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Abstract

While significant developments have been made in cell

tracking algorithms, current datasets are still limited in

size and diversity, especially for data-hungry generalized

deep learning models. We introduce a new larger and

more diverse cell tracking dataset in terms of number of

sequences, length of sequences, and cell lines, accompa-

nied with a public evaluation server and leaderboard to

accelerate progress on this new challenging dataset. Our

benchmarking of four top performing tracking algorithms

highlights new challenges and opportunities to improve the

state-of-the-art in cell tracking.

1. Introduction

Studying cell migration and mitosis (cell division) is cru-

cial for better understanding fundamental biological pro-

cesses such as proper tissue formation and repair [14],

wound healing [28], treatment and prevention of cancer and

tumoregenesis [11], as well as development and analysis

of drug and immune responses [13]. To facilitate this in-

vestigation, researchers generate and record live-cell imag-

ing videos showing cell behavior over time. They then use

these videos to study two critical tasks: (1) detecting and

following individual cells over time, also referred to as cell

tracking and (2) detecting proliferation of each cell via mi-

tosis events, also referred to as lineage tracing. Researchers

typically complete this analysis by either manually anno-

tating the videos or reviewing algorithms’ results and then

correcting mistakes, since existing automated methods are

unreliable for general-purpose use.

Towards making progress in creating general-purpose al-

gorithms that consistently work well, numerous large, di-

verse datasets have been created over the past decade. That

is because a general belief is that deep learning algorithms

(i.e., neural networks) will perform well if trained on many

diverse examples. In parallel with publicly-releasing such

datasets, the authors of such work have also created public

evaluation servers with leaderboards to encourage an inter-

national community to compete on improving algorithms

and so accelerate progress.

The aforementioned general approach has emerged

across different sub-communities which independently

work on Multiple Object Tracking (MOT). The mainstream

community predominantly focuses on tracking pedestrians

or vehicles through everyday scenes [12, 20, 33, 24], in-

cluding for the following dataset challenges: MOT [5],

KITTI [2] and DETRAC [7]. They aim to localize and

track all objects using a bounding box around each ob-

ject. In contrast, a very limited number of datasets focus

on cell tracking [31, 26]. Moreover, only one such dataset

comes paired with an evaluation server and public leader-

board [23]. Progress on this dataset is disconnected from

that of the mainstream tracking community because the in-

frastructure requires a more stringent segmentation around

each object (rather than a coarser bounding box).

Our aim is to introduce a new large, diverse cell track-

ing dataset with public evaluation server and leaderboard,

while encouraging collaboration from the mainstream com-

munity with the cell tracking community. We introduce

a new human-annotated live-cell imaging dataset for cell

tracking and lineage tracing, that offers greater diversity

than the previous state-of-art cell tracking dataset [23] in

terms of number of sequences, total length of sequences,

and number of cell lines. It consists of 86 live-cell imag-

ing videos that represent 14 different cell lines (exemplified

in Figure 1). For each video, we manually detected and

tracked each cell with bounding boxes. We also annotated

all mitosis events. Next, we analyze the dataset and com-

pare it with other existing cell tracking datasets. Then, we

benchmark modern algorithms from both the cell tracking

and mainstream communities on this new dataset, and of-

fer insights on the challenges and opportunities to leverage

their respective advantages. Finally, we set-up an evalua-

tion server that supports immediate involvement from those

in both the mainstream and cell tracking communities.

More generally, we expect our work will contribute to

the design of more generalized MOT algorithms. To fa-

cilitate future progress, we are publicly-sharing our dataset

with evaluation server and leaderboard.
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Figure 1. Examples of frames for each of the 14 cell lines in our new dataset that depicts the diversity in cell morphology and frame density.

2. Related Work

Cell Tracking Datasets To enable large scale algorithm

training as well as to standardize evaluation, the vision com-

munity has established centralized benchmarks for several

object tracking tasks [12, 20, 33, 24]. Within the cell track-

ing domain, the ISBI Cell Tracking Challenge [31] is cur-

rently the only standardized benchmark, featuring 52 video

sequences, of which 44 are real and the remaining are syn-

thetic. While this benchmark with online evaluation server

has played a significant role in enhancing the state-of-art

of the cell tracking algorithms, it is limited in size and di-

versity. Complementing this benchmark, we introduce the

largest and most diverse live-cell imaging dataset for cell

tracking in terms of number of sequences, total length of se-

quences and cell lines. Our dataset fills a gap in prior work

by focusing on videos collected using differential interfer-

ence contrast (DIC) microscopy. Prior work only included

4 of 52 videos representing this important video modal-

ity [31]. Our work also fills a gap in prior work by standard-

izing this dataset to be seamlessly accessible to the main-

stream community while still meeting the unique needs for

cell tracking, by including support and evaluation of lineage

tracing (i.e., capturing mitosis events). This is achieved

through both the design of the dataset as well as the design

of our publicly-hosted evaluation server.

MOT Algorithms Many algorithms have been proposed

over the years to support MOT. Most have been introduced

for tracking pedestrians and cars (i.e., mainstream algo-



Code Cell Line Cell Type Application

3T3 Albino Swiss Mouse Embryo Fibroblasts DNA transfection, transformation studies

A-10 Embryonic Rat Thoracic Aorta Me-

dial Layer

Myoblasts In vitro wounds

A-549 Male Human Lung Carcinoma Epithelial Respiratory ailments, asthma, tissue damage due to as-

bestos exposure, smoking-related emphysema

APM African Water Mongoose Skin Fibroblasts Wound healing

BPAE Bovine Pulmonary Artery Epithelial Hypertension, atherosclerosis, coronary heart disease

CV-1 Normal African Green Monkey

Kidney

Fibroblasts Cancer research, AIDS, Simian Virus 40 (SV40)

CRE-

BAG2

Albino Swiss Mouse Embryo

Moloney Murine Leukemia Virus

Transfected Cells

Fibroblasts Virus research

LLC-

MK2

Rhesus Monkey Kidney Epithelial Production of mumps vaccines, isolation of parainfluenza

viruses

MDBK Madin-Darby Bovine Kidney Epithelial Vaccine production

MDOK Madin-Darby Ovine Kidney Epithelial Vesicular stomatitis, infectious bovine rhinotracheitis,

sheep bluetongue virus

OK Opossum Kidney Cortex Proximal

Tubule

Epithelial Chromosome X inactivation research

PL1Ut Raccoon Uterus Fibroblasts Feline and canine viral diseases, study of viruses (herpes

simplex virus, reovirus 3, and vesicular stomatitis)

RK-13 Normal Rabbit Kidney Epithelial B virus, herpes simplex, pseudorabies virus, vaccinia,

rabbitpox, myxoma, simian adenoviruses, rubellavirus

U2O-S Human Bone Osteosarcoma Epithelial Insulin-like growth factor I (IGF-I) and insulin-like

growth factor II (IGF II) receptors
Table 1. Description of each cell line included in the CTMC dataset

rithms), both online [9, 29, 34] and offline [30, 25, 36].

Several have been developed to track cells [27, 22, 8, 18, 15,

26, 35], with a few specifically designed to support videos

collected using DIC microscopy [17, 10]. We benchmark

four modern, popular algorithms for both mainstream and

cell tracking aims and conduct a thorough analysis to iden-

tify their strengths and weaknesses. We observe that exist-

ing cell tracking algorithms generalize poorly to our new

dataset, highlighting the difficulty of this dataset. Interest-

ingly, we observe that mainstream algorithms harbor great

promise if improved algorithms that can accurately local-

ize cells with bounding boxes. We suggest opportunities to

leverage the strengths of both sub-communities to push the

limits of algorithms that automatically track cells.

3. CTMC Dataset

We now introduce our dataset, which consists of anno-

tated real live-imaging cell videos for the purposes of cell

tracking and lineage tracing. We first describe the videos in

our dataset and then explain the annotation procedure.

3.1. Video Collection

We collect the videos from Nikon microscopy’s web-

site, in part because they are freely-available. Our result-

ing dataset contains 86 videos belonging to 14 different

cell lines, with a total of 152,584 frames. The shortest and

longest videos contain 294 and 4,438 frames, respectively.

The average number of frames in a video is 1,774. The

videos contain 30 frames per second with a resolution of

320 X 400 pixels. All videos were collected using the Nikon

TE2000 DIC imaging modality, with a time interval of 30

seconds before collecting each next frame.

We describe each cell line in Table 1, and show an ex-

ample from each cell line in Figure 1. Cell lines are taken

from a variety of animals including humans, mice, rats, rac-

coons, and rabbits (Table 1, column 2). Several families

of cell types are included: fibroblasts, myoblasts, and ep-

ithelial (Table 1, column 3). The particular cell lines are

valuable for supporting a wide range of studies including

around wound healing, cancer research, and vaccine devel-

opment (Table 1, column 4).

3.2. Annotation Procedure

Annotation Tool: We designed our tool to capture two

key types of information related to live-cell imaging

datasets. First, it supports tracking, by representing each

cell with a bounding box and a unique id across all rele-

vant frames of the video. Second, it also supports detecting



mitosis events, by capturing the frame at which the cell di-

vision occurs paired with the ids of the parent and resulting

children cells from the mitosis event.

Since manually tracking objects across all frames is a te-

dious procedure, we developed our in-house video annota-

tion tool to reduce the workload using interpolation (follow-

ing the design of VATIC [32]). To annotate a cell, the user

draws a bounding box around the cell at its first occurrence

in the video. Then, the user can readjust the bounding box

to encapsulate the cell tightly at future frames of the user’s

choice. The bounding box representing the cell in the inter-

mediary frames are interpolated using linear interpolation

to reduce human workload. This process can be continued

till the last frame of the cell for all cells in the video.

To annotate a mitosis event, the tool provides a spe-

cific flag ‘split’ which the user can mark when a cell di-

vision occurs. This flag records the frame number along

with the cell’s unique id and visually divides the current

bounding box into two separate bounding boxes. These two

new boxes can then be used to represent the new children

cells. The annotator can then continue to annotate children

cells’ tracks following the same aforementioned procedure

for tracking objects.

Annotation Collection Process: Two in-house experts

annotated all the cells in the 86 videos using the annota-

tion tool. They were asked to draw a bounding box around

each cell such that they cover all the pixels of the cell

while keeping the boundaries of the box as tight as possible.

This results in overlapping cells having overlapping bound-

ing boxes. For the cells that lie partially inside the frame,

bounding boxes represent only the visible region. The in-

termediary frames were interpolated by the tool and these

interpolated annotations were verified or corrected by the

annotators. Figure 2 exemplifies the resulting annotations.

Both annotators recorded the total time they took to an-

notate the videos as well as their perceived annotation diffi-

Figure 2. Examples of the human annotations for video frames in

the CTMC dataset.

culty level of the video. Cumulatively, they spent over 164

hours to annotate all videos. Details regarding both diffi-

culty levels and time taken are reported in Table 2, columns

9-12. We use one set annotator’s results as ground truth

and use the second set to evaluate human performance (dis-

cussed in the algorithm benchmarking section).

3.3. Dataset Analysis

We analysed the following characteristics per each cell

line (i.e., all videos containing that cell line) in the dataset:

number of cells (tracks), length of sequences, number of

mitosis events, total number of detections (boxes) and the

average density of a frame. Results are shown in Table 2,

columns 2-8.

Number of sequences: In total, there are 86 sequences in

this dataset, with an average of 6 per cell line. The range of

sequences per cell line varies between 4 and 10.

Number of cells (tracks): The dataset consists of a total

of 2,900 objects (including children cells). Two of the 86

sequences contain only one cell. In sequences with more

than one cell, the smallest number of cells in a video is 2,

while the largest number of cells in a video is 185.

Length of sequences: In total, the dataset consists of

152,584 frames which represents 5,084 seconds of videos.

The shortest video is 10 seconds long (in the CV-1 cell line)

and the longest one is 148 seconds long (in the U2O-S cell

line). Given that the frames were collected with 30-second

time intervals, the dataset represents 152,520 seconds in

real time, with the shortest and longest videos correspond-

ing to 300 and 4,440 seconds respectively in real time.

Mitosis: In total, there are 457 mitosis events with the

lowest being 2 (in the CV-1 cell line) and highest being 115

(in the MDBK cell line).

Detections (boxes): The dataset offers a total of

2,045,834 bounding boxes. The range varies from 1,196

to 172,074 across the 86 sequences.

Density: The average density is approximately 13 cells

in each frame. Across the 14 cell lines, CV-1 has the lowest

density with 3.42 while BPAE has the highest at 27.88.

3.4. Dataset Comparison

We report the differences between our dataset and three

modern cell tracking datasets in Table 3. One of the related

datasets is the state-of-art cell tracking challenge (CTC)

dataset [31].1 The second related dataset is provided by

the authors of DeepCell [26]. The third dataset consists of

phase contrast microscopy images (C2C12) [19].

Overall, our CTMC dataset offers a greater number of

sequences and greater diversity in terms of cell lines, while

containing fewer tracks than CTC, DeepCell, and C2C12.

In absolute terms, our CTMC dataset is the largest with 86

1CTC consists of 52 live-imaging sequences of which 44 are real and 8

are synthetic. Only 28 out of 52 are 2D sequences while the rest are in 3D.



Code Seq Tracks Frames Len(s) Mit. Boxes Density An1(T) An1(D) An2(T) An2(D)

3T3 9 255 17250 574 33 143146 8.03 750 2.1 339 1.9

A-10 7 85 13154 438 17 84274 7.10 150 1.14 103 1.3

A-549 3 106 5760 192 26 102197 17.19 210 1.7 84 2

APM 6 157 11834 395 8 94056 7.79 360 1.8 193 2.3

BPAE 7 344 13491 450 42 343955 27.88 705 1.43 340 1.43

CRE 4 369 7957 265 56 168398 19.62 1080 2.75 407 2.5

CV-1 4 20 4802 160 2 18796 3.42 60 1 12 1

LLC 8 218 13461 448 33 137828 10.28 510 1.4 214 1.4

MDBK 10 533 15437 513 115 323032 21.36 855 1.7 651 1.8

MDOK 9 89 16559 552 10 95738 6.04 210 1 78 1

OK 7 335 10449 348 49 177597 16.66 663 1.7 560 1.3

PL1Ut 5 154 8466 283 21 100738 11.91 294 1.4 218 1.2

RK-13 3 35 3453 115 2 28544 8.78 66 1 26 1

U2O-S 4 200 10511 351 43 227535 18.72 495 2 224 2.5

Overall 86 2900 152584 5084 457 2045834 13.20* 6408 1.58* 3449 1.62*
Table 2. Analysis of each cell line in the dataset. (Len(s) = total length of the sequences in seconds; An = Annotator; T = time taken to

complete annotation in minutes; D = average perceived annotation difficulty level by two human annotators where 1=easy, 2=medium,

3=hard; CRE = CRE-BAG2; LLC = LLC-MK2; *average value)

Dataset Seq Tracks CL Mit Frames

CTC [31] 52 11,318 10 NP 5,927

DeepCell [26] 81 11,393 4 855 2,610

C2C12 [19] 48 NP 1 NP 49,919

CTMC (Ours) 86 2,900 14 457 152,584
Table 3. Comparison with other datasets. CL = Cell Line; Mit =

Mitosis; Seq = Sequences; NP = Not Provided.

sequences and 152,584 frames. Our CTMC dataset contains

a greater number of cell lines, with 14 versus 10 cell lines

in CTC, 4 in DeepCell and 1 in C212. Our CTMC dataset

adds complementary diversity, as it shares only one cell line

with DeepCell and none of our 14 cell lines with the CTC

or C2C12 datasets.

Importantly, our CTMC dataset provides a complemen-

tary set of videos because they were collected using differ-

ential interference contrast (DIC) microscopy. CTC con-

tains only four sequences of one cell line obtained using

DIC imaging while both DeepCell and C2C12 lack any DIC

sequences.

4. Algorithm Benchmarking on CTMC

We now describe our analysis of the tracking per-

formance of state-of-art (1) cell tracking algorithms and

(2) mainstream algorithms. We conduct these analyses

separately since these methods come from distinct sub-

communities that leverage distinct evaluation metrics and

algorithm frameworks. For our analysis, we split the CTMC

dataset of 86 videos into 47 training and 39 testing videos.

In order to represent cells from each cell line in both train-

ing and testing phases, we distributed the videos between

the two splits with odd numbered sequences in the training

split and even numbered sequences in the testing split. All

reported results are based on the test split.

4.1. Cell Tracking Algorithms

Methods: We benchmarked two popular state-of-the-art

cell tracking algorithms: Viterbi [22] and DeepCell [26].

Viterbi [22], offered as part of the Baxter Algorithms

package [1], is the best performing tracker according to the

latest Cell Tracking Challenge, achieving a high accuracy

on 20 of the 24 available test video sequences. It is an of-

fline tracker which processes multiple frames to determine

object associations.

DeepCell’s [26] tracking algorithm is a recently pub-

lished work that combines a popular deep multiple object

tracker [29] with a traditional cell event detector [16] to

identify important cell life cycle events such as mitosis. For

our experiment, we use the pretrained model with default

parameters as provided in the package. The model was pre-

trained on 11,393 cell tracks and 855 mitosis events from 4

different cell lines.

Input to Trackers: Both trackers take as input segmen-

tation masks (rather than bounding boxes). In an attempt

to provide a fair comparison between them, we use the

same segmented data for both trackers. We employ the top-

performing segmentation algorithm according to the latest

Cell Tracking Challenge (MU-Lux-CZ) [21], which is de-

signed to process cells obtained using the DIC imaging

modality.2 We use the software package as provided in

the challenge website[4] along with the pretrained model

2We also tested with the segmentation algorithm provided in the Baxter

package, but found it is not suitable for our dataset.



on the DIC-HeLa dataset. We then use this segmented data

with both Viterbi and DeepCell, using default parameters

for both trackers.

Evaluation Metrics: To compare the performance, we

use the standard tracking metric, TRA, as described by Cell

Tracking Challenge [31]. This metric represents the pre-

dicted and the ground truth tracks as graphs and computes

the number of steps required to match both graphs. It pe-

nalizes the following errors: false negatives, false positives,

under-detections, missing edges, miss-labeled edges, and

false positive edges.

TRA = 1−
min(AOGM,AOGM0)

AOGM0

where AOGM is the Acyclic Oriented Graph Matching

measure (weighted sum of the graph operations) [23]. We

modified the overlap measure computed in the metric to

support that our ground truth was collected in the form of

bounding box detections rather than segmentation masks.

Instead of computing pixel overlap of the predicted mask

with the ground truth mask, we extract the bounding box of

each segmented mask from the predicted results and com-

pute its overlap with the ground truth bounding box. Re-

sulting values can range between 0 and 1, with better per-

formance indicated by values lying closer to 1.

Results: Results are shown in Table 4.

Overall, the majority of the sequences were difficult for

both trackers. The average TRA scores obtained using

Viterbi and DeepCell were 0.39 and 0.32, respectively. For

reference, we also computed the inter-annotator agreement

using the TRA metric, and found that human performance

yields a score of 0.95. Part of the poor performance from

the DeepCell algorithm is that it failed to produce results

for 20 out of 39 sequences because the algorithm failed to

generate meaningful features using the pre-trained model.

Altogether, our findings reveal that our new dataset is chal-

lenging for existing algorithms.

To better understand what makes this dataset difficult for

existing trackers, we next compared performance across cell

lines. Both trackers performed the best on all sequences of

A-10 and CV-1 cell lines, with a mean score above 0.80.

These cell lines have low density frames with a fewer num-

ber of total cells (14 in A-10 and 4 in CV-1), and therefore

are relatively easy cell lines (exemplified in Figure 3). All

the sequences in cell lines such as A-549, APM, CRE-BAG,

OK, U2O-S proved to be challenging for both trackers. For

these sequences, the average score of Viterbi was below 0.2

while DeepCell failed to produce results. These cell lines

have varying shapes and consist of high density frames (ex-

emplified in Figure 4a). In addition, certain sequences of

the 3T3, MDBK, MDOK and PL1UT were also challeng-

ing for the same reasons.

Viterbi [22] DeepCell [26]

3T3 (124) 0.38 0.15

A-10 (14) 0.83 0.82

A-549 (82) 0.12 0.00

APM (90) 0.33 0.00

BPAE (114) 0.30 0.46

CRE-BAG2 (229) 0.07 0.00

CV-1 (4) 0.89 0.86

LLC-MK2 (56) 0.59 0.44

MDBK (205) 0.38 0.48

MBOK (27) 0.51 0.36

OK (111) 0.25 0.00

PL1Ut (71) 0.21 0.26

RK-13 (20) 0.53 0.60

U2O-S (137) 0.04 0.00

Average 0.39 0.32
Table 4. Performance of cell tracking algorithms with respect to

the TRA metric on each cell line and overall. Numbers in paren-

thesis represent the total number of cells in the cell line. Overall,

Viterbi performs better than DeepCell. A-10 and CV-1 have the

lowest number of cells and density are the highest scoring cell

lines, while A-549, CRE-BAG2, OK, PL1Ut and U2O-S are the

most difficult ones.

While both DeepCell and Viterbi showed similar pat-

terns in most sequences, we also observed a few cases

where they displayed contrasting performances. In one such

case, Viterbi performed considerably well on two sequences

with larger cells (as shown in Figure 4b) while DeepCell

failed to generate any features at all suggesting that its pre-

trained model did not generalize to cells with larger sizes.

We also observed a few sequences like that displayed in

Figure 4c where DeepCell tracked more detected cells than

Viterbi.

4.2. Mainstream Tracking Algorithms

Methods: We benchmarked two state-of-art mainstream

algorithms: Tracktor [9] and DeepSORT [34]. Both were

designed for tracking pedestrians.

Tracktor [9] is the top-ranked, publicly-available algo-

rithm on the 2019 MOT Challenge [3]. 3. It tracks each

object by modifying the regression component in the object

detector to predict the object’s location in the next frame.

We train Tracktor’s object detector as well as the siamese

reidentification network on our training split. For the ob-

ject detector, we follow the recommendation to use Faster-

RCNN with a FPN backbone, relying on the default param-

eters. This detector is two-class based, where the cells are

labeled ‘1’ and the background is labelled ‘0’. 4

3This algorithm is ranked second, since the first ranked method is not

yet published.
4Of note, the object detector requires all frames in the sequence contain

at least one bounding box. Since our dataset contains several intermediary



Figure 3. Example showing two frames of a video (A-10) where both Viterbi (left) and DeepCell (right) perform well (TRA score > 0.80).

Figure 4. Examples of videos that were challenging to the cell trackers. The first row shows examples where both Viterbi and DeepCell

had low performance while the bottom row shows sequences displaying opposing performance. a. Single frames from sequences where

the segmentation algorithm fails to detect most cells, hence affecting the tracking performance. b. Single frames from easy videos where

DeepCell fails to track, while Viterbi performs very well (Observation: large cells, low density). c. Single frames from a sequence in the

MDBK cell line where DeepCell performs better than Viterbi (white boxes represent cells that were segmented but not tracked by Viterbi).

DeepSORT [34] is a popular, highly-cited Kalman Filter

based tracker. It relies on good quality detections to per-

form reidentification of objects. The object is linked across

frames using the Hungarian algorithm with a deep associa-

tion metric. Again, we use default parameters in our exper-

iment and the original feature generation model which was

pre-trained on the MARS [37] dataset.

Input to Trackers: We experiment with two types of in-

put detections. First, we use the object detector, Faster-

RCNN, trained for Tracktor to generate detections on our

sequences following Tracktor’s parameters used to achieve

the reported best performance. Second, to assess the poten-

tial of the trackers in the presence of perfect detectors, we

use our ground truth detection bounding boxes.

Evaluation Metrics: We evaluate using two popular met-

rics in the mainstream tracking community: Multiple Ob-

frames with no cells and thereby no bounding boxes, we annotate each of

these frames with a fake 4X4 bounding box of the background pixels and

label those boxes as ‘0’.

ject Tracking Accuracy (MOTA) and ID F1 Score (IDF1)

[24]. While MOTA represents object coverage, IDF1 quan-

tifies the object’s identity across frames in the sequence.

We use the standard evaluation package provided by py-

motmetrics [6] for this purpose.

MOTA = 1−

∑
t
(FNt + FPt + IDSWt))∑

t
GTt

where, FP is the total number of bboxes not covering any

GT bbox, FN is the total number of GT bboxes not cov-

ered by any bbox and IDSW is the Identity Switch, i.e., a

bounding box covering a GT bounding box from a different

track than in the previous frame. MOTA scores can range

between negative values and 100, with better performance

indicated by values lying closer to a 100.

IDF1 =
2IDTP

2IDTP + IDFP + IDFN

where IDFN is False Negative ID, IDTP is True Positive ID



Detection: FasterRCNN Ground Truth

Tracker: Tracktor[9] DeepSORT[34] Tracktor[9] DeepSORT[34]

Evaluation Metric: IDF1 MOTA IDF1 MOTA IDF1 MOTA IDF1 MOTA

3T3 (124) 57.58 34.33 34.98 -33.40 67.25 65.08 96.05 99.33

A-10 (14) 47.13 -18.37 22.60 -151.33 65.97 52.73 92.63 99.87

A-549 (82) 50.90 35.50 37.20 2.70 56.90 54.50 84.60 99.85

APM (90) 27.10 -31.00 15.00 -132.80 39.27 30.17 97.43 99.57

BPAE (114) 49.37 34.47 38.60 0.87 58.87 53.67 95.60 99.73

CRE-BAG2 (229) 48.95 25.75 26.60 -35.80 55.75 50.95 93.75 99.30

CV-1 (4) 51.65 -14.60 35.25 -135.90 72.60 49.10 99.80 99.55

LLC-MK2 (56) 73.77 57.00 60.23 28.67 77.57 70.60 96.37 99.67

MDBK (205) 69.86 65.04 54.34 40.00 72.50 70.86 90.46 99.60

MBOK (27) 32.55 -38.88 23.28 -151.05 44.18 34.63 97.83 99.83

OK (111) 43.97 33.20 27.83 -13.93 50.83 53.10 94.30 99.53

PL1Ut (71) 36.90 25.15 25.20 -14.15 41.55 38.60 96.05 99.55

RK-13 (20) 73.80 64.20 64.50 36.70 74.20 72.80 99.10 99.70

U2O-S (137) 61.40 58.50 53.10 45.65 62.00 65.25 85.20 95.35

Average 51.78 23.59 37.05 -36.70 59.96 54.43 94.23 99.32
Table 5. Performance of MOT algorithms averaged over sequences within each cell line using FasterRCNN and Ground Truth detections.

Tracktor performs better with FasterRCNN detections, while DeepSORT works better on Ground Truth detections. Overall, A-10, APM,

CRE-BAG2, CV-1, MDOK, PL1Ut are the most challenging cell lines while LLC-MK2, MDBK, RK-13, and U2O-S are tracked better

using MOT trackers. Numbers in parenthesis represent total number of unique cells in the cell line.

and IDFP is False Positive ID. Resulting values can range

between 0 and 100%, with better performance indicated by

values lying closer to 100%.

Results: Results are shown in Table 5.

Overall performance with detections from FasterRCNN:

Overall, we observe the dataset is difficult for both algo-

rithms. For instance, both trackers perform considerably

worse than human performance. Specifically, using the an-

notations collected by the two annotators in Section 3, we

found that inter-annotator agreement yields a MOTA score

of 41.70 and IDF1 score of 73.02. Still, we observe Track-

tor outperforms DeepSORT with an average MOTA score

of 34.9 over -37 and an average IDF1 score of 51.78 over

37.05. From visually inspecting the results obtained by

DeepSORT, we found that its negative MOTA score may

be attributed to the higher number of false positives due to

the identification of debris as a different track over time.

When comparing the performance across cell lines, we

observed that Tracktor performed its best on LLC-MK2,

RK-13 and U2O-S, with a MOTA score of above 0.50. This

was interesting as U2O-S proved to be the most difficult cell

line for the cell trackers in the previous experiment. In con-

trast, it performed below average on all sequences in A-10,

APM, CV-1, and MDOK cell lines. Here again, we note A-

10 and CV-1 cell lines were the best scoring sequences with

the cell trackers. While the average performance of Deep-

SORT was poor, like Tracktor, it also performed above aver-

age on MDBK, RK-13 and U2O-S cell lines, in addition to

two sequences in LLC-MK2 cell line. These findings are in-

teresting in part because they highlight the complementary

nature of algorithms emerging from the distinct cell track-

ing and mainstream communities.

Overall performance with detections from GT: As ex-

pected, we observing considerable improvements from both

algorithms when using perfect detections as input. How-

ever, we were surprised to observe that DeepSORT has

the potential to perform exceptionally well; i.e., an aver-

age MOTA score of 99.32 and average IDF1 score of 94.23.

This is surprising in part because this model was pretrained

on a person tracking dataset, yet generalizes well for cell

tracking. Overall, we observe similar trends of the perfor-

mance of the trackers across cell lines when using GT as

input as we did when using FasterRCNN as input instead.

5. Conclusion

We introduce a cell tracking dataset and analyse mod-

ern algorithms to reveal challenges and opportunities for

improving cell tracking algorithms. We publicly share this

dataset with an evaluation server to accelerate progress from

a larger community on this important problem.
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