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Abstract: The cytotoxic T-lymphocyte–associated antigen 4 (CTLA-
4) and programmed death 1 (PD-1) immune checkpoints are negative
regulators of T-cell immune function. Inhibition of these targets,
resulting in increased activation of the immune system, has led to new
immunotherapies for melanoma, non–small cell lung cancer, and other
cancers. Ipilimumab, an inhibitor of CTLA-4, is approved for the
treatment of advanced or unresectable melanoma. Nivolumab and
pembrolizumab, both PD-1 inhibitors, are approved to treat patients
with advanced or metastatic melanoma and patients with metastatic,
refractory non-small cell lung cancer. In addition the combination of
ipilimumab and nivolumab has been approved in patients with BRAF
WT metastatic or unresectable melanoma. The roles of CTLA-4 and
PD-1 in inhibiting immune responses, including antitumor responses,
are largely distinct. CTLA-4 is thought to regulate T-cell proliferation
early in an immune response, primarily in lymph nodes, whereas PD-1
suppresses T cells later in an immune response, primarily in peripheral
tissues. The clinical profiles of immuno-oncology agents inhibiting
these 2 checkpoints may vary based on their mechanistic differences.
This article provides an overview of the CTLA-4 and PD-1 pathways
and implications of their inhibition in cancer therapy.
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A key requirement of the immune system is to distinguish
self from nonself. While the concept is simple, the

implementation is a complex system that has taken decades to
understand. At the center of this process is recognition and

binding of a T-cell receptor (TCR) to an antigen displayed in
the major histocompatibility complex (MHC) on the surface of
an antigen-presenting cell (APC). Multiple other factors then
influence whether this binding results in T-cell activation or
anergy.

The life of a T cell begins in the thymus, where immature
cells proliferate and create a wide repertoire of TCRs through
recombination of the TCR gene segments. A selection process
then begins, and T cells with strong reactivity to self-peptides
are deleted in the thymus to prevent autoreactivity in a process
called central tolerance.1 T cells with insufficient MHC bind-
ing undergo apoptosis, but those that can weakly respond to
MHC molecules and self-peptides are not deleted and are
released as naive cells to circulate through the blood, spleen,
and lymphatic organs. There they are exposed to professional
APCs displaying foreign antigens (in the case of infection) or
mutated self-proteins (in the case of malignancy). Some TCRs
may have specificity that is cross-reactive with self-antigens.
To prevent autoimmunity, numerous immune checkpoint
pathways regulate activation of T cells at multiple steps during
an immune response, a process called peripheral tolerance.1,2

Central to this process are the cytotoxic T-lymphocyte–asso-
ciated antigen 4 (CTLA-4) and programmed death 1 (PD-1)
immune checkpoint pathways.3 The CTLA-4 and PD-1 path-
ways are thought to operate at different stages of an immune
response. CTLA-4 is considered the “leader” of the immune
checkpoint inhibitors, as it stops potentially autoreactive T
cells at the initial stage of naive T-cell activation, typically in
lymph nodes.2,4 The PD-1 pathway regulates previously acti-
vated T cells at the later stages of an immune response, pri-
marily in peripheral tissues.2 A core concept in cancer
immunotherapy is that tumor cells, which would normally be
recognized by T cells, have developed ways to evade the host
immune system by taking advantage of peripheral tolerance.5,6

Inhibition of the immune checkpoint pathways has led to the
approval of several new drugs: ipilimumab (anti-CTLA-4),
pembrolizumab (anti-PD-1), and nivolumab (anti-PD-1). There
are key similarities and differences in these pathways, with
implications for cancer therapy.

CTLA-4 PATHWAY
T-cell activation is a complex process that requires >1

stimulatory signal. TCR binding to MHC provides specificity
to T-cell activation, but further costimulatory signals are
required. Binding of B7-1 (CD80) or B7-2 (CD86) molecules
on the APC with CD28 molecules on the T cell leads to sig-
naling within the T cell. Sufficient levels of CD28:B7-1/2
binding lead to proliferation of T cells, increased T-cell sur-
vival, and differentiation through the production of growth
cytokines such as interleukin-2 (IL-2), increased energy
metabolism, and upregulation of cell survival genes.

CTLA-4 is a CD28 homolog with much higher binding
affinity for B77,8; however, unlike CD28, binding of CTLA-4 to
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B7 does not produce a stimulatory signal. As such, this com-
petitive binding can prevent the costimulatory signal normally
provided by CD28:B7 binding7,9,10 (Fig. 1). The relative amount
of CD28:B7 binding versus CTLA-4:B7 binding determines
whether a T cell will undergo activation or anergy.4 Furthermore,
some evidence suggests that CTLA-4 binding to B7 may actually
produce inhibitory signals that counteract the stimulatory signals
from CD28:B7 and TCR:MHC binding.11,12 Proposed mecha-
nisms for such inhibitory signals include direct inhibition at the
TCR immune synapse, inhibition of CD28 or its signaling path-
way, or increased mobility of T cells leading to decreased ability
to interact with APCs.9,12,13

CTLA-4 itself is subject to regulation, particularly by
localization within the cell. In resting naive T cells CTLA-4 is
located primarily in the intracellular compartment.14 Stim-
ulatory signals resulting from both TCR and CD28:B7 binding
induce upregulation of CTLA-4 on the cell surface by exocy-
tosis of CTLA-4-containing vesicles.14 This process operates in
a graded feedback loop whereby stronger TCR signaling elicits
more CTLA-4 translocation to the cell surface. In case of a net
negative signal through CTLA-4:B7 binding, full activation of T
cells is prevented by inhibition of IL-2 production and cell cycle
progression.15

CTLA-4 is also involved in other aspects of immune
control. Regulatory T cells (Tregs) control functions of the
effector T cells, and thus are key players in maintaining
peripheral tolerance.16,17 Unlike effector T cells, Tregs con-
stitutively express CTLA-4, and this is thought to be important

for their suppressive functions.17 In animal models, genetic
CTLA-4 deficiency in Tregs impaired their suppressive func-
tions.17,18 One mechanism whereby Tregs are thought to
control effector T cells is downregulation of B7 ligands on
APCs, leading to reduced CD28 costimulation (Fig. 2).18,19

PD-1 PATHWAY
PD-1 is a member of the B7/CD28 family of costimulatory

receptors. It regulates T-cell activation through binding to its
ligands, programmed death ligand 1 (PD-L1) and programmed
death ligand 2 (PD-L2).20 Similar to CTLA-4 signaling, PD-1
binding inhibits T-cell proliferation, and interferon-g (IFN-g),
tumor necrosis factor-a, and IL-2 production, and reduces T-cell
survival20 (Fig. 3). If a T cell experiences coincident TCR and
PD-1 binding, PD-1-generated signals prevent phosphorylation of
key TCR signaling intermediates, which terminates early TCR
signaling and reduces activation of T cells.10,21 PD-1 expression
is a hallmark of “exhausted” T cells that have experienced high
levels of stimulation or reduced CD4+ T-cell help.22 This state of
exhaustion, which occurs during chronic infections and cancer, is
characterized by T-cell dysfunction, resulting in suboptimal
control of infections and tumors.

Both CTLA-4 and PD-1 binding have similar negative
effects on T-cell activity; however, the timing of down-
regulation, the responsible signaling mechanisms, and the
anatomic locations of immune inhibition by these 2 immune
checkpoints differ. Unlike CTLA-4, which is confined to

FIGURE 1. CTLA-4-mediated inhibition of T cells. T cells are activated when TCRs bind antigen displayed in the MHC on antigen-
presenting cells in concert with CD28:B7-mediated costimulation. A, In the case of a weak TCR stimulus, CD28:B7 binding predom-
inates, resulting in a net positive activating signal and IL-2 production, proliferation, and increased survival. B, In the case of a strong TCR
stimulus, CTLA-4 expression is upregulated by increased transport to the cell surface from intracellular stores and decreased internal-
ization. CTLA-4 competes with CD28 for binding of B7 molecules. Increased CTLA-4:B7 binding can result in a net negative signal,
which limits IL-2 production and proliferation, and limits survival of the T cell. CTLA-4 indicates cytotoxic T-lymphocyte–associated
antigen 4; IL-2, interleukin-2; MHC, major histocompatibility complex; TCR, T-cell receptor.
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T cells, PD-1 is more broadly expressed on activated T cells, B
cells, and myeloid cells.2,20 While CTLA-4 functions during
the priming phase of T-cell activation, PD-1 functions during
the effector phase, predominantly within peripheral tissues.20

The distribution of PD-1 ligands also differs from those for
CTLA-4. The B7 ligands for CTLA-4 are expressed by pro-
fessional APCs, which typically reside in lymph nodes or
spleen2; however, PD-L1 and PD-L2 are more widely
expressed.2,10,23,24 PD-L1 is expressed on leukocytes, on non-
hematopoietic cells, and in nonlymphoid tissues, and can be
induced on parenchymal cells by inflammatory cytokines (IFN-
g) or tumorigenic signaling pathways.25 PD-L1 expression is also
found on many different tumor types, and is associated with an
increased amount of tumor-infiltrating lymphocytes (TILs) and
poorer prognosis.26–28 PD-L2 is primarily expressed on dendritic
cells and monocytes, but can be induced on a wide variety of
other immune cells and nonimmune cells, depending on the local
microenvironment.29 PD-1 has a higher binding affinity for PD-
L2 than for PD-L1, and this difference may be responsible for
differential contributions of these ligands to immune responses.30

Because PD-1 ligands are expressed in peripheral tissues, PD-1–
PD-L1/PD-L2 interactions are thought to maintain tolerance
within locally infiltrated tissues.2

As might be expected, the plurality of ligands for PD-1
leads to variation in biological effects, depending upon which
ligand is bound. One model showed opposing roles of PD-L1
and PD-L2 signaling in activation of natural killer T cells.31

Inhibition of PD-L2 binding leads to enhanced TH2 activity,32

whereas PD-L1 binding to CD80 has been shown to inhibit T-
cell responses.33 These different biological effects are likely to
contribute to differences in activity and toxicity between
antibodies directed at PD-1 (preventing binding to both

ligands) as opposed to those directed at PD-L1, and therefore
have potential therapeutic implications.

Although Tregs express PD-1 as well as CTLA-4, the
function of PD-1 expression on these cells remains unclear.
PD-L1 has been shown to contribute to the conversion of naive
CD4 + T cells to Treg cells34 and to inhibit T-cell responses by
promoting the induction and maintenance of Tregs.35 Con-
sistent with these findings, PD-1 blockade can reverse Treg-
mediated suppression of effector T cells in vitro.36

PD-1 binding with its ligands decreases the magnitude of
the immune response in T cells that are already engaged in an
effector T-cell response.22 This results in a more restricted
spectrum of T-cell activation compared with CTLA-4 block-
ade, which may explain the apparently lower incidence of
immune-mediated adverse events (AEs) associated with PD-1
compared with a CTLA-4 blockade (see below).37 Similarities
and differences between the CTLA-4 and PD-1 receptors, and
the consequences of their engagement, are detailed in Box 1.

IMPLICATIONS OF CTLA-4 AND PD-1 PATHWAY
BLOCKADE IN CANCER

Preclinical studies showing decreased tumor growth and
improved survival with CTLA-4 or PD-1 pathway blockade
provide the rationale for immune checkpoint inhibition for
cancer treatment.39,40 Monoclonal antibodies that block
CTLA-4 or PD-1 are now approved for melanoma and lung
cancer, and are in development for other tumor types,
including kidney cancer, prostate cancer, and head and neck
cancer (Table 1).41–44 Other agents targeting PD-L1 specifi-
cally are also in development (Table 1).41–44

FIGURE 2. CTLA-4-mediated inhibition of Tregs. One hypothesis of how CTLA-4 expression on Tregs can inhibit T-cell activation is
depicted. Constitutive expression of CTLA-4 on Tregs can sequester or cause internalization (not depicted) of B7 molecules on antigen-
presenting cells. The lack of CD28:B7-mediated costimulation leads to reduced T-cell proliferation and reduced effector functions. CTLA-4
indicates cytotoxic T-lymphocyte–associated antigen 4; MHC, major histocompatibility complex; TCR, T-cell receptor; Tregs, regulatory T
cells.

Buchbinder and Desai American Journal of Clinical Oncology � Volume 39, Number 1, February 2016

100 | www.amjclinicaloncology.com Copyright r 2015 Wolters Kluwer Health, Inc. All rights reserved.



The exact mechanism by which anti-CTLA-4 antibodies
induce an antitumor response is unclear, although research to
date suggests that CTLA-4 blockade affects the immune pri-
ming phase by supporting the activation and proliferation of a
higher number of effector T cells, regardless of TCR specif-
icity, and by reducing Treg-mediated suppression of T-cell
responses (Fig. 4).2 An increase in the diversity of the
peripheral T-cell pool following CTLA-4 blockade in patients
with melanoma has recently been reported.45 An ipilimumab
study in patients with melanoma or prostate cancer provided

evidence that baseline T-cell profile may also be important. An
immediate turnover of the T-cell repertoire on initial treatment
was shown, and it continued to evolve with further treatment;
both expansion and loss of individual T-cell clonotypes were
identified, but there was a net increase in TCR diversity.46

Overall survival, however, was associated with the main-
tenance of clones present in high frequency at baseline. In
patients with shorter overall survival, numbers of these highest
frequency clones decreased with treatment. These findings
suggest that effective CTLA-4 blockade may depend on the

FIGURE 3. PD-1-mediated inhibition of T cells. T cells recognizing tumor antigens can be activated to proliferate, secrete inflammatory
cytokines, and resist cell death. Prolonged TCR stimulation during an ongoing immune response can cause upregulated PD-1
expression. Tumor cells can express PD-L1 (and PD-L2, not shown) as a consequence of inflammatory cytokines and/or oncogenic
signaling pathways. PD-1:PD-L1 binding inhibits TCR-mediated positive signaling, leading to reduced proliferation, reduced cytokine
secretion, and reduced survival. IFN-g indicates interferon-g; MHC, major histocompatibility complex; PD-1, programmed death protein
1; PD-L1, programmed death ligand 1; PD-L2, programmed death ligand 2; TCR, T-cell receptor.

Box 1. A Comparison of CTLA-4 and PD-1

Similarities
B7 receptor family members3

Expressed by activated T cells14,20

Level of expression affected by the strength and/or duration of TCR signaling20,22,38

Regulate an overlapping set of intracellular T-cell signaling proteins10

Reduce T-cell proliferation, glucose metabolism, cytokine production, and survival2,10,20

Differences
CTLA-4 limits T-cell responses early in an immune response, primarily in lymphoid tissues; PD-1 limits T-cell responses later in an immune

response, primarily in peripheral tissues2

CTLA-4 expressed by T cells; PD-1 expressed by T cells and other immune cells2,20

CTLA-4 ligands expressed by professional antigen-presenting cells; PD-1 ligands expressed by antigen-presenting cells and other immune
cells, and can be inducibly expressed on nonimmune cells, including tumor cells2,20

PD-1 engagement interferes with more T-cell signaling pathways than does CTLA-4 engagement10

CTLA-4 affects Treg functioning; the role of PD-1 on Tregs is unclear2,17,18,20

CTLA-4 indicates cytotoxic T-lymphocyte–associated antigen 4; PD-1, programmed death protein 1; TCR, T-cell receptor; Treg, regulatory T cell.
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TABLE 1. CTLA-4 and PD-1 Pathway Inhibitors Approved or in Phase II and/or III Clinical Trial Stage of Development41–44

Target Name Status* Company

CTLA-4 Ipilimumab Approved for the treatment of unresectable or metastatic melanoma
Phase III: lung cancer, kidney cancer, and prostate cancer
Phase II: cervical cancer, colorectal cancer, gastric cancer, pancreatic cancer, ovarian cancer, and

urothelial cancer

Bristol-Myers
Squibb

CTLA-4 Tremelimumab Phase II studies in lung cancer MedImmune/
AstraZeneca

PD-1 Pembrolizumab Approved in the United States for treatment of unresectable or metastatic melanomaw
Phase III: gastric/GEJ cancer, lung cancer, head and neck cancer, and urothelial cancer
Phase II: colorectal cancer, glioblastoma, Merkel cell cancer, pancreatic cancer, and hematologic

malignancies

Merck

PD-1 Nivolumab Approved in the United States for second-line/third-line treatment of unresectable or metastatic
melanomaw and for the treatment of metastatic non–small cell lung cancerz

Phase III: gastric cancer, glioblastoma, head and neck cancer, kidney cancer, and lung cancer
(nonsquamous)

Phase II: cervical cancer, colorectal cancer, pancreatic cancer, and hematologic malignancies

Bristol-Myers
Squibb

PD-1 Pidilizumab Phase II: kidney cancer and hematologic malignancies CureTech/
Medivation

PD-L1 Durvalumab Phase III: head and neck cancer and lung cancer
Phase II: colorectal cancer and glioblastoma

MedImmune/
AstraZeneca

PD-L1 Atezolimab Phase III: bladder cancer and lung cancer
Phase II: kidney cancer

Roche

*Only most advanced phase of development for any tumor type is listed; phase I or phase I/II indications are not listed. Includes both monotherapy and combination
trials. Information from clinicaltrials.gov.

wWith disease progression following ipilimumab and, if BRAF V600 mutation positive, a BRAF inhibitor. Or in combination with ipilimumab in BRAF WT
patients.
zWith disease progression on or after platinum-based chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on

FDA-approved therapy for these aberrations prior to receiving pembrolizumab or nivolumab.
CTLA-4 indicates cytotoxic T-lymphocyte–associated antigen 4; GEJ, gastroesophageal junction; PD-1, programmed death 1; PD-L1, programmed death ligand 1.

FIGURE 4. CTLA-4 and PD-1 pathway blockade. CTLA-4 blockade allows for activation and proliferation of more T-cell clones, and
reduces Treg-mediated immunosuppression. PD-1 pathway blockade restores the activity of antitumor T cells that have become
quiescent. A dual pathway blockade could have a synergistic effect, resulting in a larger and longer lasting antitumor immune response.
CTLA-4 indicates cytotoxic T-lymphocyte–associated antigen 4; MHC, major histocompatibility complex; PD-1, programmed death 1;
PD-L1, programmed death ligand 1; TCR, T-cell receptor; Treg, regulatory T cell.
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ability to retain preexisting high-avidity T cells with relevance
to the antitumor response.

PD-1 blockade works during the effector phase to restore
the immune function of T cells in the periphery that have been
turned off following extended or high levels of antigen expo-
sure, as in advanced cancer.22,23 As mentioned above, the
ligands for PD-1 can be expressed by tumor cells as well as
tumor-infiltrating immune cells. PD-L1 expression on tumor
cells varies by tumor type and also within a given tumor type,
but appears to be particularly abundant in melanoma, non–
small cell lung cancer (NSCLC), and ovarian cancer.27,28,47 In
a recent study, PD-L1 expression on tumor cells was shown to
be significantly associated with PD-1 expression on TILs, and
was locally associated with PD-L2 expression when this ligand
was also expressed.27 In the same study, tumor PD-L1
expression was the single factor most closely correlated with
response to anti-PD-1 blockade, whereas PD-L1 expression on
TILs was not associated with response.27 Another study,
however, found that patient response to anti-PD-L1 blockade
was strongest when PD-L1 was expressed by tumor-infiltrating
immune cells.48

Inhibiting PD-L1 specifically, as opposed to PD-1
inhibition, will block PD-1:PD-L1 interactions while preserv-
ing PD-1:PD-L2 interactions. This has the potential to provide
a more targeted signal with less unwanted toxicity, as self-
tolerance mediated through PD-1:PD-L2 interactions should be
preserved.37,49 Furthermore, as PD-L1 is known to bind CD80
as well as PD-1 to deliver inhibitory signals to T cells,33 PD-
L1 inhibition with an appropriate antibody could in theory also
prevent PD-L1 reverse signaling and its resulting T-cell
downregulation through CD80; a PD-L1-directed antibody
could also interrupt the PD-L1:CD80 axis on other cells where
they are coexpressed, such as dendritic cells.20,23

The differences in timing, location, and nonredundant
effects of their actions suggest that anti-CTLA-4–targeted
therapies and anti-PD-1 therapies have the potential for addi-
tive or possibly synergistic effects in the treatment of advanced
malignancy. Further evidence that supports this theory and
highlights the different role of each immune checkpoint comes
from a study that investigated the biological effect of CTLA-4
and PD-1 blockade in patients undergoing single-agent or
combination treatment.50 While CTLA-4 inhibition induced a
proliferative signal found predominantly in a subset of tran-
sitional memory T cells, PD-1 inhibition was associated with
changes in genes thought to be involved in cytolysis and nat-
ural killer cell function; dual blockade led to nonoverlapping
changes in gene expression. The 2 treatment types also pro-
duced different effects on levels of circulating cytokines. This
study confirms that CTLA-4 and PD-1 blockade lead to distinct
patterns of immune activation, supporting the rationale for the
investigation of immune checkpoint combinations in the clinic.

CLINICAL EFFICACY AND CHARACTERISTICS OF
RESPONSES WITH IMMUNE CHECKPOINT

INHIBITORS
Anti-CTLA-4 blockade with ipilimumab was the first

treatment to prolong overall survival in patients with advanced
melanoma in a randomized setting.51,52 Analysis of long-term
survival data pooled across several phase II and phase III trials
showed that the survival curve begins to plateau at about 3
years, with 3-year survival rates of 22%, 26%, and 20% in all
patients with sufficient follow-up, in treatment-naive patients,
and in previously treated patients, respectively.53 Consistent
with its survival benefit, CTLA-4 blockade is associated with

durable responses in a proportion of patients treated, with some
responses reported to last >3 years.51,54

More recently, PD-1 blockade has been shown to improve
survival and progression-free survival in patients with meta-
static melanoma and in patients with previously treated
metastatic squamous and nonsquamous NSCLC.55–62 The
longest follow-up data available indicate that highly durable
responses can also occur with PD-1 blockade in patients with
melanoma, NSCLC, or renal cell carcinoma (RCC).48,63–66 The
response rates with PD-1 pathway blockade were higher than
with CTLA-4 blockade in advanced melanoma: 33% to 34%
versus 12% of patients in a phase III head-to-head trial of
pembrolizumab versus ipilimumab. This trial also reported
higher 1-year survival rates with pembrolizumab versus ipili-
mumab: 68% to 74% versus 58%.54

Because immune checkpoint inhibitors work by restarting
an effective antitumor immune response, response patterns can
differ from those seen with chemotherapy or targeted agents.
Delayed or unconventional responses may be related to var-
iations in the kinetics and efficacy of each patient’s individual
immune system, as well as its interplay with tumors and
metastases. An initial increase in target lesion tumor volume
could be because of true tumor growth before the generation of
effective antitumor response. Conversely, faster activation of
an antitumor immune response could lead to inflammation and
an influx of immune cells into the tumor site, which could
masquerade as tumor progression. In clinical trials of ipili-
mumab, approximately 10% of patients were initially charac-
terized as having progressive disease by World Health
Organization criteria, but subsequently had favorable sur-
vival.67 Approximately 4% to 8% of patients with advanced
melanoma receiving nivolumab or pembrolizumab in clinical
trials had unconventional responses that did not meet Response
Evaluation Criteria in Solid Tumors (RECIST) criteria, but
were nevertheless associated with patient benefit.55,66,68,69

Unconventional response patterns have also been observed in
patients with lung cancer or RCC receiving PD-1 pathway
inhibitors.56,64,65,70 These atypical responses have led to the
development of modified response criteria called immune-
related response criteria (Supplemental Table 1, Supplemental
Digital Content 1, http://links.lww.com/AJCO/A11067,68,71).

BIOMARKERS
A frustration with ipilimumab has been the inability to

predict prospectively which patients are most likely to benefit
from treatment. The low level of inducible CTLA-4 expression
and the widespread expression of its B7 ligands are not useful
as predictive biomarkers. Retrospective studies have identified
several markers associated with response, including absolute
lymphocyte count, upregulation of the T-cell activation maker-
inducible costimulator (ICOS), and the development of a
polyfunctional T-cell response to the tumor antigen NY-ESO-
1.72 To date, none of these potential markers have been vali-
dated prospectively. An association between melanoma
mutational load and clinical benefit with CTLA-4 blockade has
been shown, but was insufficient alone to predict patients who
are likely to respond to treatment73; however, work examining
tumor neoantigens has shown promise, with the identification
of a neoantigen signature present in tumors that correlated
with overall survival of individuals treated with CTLA-4
blockade.73

In contrast, the upregulation of PD-1 on exhausted cells
and of PD-L1 ligands on tumor cells or tumor-infiltrating
immune cells may offer the potential for identifying patients
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responsive to PD-1 or PD-L1 blockade.27,48 Preliminary data
across tumor types suggest that patients with PD-L1-express-
ing tumors or infiltrating immune cells typically have a higher
response rate to anti-PD-1 or anti-PD-L1 therapy and may also
have improved survival outcomes compared with patients with
low or negative PD-L1 expression.27,48,55,63,64,70,74,75 How-
ever, in most studies, responses have also been seen in patients
with PD-L1-low or PD-LI-negative tumors, and thus these
patients should not be excluded from treatment. In a trial
comparing the combination of ipilimumab and nivolumab
against each agent alone, responses in PD-L1-positive patients
were similar with the combination versus nivolumab alone,
whereas PD-L1-negative patients did better receiving the
combination.58 While all of these results are provocative, more
research is needed to establish the validity and utility of PD-L1
expression as a predictive biomarker.

Other markers of response to anti-PD-1 or PD-L1 therapy
have also been explored and include features associated with
PD-L1-mediated suppression of preexisting immunity.48,76 As
with CTLA-4, mutational burden and higher neoantigen bur-
den have recently been shown to be associated with efficacy in
patients with NSCLC treated with PD-1 blockade.77

IMMUNOLOGIC TOXICITIES
Immune checkpoint blockade is associated with AEs with

potential immunologic etiologies, so-called immune-mediated
AEs. Commonly reported immune-mediated AEs include
rash or pruritus, gastrointestinal disorders, and endocri
nopathies.54,55,57,66,69,78,79

The overall rate of grade Z3 AEs was higher with ipi-
limumab (20%) compared with pembrolizumab (10% to 13%)
in a phase III trial.54 Theoretically, this could be a consequence
of a greater magnitude of T-cell proliferation or reduced Treg-
mediated immunosuppression with CTLA-4 blockade, or
activation of a smaller number of T-cell clones with PD-1
blockade.

Hypophysitis is reported in about 2% to 4% of patients
receiving ipilimumab but in <1% of patients receiving PD-1
inhibitors51,54,55,69,80; however, this variation in incidence may
not be related to differences in immune mechanism of action,
but may be explained by ectopic expression of CTLA-4 in the
pituitary gland, leading to ipilimumab binding to endocrine
cells, followed by complement fixation and inflammation.80

Inhibiting PD-L1 rather than PD-1 may result in a slightly
different toxicity profile, although clinical data are currently
limited. Treatment-related grade 3-4 AEs were reported in 4%
to 13% of patients receiving PD-L1 inhibitors in phase I/II
trials across 2 different agents and multiple tumor
types.48,74,75,81 While data from comparative trials are not yet
available, the incidence of grade 3-4 treatment-related AEs
may trend lower with PD-L1 inhibitors than with PD-1
inhibitors; however, the immune-mediated AEs reported to
date have been similar between the 2 types of agents.

BLOCKADE OF BOTH CTLA-4 AND PD-1/PD-L1
Blockade of both CTLA-4 and PD-1 or PD-L1 could, in

theory, induce proliferation of a higher number of T cells early in
an immune response, restore immune responses of previously
activated T cells that have become exhausted, and reduce Treg-
mediated immunosuppression (Fig. 4). Preclinical studies showed
enhanced antitumor responses using dual blockade compared
with single-agent blockade, which was also observed in initial
clinical trials.82–85 This synergistic effect validates the different
roles these agents play in immune regulation.

An increased response rate and improved progression-free
survival were reported with the ipilimumab-nivolumab combi-
nation when compared with ipilimumab alone in a randomized
phase III trial in treatment-naive patients with metastatic mela-
noma.58 The objective response rate was 58% versus 19%, and
the median progression-free survival was 11.5 versus 2.9 months
for the combination and monotherapy, respectively.58 Combina-
tions of CTLA-4 and PD-1 inhibitors are also being investigated
in patients with several other tumor types, including advanced
NSCLC and RCC. In metastatic RCC, preliminary data suggest
that the objective response rate is higher with a combination
blockade (38% to 43%) than was seen with PD-1 inhibition alone
in a different trial (20% to 22%).70,86 Early data from lung cancer
trials do not suggest increased antitumor activity with a combi-
nation blockade in NSCLC87,88; however, increased antitumor
activity was seen with a combination blockade in small cell lung
cancer (SCLC) versus nivolumab.89

Combining CTLA-4 and PD-1 blockade with the aim of
increasing efficacy is highly desirable, but combination treatment
could prove more toxic. In patients with previously untreated
melanoma or recurrent SCLC, the incidence of drug-related grade
3-4 AEs was 54% to 55% with concurrent blockade compared
with 24% to 27% with ipilimumab alone and 15% to 16% with
nivolumab alone.58,83,89 Prior CTLA-4 inhibition does not appear
to predispose patients to development of immune-mediated AEs
with PD-1 inhibition,57,90,91 which may therefore support
sequential rather than combination treatment.

CONCLUSIONS
The CTLA-4 and PD-1 immune checkpoint pathways

downregulate T-cell activation to maintain peripheral toler-
ance, and can be exploited by tumors to induce an immuno-
suppressive state that allows the tumors to grow and develop
instead of being eliminated by the immune system. The dif-
ferential patterns of the CTLA-4 and PD-1 ligand expression—
found primarily in lymphoid tissue and in peripheral tissues,
respectively—are central to the hypothesis that CTLA-4 acts
early in tolerance induction and PD-1 acts late to maintain
long-term tolerance. Inhibitors of CTLA-4 and PD-1 or its
ligand, PD-L1, can restore antitumor immune responses,
leading to long-term benefit in a substantial proportion of
treated patients. As a likely result of their mechanism of action,
immune checkpoint inhibitors are associated with immune-
mediated toxicities, most of which can be managed success-
fully with corticosteroids. Preliminary data suggest that
simultaneous blockade of both CTLA-4 and PD-1 pathways
leads to increased efficacy over CTLA-4 or PD-1 inhibition
alone or in sequence, providing additional evidence of the
separate roles of these checkpoints in regulating antitumor
immune responses. Further trials are needed to confirm these
data and validate a combination strategy.

To date, 3 immune checkpoint inhibitors have been
approved for use in melanoma; 2 of the 3 are also approved for
lung cancer. These and other investigational CTLA-4, PD-1, and
PD-L1 inhibitors are in active clinical development for multiple
indications and have the potential to revolutionize future treat-
ment options for many patients with advanced cancer.
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