and hence the current warp is considered as the leading
warp for that load instruction. Then the leading warp id, load PC,
and the access addresses from that warp are stored in the PerCTA
table. Since the PerCTA table has two entries, if there is no avail-
able entry in the PerCTA table, the least recently updated entry
is evicted and the new information is registered in that entry. But
in most of our benchmarks the targeted prefetch loads are two to
four load instructions and hence this replacement policy did not
significantly alter the performance.
DIST table: An entry in the DIST table contains the load PC,
stride value and a misprediction counter. Unlike PerCTA table,
DIST table is shared by all CTAs since stride value is shared
across all warps and across all CTAs. Each entry of DIST table
is associated with a load instruction indexed by the load PC. When
a load instruction is issued, the DIST table is accessed alongside
the PerCTA table with the load PC. If no matching entry is found
in the DIST table while an associative entry is found in the PerCTA
table then it indicates that the base address of the CTA is already
calculated while the stride value is not. Therefore, the stride needs
to be calculated by using the stored base address and the current
warp’s load address. Note that the stride computation between
two warps can generate potentially four different values across
maximum of four distinct memory requests for the same load
instruction. If the stride value for all memory requests between
the two warps are not identical then we simply assume that the
PC is not a striding load and the PerCTA entry for that PC is
invalidated by setting the PC bits to zero. If on the other hand the
stride computation returns just one value then that stride value is
stored in the DIST table. We also set the misprediction counter to
zero at that time.

If the load PC is found in the DIST table, then we already
have the stride value stored in the DIST table. The misprediction
counter is then accessed. If the misprediction counter is larger
than a threshold then no prefetch is issued to prevent inaccurate
prefetches. Otherwise, prefetches are generated as described in
the next section. The misprediction counter is two bytes and the
threshold is set to 128 by default.

To throttle inaccurate prefetches, the address of each prefetch is
verified by comparing with the address of the actual demand fetch.
Thus every warp instruction that issues a demand fetch also cal-
culates the prefetch address to detect a misprediction. The mispre-
diction counter increases by one whenever the calculated prefetch
memory address is not equivalent to the demand fetch.

4.3 A Simple Prefetch Generation Illustration

We illustrate the entire prefetch algorithm with a simple illustra-
tion showing how prefetches are issued. Prefetches are triggered
under two different scenarios. In the first case, prefetch requests
are generated when trailing warps of the leading CTA execute a
load instruction after the base addresses of the CTAs are registered
to the PerCTA table by their leading warps. This case is illustrated
in Figure 9a. The number in the circle above each warp id indicates
the order of each warp’s load instruction issue. In this illustration
assumes that W0, W4, and W8 have already finished execution and
they have updated the PerCTA table. But there is no stride value that

Prefetch Request Generator

PerCTA tables

CTA0

W0W0

CTA0: PC, W0, base addr, 0001

Δ

CTA1

W4W4

CTA2

W8W8

CTA0

W1W1 W2W2 W3W3

CTA1: PC, W4 base addr, 0001

1 2 3 4 5 6

CTA2: PC, W8 base addr, 0001

1

2

3

DIST table

Leading CTA CTA0

PC: stride (Δ), count = 0

Δ

4

4 Prefetch for W5: W4 base address + Δ

Prefetch for W9: W8 base address + Δ

(a) Case 1: base addresses are settled before stride
detection

Prefetch Request Generator

PerCTA tables

CTA0

W0W0

CTA0: PC, W0, base addr, 0001

Δ

CTA1

W4W4

CTA2

W8W8

CTA0

W1W1 W2W2 W3W3

CTA1: PC, W4 base addr, 0001

1 2 3 4 5 6

CTA2: PC, W8 base addr, 0001

1

5

6

DIST table

Leading CTA CTA0

PC: stride (Δ), count = 0

Δ

2

5 Prefetch for W5: W4 base address + Δ

Prefetch for W6: W4 base address + 2Δ
Prefetch for W7: W4 base address + 3Δ

(b) Case 2: stride is detected before base addresses are
settled

Figure 9: Cases for prefetch request generation

is stored in the DIST table as yet since none of the trailing warps
has been executed. When W1, which is a trailing warp of CTA0, is-
sues the load instruction the stride (∆) value is computed. Then the
prefetcher traverses each of the PerCTA tables with the PC value
of W1. Whenever the PC is matched in a given PerCTA table, the
base addresses are read from the table and then new prefetches are
issued for the matched CTA. In this example as base addresses and
stride are ready for CTA1 and CTA2, prefetch requests for W5 and
W9 are generated.

The second scenario for prefetching occurs when the stride
value is calculated before the base addresses of the trailing CTAs
are registered to the PerCTA table. This happens when the leading
warps of trailing CTAs are scheduled behind the trailing warps of
the leading CTA. In spite of the best effort by the scheduler to pri-
oritize all the leading warps to the front of the ready queue, it is
possible that some of the trailing warps of leading CTA are exe-
cuted ahead of the leading warps of trailing CTAs. Figure 9b shows
an example of this case. In this example W1 executes ahead of W4
and W8. As W1 of CTA0 issues a load instruction before W4 and
W8 of CTA1 and CTA2, then ∆ is computed and stored in DIST
table before the PerCTA table is updated with base addresses for
CTA1 and CTA2. When W4 is issued, after updating PerCTA ta-
ble with the base address as in the first scenario, W4 also generates
prefetch requests for other warps in CTA1 by using the stride value
that is already computed in DIST table. Thus in this scenario the
leading warp of trailing CTA issues prefetches for all the trailing
warps of its own CTA.

4.4 Warp Wakeup on Data Arrival Optimization

To avoid prefetched data from evicted before consumption, the
warps are woken up when the data arrives. If the warp is already
in the ready queue, nothing happens. Otherwise, the warp is moved
to the ready queue eagerly by pushing a ready warp forcibly into
the pending queue. Similar approach was proposed by OWL [16].
Only minimal change is needed for implementing the eager warp
wakeup. When a warp sends a load request to L1 cache, the warp
id is bound with the request so that the returned value is sent to the
right warp. For the warp wakeup, the id of the warp that will be fed
by the prefetched data is bound to the memory request. When the
data arrives, warp scheduler is requested to promote the warp that
is bound to the prefetch memory request to the ready queue.

5. Evaluation

5.1 Settings and workloads

We implemented the CTAA scheduler and prefetcher on GPGPU-
Sim v3.2.2 [6]. The baseline configuration is similar to Fermi
(GTX480) [27]. Each SM has a 16KB private L1 data cache. The
shared L2 cache for all 15 SMs is 768KB. The global memory is
partitioned into 6 DRAM channels where each DRAM channel has
a FR-FCFS (First-Ready, First-Come-First-Served) memory con-
troller and each channel is associated with two sub-partitions of
64KB unified L2 cache. Timing parameters of the global memory
is set based on GDDR5 with 924MHz memory clock [15]. Detailed
configuration parameters is listed in Table 3.

We used 16 benchmarks selected from different GPU bench-
mark suites as listed in Table 4. All applications were simulated
until the end of their execution or when the simulated instruction
count reached one billion instructions. CTAA performance is com-
pared to the baseline architecture using two-level warp scheduler
with the ready warp queue size of 8 entries. Additionally, several
previously proposed GPU prefetching methods are implemented to
compare the relative performance benefits of CTAA.

Parameter Value

Simulator GPGPU-Sim v3.2.2
Core 1400MHz, 32 SIMT width, 15 cores
Resources / core 48 concurrent warps, 8 current CTAs
Register file 128KB
Shared memory 48KB
Scheduler two-level scheduler (8 ready warps)
L1I cache 2KB, 128B line, 4-way
L1D cache 16KB, 128B line, 4-way, LRU, 32 MSHR entries
L2 unified cache 64KB per partition (12 partitions), 128B line, 8-way,

LRU, 32 MSHR entries
DRAM 924MHz, ×4 interface, 6 channels, FR-FCFS sched-

uler, 16 scheduler queue entries
GDDR5 Timing tCL=12, tRP =12, tRC=40, tRAS=28, tRCD=12,

tRRD=6, tCDLR=5, tWR=12 [15]

Table 3: GPGPU configuration

Benchmark Abbr. Benchmark Abbr.

lapalce3D [6] LPS histogram [26] HST
backprop [8] BPR MonteCarlo [26] MC
hotspot [8] HSP jacobi1D [2] JC1
pathfinder [8] PTH FFT [3] FFT
mri-q [1] MRQ MD [3] MD
sgemm [1] SGE Breadth First Search [8] BFS
stencil [1] STE Kmeans [14] KMN
convolutionSeparable [26] CNV MatrixMul [26] MM

Table 4: Workloads

5.2 Performance enhancement

Figure 10 shows the reduction in execution cycles of prefetching
methods normalized to the baseline configuration using two-level

10

-5

0

5

10

15

20

25

30

LPS BPR HSP PTH MRQ SGE STE CNV HST MC JC1 FFT MD BFS KMN MM MEAN

T
o

ta
l

e
x

e
cu

ti
o

n
 c

y
cl

e
 r

e
d

u
ct

io
n

 (
%

)

2xL1D

SP

LAP

ORCH

CTAA

Figure 10: Speedup of prefetcher over two level scheduler without prefetch

6.14

-10

0

10

20

30

40

50

60

70

80

LPS BPR HSP PTH MRQ SGE STE CNV HST MC JC1 FFT MD BFS KMN MM MEAN

L1
D

 m
is

s
re

d
u

ct
io

n
 (

%
)

2xL1D

SP

LAP

ORCH

CTAA

Figure 11: L1D cache miss reduction

warp scheduler without prefetching. Data labeled CTAA is the
CTA-aware prefetching, LAP is the locality-aware prefetching built
on top of two-level scheduler, where a macro block of 4 cache
lines is prefetched if more than or equal to two cache lines are
missed within each macro block of L1 data cache [17]. ORCH is
the orchestrated prefetching where LAP is further enhanced with
the prefetch-aware warp scheduling as described in [17]. SP means
the simple next-line prefetcher which prefetches next cache line if
one cache line is missed. 2xL1D is the baseline configuration with
two-level warp scheduler with twice the L1 cache size but with no
prefetching.

Figure 10 shows CTAA reduces execution time by up to 28%,
and 10% on average. CTAA performs better than doubling the L1
cache size (2xL1D) on average. In fact doubling the cache size has
about 2% performance improvement. The reason for this small im-
provement in performance is the lack of strong temporal locality in
the data. ORCH improves performance by about 1% and it is lower
than the performance improvements reported in [17]; the primary
reason is that in the original work the prefetcher is implemented on
different baseline settings - 30 cores with GDDR3 DRAM whereas
our CTAA is tested on more recent Fermi architecture.

Figure 11 shows that cache miss ratio is decreased for most
benchmarks with CTAA. On average, L1 data cache miss ratio is
reduced by 6.14%, which is better than ORCH and LAP. When
ORCH and LAP were implemented on two-level scheduler base-
line both of them reduced the L1 cache miss rate by just 1%.
Surprisingly, miss ratio reduction of CTAA is slightly worse than
SP, which reduced the miss rate by 6.73%. Note that a cache hit
is counted on a tag match even if the data is still being trans-
ferred from the next level in the memory hierarchy in response to
a prefetch or a prior demand request to that cache line. Thus the
reason for the discrepancy between miss ratio and execution time
is the pipeline stall reduction and prefetch accuracy and coverage
shown next.

0

10

20

30

40

50

60

70

80

90

100

LPS BPR HSP PTH MRQ SGE STE CNV HST MC JC1 FFT MD BFS KMN MM MEAN

S
ta

ll
 c

y
cl

e
 b

re
a

k
d

o
w

n
 (

%
)

RAW hazards Idle or ctrl hazards Structure hazards

BASE

CTAA

Figure 12: Breakdown of reasons of pipeline stalls

5.3 Pipeline stall reduction

We monitored pipeline stalls while running CTAA and analyzed
how much of the pipeline stalls are reduced or increased compared
to the baseline two-level scheduler without prefetch. Note that a
pipeline could be stalled due to three main reasons: RAW haz-
ards, control hazards, and structure hazards. RAW pipeline stall
occurs when operands of an instruction are not ready. There are
two reasons that cause the RAW pipeline stall: memory access op-
eration and data dependencies on a prior long latency ALU oper-
ation, such as an SFU operation. CTAA primarily targets memory
access delays and reduces these stall times significantly. However,
if too many prefetch requests are generated in a short time win-
dow, prefetch requests may consume hardware resources, such as
MSHRs in the data cache, which then increases the structural haz-
ards. Idle and control hazards are closely related to warp scheduling
order. Control hazards can also be reduced if the control instruction
itself is dependent on a load operation. If the load latency is reduced
with prefetch CTAA will also indirectly reduce control hazards as
well.

Figure 12 shows the breakdown of the three main pipeline stall
reasons. Among the two bar charts for each application the left hand
side bar is the pipeline stall breakdown measured while running
two-level scheduler without prefetch. The right-hand side bar is
the pipeline stall breakdown with CTAA normalized to the pipeline
stalls without prefetch for each of the stall categories. On average
total pipeline stalls are reduced by 50% with CTAA. RAW and con-
trol stall cycles are decreased by 67% and 36% respectively, while
the wasted cycles due to structure hazards stay the same. Reduc-
ing the stall cycles does not translate into a correspondingly large
reduction in the execution time. The reason for this discrepancy is
that part of the stall time can be hidden by other warps.

5.4 Coverage and accuracy of prefetching

Figure 13 shows the coverage and accuracy of CTAA. Coverage is
defined as the ratio of number of memory requests that a prefetch
is issued compared to the total demand fetch requests. CTAA on

12.32

0

10

20

30

40

50

60

70

LPS BPR HSP PTH MRQ SGE STE CNV HST MC JC1 FFT MD BFS KMN MM MEAN

P
re

fe
tc

h
 C

o
v

e
ra

g
e

 (
%

)

SP

LAP

ORCH

CTAA

(a) Coverage

99.27

0

10

20

30

40

50

60

70

80

90

100

LPS BPR HSP PTH MRQ SGE STE CNV HST MC JC1 FFT MD BFS KMN MM MEAN

P
re

fe
tc

h
 A

cc
u

ra
cy

 (
%

)

SP LAP ORCH CTAA

(b) Accuracy

Figure 13: Prefetch coverage and accuracy

average provides 12.19% coverage. Note that coverage is lower for
benchmarks such as PTH, HSP and BFS that traverse graphs. In
these benchmarks strides are rare. One advantage of CTAA is that
it recognizes the lack of strides and then avoids issuing wasteful
prefetch requests, thereby curtailing coverage. Higher coverage
ratio doesn’t always improve performance, as shown by the result
of the SP, since inaccurate prefetches only consume resources like
cache space and data bandwidth.

Accuracy is the ratio of prefetch requests that were actually
consumed by the demand requests. Accuracy is an important factor
because unnecessarily prefetching data increases bandwidth and
causes cache pollution. As shown in Figure 13b, the accuracy of
the CTAA is near 100% for most benchmarks. In the worst case
the accuracy is around 70% for graph applications, such as KMN,
that have complex access patterns. But note that for the other graph
applications such as PTH, HSP and BFS, CTAA quickly recognizes
the lack of strides and shuts down prefetching. Thus the coverage is
quite small but the accuracy is over 95%. In BFS, the search process
streams through the graph nodes in a predictable manner at each
level (or breadth) of the graph. Thus CTAA is able to occasionally
capture the strides during breadth first traversal, leading to slightly
higher coverage (8.24%) with higher (100%) accuracy than PTH.
In case of KMN, the application goes through longer periods of
predictable data access patterns, thereby triggering the CTAA to
prefetch, but just as the CTAA prefetcher settles into a steady
state, the stride pattern is interleaved with unpredictable traversal
patterns. Thus the prefetch coverage for KMN is nearly 18% but
the accuracy is under 80%.

5.5 Timeliness of prefetching

When prefetch is issued too early, the prefetched data can be
evicted before the actual load is issued due to the limited L1 cache
capacity. Such early prefetch only increases memory traffic without
benefit. As stated in Section 4, CTAA adjusts warp priority to de-
tect the stride and base address of CTAs as early as possible and to
increase the distance between prefetch and demand requests. Ad-
ditionally, a warp in the pending queue is awakened when the cor-
responding data prefetch reaches L1 data cache. Hence, CTAA can
adjust prefetch timing for target load instructions effectively to im-
prove performance. Figure 14a shows the percentage of prefetched
data that was evicted before use. On average only 0.87% of the
prefetched data was evicted from L1 by an intervening demand
fetch before the prefetched data was consumed. Therefore, almost

0.87

0.0

0.5

1.0

1.5

2.0

2.5

3.0

LPS BPR HSP PTH MRQ SGE STE CNV HST MC JC1 FFT MD BFS KMN MM MEAN

E
a

rl
y

 p
re

fe
tc

h
 r

a
ti

o
 (

%
)

(a) Early prefetch ratio

180.76

0

100

200

300

400

500

LPS BPR HSP PTH MRQ SGE STE CNV HST MC JC1 FFT MD BFS KMN MM Average

A
v

g
.

cy
cl

e
 d

is
ta

n
ce

 b
e

tw
e

e
n

 t
im

e
ly

p
re

fe
tc

h
e

s
a

n
d

 d
e

m
a

n
d

 r
e

q
u

e
st

s

(b) Prefetch distance of timely prefetches

Figure 14: Early prefetch ratio and average prefetch distance of
timely prefetches

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

LPS BPR HSP PTH MRQ SGE STE CNV HST MC JC1 FFT MD KMN BFS MM MEAN

N
o

rm
a

li
ze

d
 e

x
e

cu
ti

o
n

 c
y

cl
e

2 4 8 16 32 64

(a) Performance impact of # entries of PerCTA table and DIST table

0.4

0.6

0.8

1.0

1.2

LPS BPR HSP PTH MRQ SGE STE CNV HST MC JC1 FFT MD BFS KMN MM MEAN

N
o

rm
a

li
ze

d
 e

x
e

cu
ti

o
n

 c
y

cl
e

4 32

(b) Performance impact of # base addresses per instruction

Figure 15: Performance variation w.r.t. # entries of PerCTA table
and DIST table and # base addresses per load instruction

all the prefetches issued by CTAA are effectively consumed by
destination warps.

On the other hand, if the distance between prefetching and de-
mand requests is too short, prefetcher cannot effectively hide the
long latency of memory operation. Given that latency of mem-
ory operation of GPUs is hundreds of cycles, prefetch requests
should be issued sufficiently far ahead before demand requests are
issued. Figure 14b shows the distance between prefetch and de-
mand requests when CTAA is applied. On average, CTAA issues a
prefetching request about 180.76 cycles before the targeted demand
request.

5.6 Hardware overhead

CTAA uses two tables: DIST and PerCTA. One DIST table per SM,
one PerCTA table per CTA. Both tables are accessed by a load in-
struction. By default, there are two entries per PerCTA and two en-
tries per DIST table. In Fermi architecture, each SM can run at most
eight CTAs. Therefore, the area overhead per SM for these two ta-
bles is 354 Bytes (8 CTAs per SM × 21B PerCTA entry ×
2PerCTA entries+9BDIST table entry×2DIST entries).

0.6

0.7

0.8

0.9

1.0

1.1

1.2

LPS BPR HSP PTH MRQ SGE STE CNV HST MC JC1 FFT MD BFS KMN MM MEAN

N
o

rm
a

li
ze

d
 e

x
e

cu
ti

o
n

 c
y

cl
e 8K 16K 32K 64K

Figure 16: Performance variation w.r.t. L1D cache size

We measured the performance variation while varying the size of
PerCTA table. Figure 15a shows the normalized execution cycle
when each of the PerCTA table and DIST table is changed to 2, 4,
8, 16, 32, and 64 entries. On average, only negligible performance
increase was observed when using larger PerCTA tables. There
were only two exception cases; MRQ derived 3% performance
gain and MD had 5% performance degradation when a table has
more than 16 entries as it was able to capture many more striding
loads in these two benchmarks.

As explained earlier, CTAA does not target loads that issue more
than four un-coalesced memory accesses for prefetching. To quan-
tify the impact of this restriction we measured the performance
when CTAA does target loads with many more un-coalesced mem-
ory accesses. Figure 15b shows the normalized execution cycles
when we target loads that can generate up to 32 base addresses
(one base address for each of the 32 threads in a warp). The perfor-
mance decreases on average when generating prefetches for the un-
coalesced memory operations. As mentioned earlier, when memory
requests are un-coalesced issuing many concurrent prefetches leads
to increased resource contention.

5.7 Cache size sensitivity

Cache size plays an important role in prefetch performance. If
cache size is insufficient to accommodate the prefetched data,
prefetch data will be replaced before their use. We evaluated the
cache size impact on prefetch performance while varying L1D
size from 8KB to 64KB. We preserved the shared memory size to
be 48KB in this evaluation. Figure 16 shows the execution cycle
normalized to the default configuration (16KB L1D). On average,
increasing the cache size to 64KB increases the performance by
only 2% compared to using just a 16KB cache with prefetching. As
mentioned earlier, the reason for this small performance improve-
ment even after using a larger cache size is the lack of temporal
locality. Furthermore, as shown in Figure 14a, very few prefetches
were displaced from cache before they were used in the default
configuration. Hence there was no need for larger cache size to
hold the prefetched data.

6. Related Work

Prefetching is one of the prominent ways to overcome the memory
stalls. Hardware and software prefetching approaches for data or
instruction fetching have been studied and applied to modern mi-
croprocessors. An excellent survey of prior prefetching mechanism
is available in [35].

Many prefetching techniques [4, 5, 9, 11, 22, 23, 30, 34] were
developed in the context of SMPs and CMPs. We focus primarily
on prior GPU prefetching and prior stride prefetching approaches
since that is the focus of this work. The simple stride prefetching,
described in [30], was proposed in the context of CPUs. Baer and
Chen [5] extended sequential prefetching to data arrays having vari-
able strides. The address of prefetching request is predicted from
previous address and stride information indexed by a PC of a load
instruction. When applied in the context of GPUs with thousands
of threads the base address and stride values are obfuscated due

to CTA and warp scheduling approaches, which is the concern we
tackle in our research.

Effectiveness of prefetching has been studied because inaccu-
rate prefetching requests may generate unnecessary memory traffic
to increase latency and waste resources in memory hierarchy [10,
32, 36]. Jouppi [18] proposed to add additional buffers to store
prefetched data to prevent cache pollution. Srinath et al. [31] pre-
sented the mechanism to control aggressiveness of prefetching by
monitoring cache pollution caused by prefetching as well as accu-
racy and timing of prefetching requests. By controlling frequency
of prefetching, they reduce side effects of prefetching. CTAA also
uses similar throttling mechanisms to control wasteful prefetching.

Several studies proposed memory prefetching algorithms for
GPU [17, 20, 21]. Lee et al. [21] proposed a software and hardware
based many-thread aware prefetching which basically commands
threads to prefetch data for the other threads. They exploit the
fact that the memory addresses are referenced using thread id in
many GPU applications. Hence, by computing the stride value from
successive thread ids, they prefetch one thread’s data using one of
prior threads’ load addresses as the base address. The simple stride
prefetching across warps works well within a CTA. But as shown in
this work the number of warps per CTA is limited. Each CTA’s base
address is not predictable from a prior CTA’s base address and the
complex GPU scheduling algorithms, other than round-robin, make
it difficult to detect strides even within a CTA. These are tackled by
the CTAA prefetcher effectively.

Jog et al. [17] proposed a new prefetch-aware scheduling policy
which schedules consecutive warps in different scheduling group
so that the warps in a scheduling group can prefetch data for the
logically consecutive warps that are scheduled in different schedul-
ing groups. By distributing consecutive warps that are likely to ac-
cess near addresses, the proposed scheduling algorithm also derives
better bank level parallelism. We compare CTAA quantitatively
with this approach and showed the performance improvements of
CTAA.

Lakshminarayana and Kim [20] proposed a prefetching algo-
rithm by observing an unique data access patterns in graph applica-
tions. Unlike other studies, they prefetch data to the spare register
file. Whereas their work focused on prefetch for iterated load in-
structions in a loop that appears mostly in graph applications for
GPUs, CTAA is effectively applicable to load instructions regard-
less of number of iterations as far as load instructions have regular
stride across warps. Evaluation results show that performance is
benefited for graph applications as well as generic GPGPU pro-
grams by CTAA

7. Conclusion

Due to the nature of computations GPU applications exhibit stride
access patterns. But the starting address of a stride access is a com-
plex function of the CTA id and thread id and other application
defined parameters. Hence, the base address of stride varies from
one CTA to another. Furthermore, GPU scheduling policies try to
balance the workload across all available computational resources.
As a result, contiguous thread blocks are split over different SMs
in a GPU and even warps within a thread block have unpredictable
execution schedule. The combined effect of all these issues is that
even well defined stride accesses are obfuscated in the GPU ex-
ecution stream. To tackle this challenge we propose CTA-aware
prefetcher (CTAA) for GPUs. CTAA hoists the computation of the
base address of each CTA by scheduling one leading warp from
each trailing CTA to execute alongside the warps of a current lead-
ing CTA. The leading warps compute the base address for each
trailing CTA, while the stride value is detected from the execu-
tion of trailing warps of the leading CTA. Using the per-CTA base
address and combining with the global stride value that is shared

across all CTAs, the proposed prefetcher is able to issue timely and
accurate prefetches. Using simple counter based throttling mecha-
nisms the prefetcher can control wasteful prefetches when strides
are not present in an application. By reordering the warps’ schedul-
ing order, the prefetch distance is increased. The evaluation results
show that the CTAA predicts prefetch addresses with over 99.27%
accuracy and improves performance by 10% on average.

References

[1] Parboil benchmark suite. URL http://impact.crhc.illinois.
edu/parboil.php.

[2] Polybench/gpu. URL http://web.cse.ohio-state.edu/

~pouchet/software/polybench/GPU/.

[3] Scalable heterogeneous computing benchmark suite. URL http:
//keeneland.gatech.edu/software/keeneland/shoc.

[4] M. Annavaram, J. M. Patel, and E. S. Davidson. Data prefetching by
dependence graph precomputation. In ISCA, pages 52–61, 2001.

[5] J.-L. Baer and T.-F. Chen. An effective on-chip preloading scheme to
reduce data access penalty. In SC, pages 176–186, 1991.

[6] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt.
Analyzing cuda workloads using a detailed gpu simulator. In ISPASS,
pages 163–174, 2009.

[7] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Bala-
subramonian. Managing dram latency divergence in irregular gpgpu
applications. In SC, pages 128–139, 2014.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In IISWC, pages 44–54, 2009.

[9] W. Y. Chen, S. A. Mahlke, P. P. Chang, and W.-m. W. Hwu. Data
access microarchitectures for superscalar processors with compiler-
assisted data prefetching. In MICRO, pages 69–73, 1991.

[10] F. Dahlgren and P. Stenstrom. Effectiveness of hardware-based stride
and sequential prefetching in shared-memory multiprocessors. In
HPCA, pages 68–77, 1995.

[11] F. Dahlgren, M. Dubois, and P. Stenstrom. Sequential hardware
prefetching in shared-memory multiprocessors. TPDS, 6(7):733–746,
1995.

[12] J. W. C. Fu, J. H. Patel, and B. L. Janssens. Stride directed prefetching
in scalar processors. In MICRO, pages 102–110, 1992.

[13] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron. Energy-efficient mechanisms for man-
aging thread context in throughput processors. In ISCA, pages 235–
246, 2011.

[14] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: A
mapreduce framework on graphics processors. In PACT, pages 260–
269, 2008.

[15] Hynix. 1Gb GDDR5 SGRAM H5GQ1H24AFR Specifica-
tion. http://www.hynix.com/datasheet/pdf/graphics/
H5GQ1H24AFR(Rev1.0).pdf.

[16] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T.
Kandemir, O. Mutlu, R. Iyer, and C. R. Das. Owl: Cooperative thread
array aware scheduling techniques for improving gpgpu performance.
volume 41, pages 395–406, 2013.

[17] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das. Orchestrated scheduling and prefetching for gpgpus.
In ISCA, pages 332–343, 2013.

[18] N. P. Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. In
HPCA, pages 28–31, 1990.

[19] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither more nor
less: Optimizing thread-level parallelism for gpgpus. In PACT, pages
157–166, 2013.

[20] N. B. Lakshminarayana and H. Kim. Spare register aware prefetching
for graph algorithms on gpus. In HPCA, 2014.

[21] J. Lee, N. B. Lakshminarayana, H. Kim, and R. Vuduc. Many-thread
aware prefetching mechanisms for gpgpu applications. In MICRO,
pages 213–224, 2010.

[22] Y. Lie and D. Kaeli. Branch-directed and stirde-based data cache
prefetching. In ICCD, pages 225–230, 1996.

[23] T. Mowry and A. Gupta. Tolerating latency through software-
controlled prefetching in shared-memory multiprocessors. JPDC, 12
(2):87–106, 1991.

[24] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with cuda. Queue - GPU Computing, 6(2):45–53, 2008.

[25] NVIDIA. CUDA C Programming Guide. http://docs.nvidia.
com/cuda/cuda-c-programming-guide, .

[26] NVIDIA. NVIDIA CUDA SDK 2.3. http://developer.nvidia.
com/cuda-toolkit-23-downloads, .

[27] NVIDIA. NVIDIAs Next Generation CUDA Compute Architecture:
Fermi. http://www.nvidia.com/content/PDF/fermi_white_
papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.
pdf, .

[28] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-conscious
wavefront scheduling. In MICRO, pages 72–83, 2012.

[29] A. Sethia, G. Dasika, M. Samadi, and S. Mahlke. Apogee: Adaptive
prefetching on gpus for energy efficiency. In PACT, pages 73–82,
2013.

[30] A. Smith. Sequential program prefetching in memory hierarchies.
Computer, 11(12):7–21, Dec 1978.

[31] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers. In HPCA, pages 63–74, 2007.

[32] V. Srinivasan, E. S. Davidson, and G. S. Tyson. A prefetch taxonomy.
TC, 53(2):126–140, 2004.

[33] D. Tarjan, J. Meng, and K. Skadron. Increasing memory miss toler-
ance for simd cores. In SC, 2009.

[34] S. P. Vanderwiel and D. J. Lilja. When caches aren’t enough: Data
prefetching techniques. Computer, 30(7):23–30, 1997.

[35] S. P. Vanderwiel and D. J. Lilja. Data prefetch mechanisms. CSUR,
32(2):174–199, 2000.

[36] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely Jr., and J. Emer.
Pacman: Prefetch-aware cache management for high performance
caching. In MICRO, pages 442–453, 2011.

[37] G. L. Yuan, A. Bakhoda, and A. T. M. Complexity effective memory
access scheduling for many-core accelerator architecture. In MICRO,
pages 34–44, 2009.

	Cover page - TEMPLATE

