
CTTE: Support for Developing and Analyzing
Task Models for Interactive System Design

Giulio Mori, Fabio PaternoÁ , and Carmen Santoro

AbstractÐWhile task modeling and task-based design are entering into current practice in the design of interactive software

applications, there is still a lack of tools supporting the development and analysis of task models. Such tools should provide developers

with ways to represent tasks, including their attributes and objects and their temporal and semantic relationships, to easily create,

analyze, and modify such representations and to simulate their dynamic behavior. In this paper, we present a tool, CTTE, that provides

thorough support for developing and analyzing task models of cooperative applications, which can then be used to improve the design

and evaluation of interactive software applications. We discuss how we have designed this environment and report on trials of its use.

Index TermsÐTask models, models for interactive software systems, automatic tools for human-computer interaction, user

interfaces.

æ

1 INTRODUCTION

1.1 User Interface Tools

THE pervasiveness of software applications requires user
interfaces able to support a wide variety of tasks, in a

wide variety of contexts, and accessible through many
possible devices. The user interface component of inter-
active applications is acquiring ever more importance. This
is because, often, many different applications are available
to perform similar tasks and users choose those that are
easier to understand and interact with and which, conse-
quently, increase efficiency, productivity, and acceptance
while reducing errors and the need for training.

The main solution that has been proposed to effectively
support user interface design and development has been
through visual tools such as Visual Basic or visual
environments for Java that allow designers to easily develop
a user interface by direct manipulation techniques. The
advantage is that a set of instances of predefined interaction
techniques can be easily arranged to define the layout of the
user interface. However, in this type of approach, there is a
lack of support for identification of the presentation and
interaction techniques that are more effective in supporting
the activities users intend to perform.

1.2 Task Models

To overcome such limitations, interest in model-based
approaches [22] has been increasing in recent years. The
basic idea is to identify useful abstractions highlighting the
main aspects that should be considered when designing
effective interactive applications. Of the relevant models,
task models play a particularly important role because they
indicate the logical activities that an application should

support. A task is an activity that should be performed in
order to reach a goal. A goal is either a desired modification

of state or an inquiry to obtain information on the current
state. For example, querying the available flights from Pisa

to London is one task that must be performed in order to
book a flight to London (the relative goal). Tasks can range

from a very high abstraction level (such as deciding a
strategy for solving a problem) to a concrete, action-
oriented level (such as selecting a printer).

In order to be meaningful, the development of the task
model of a new application should be the result of an

interdisciplinary discussion involving the various view-
points that should be considered (such as designers,
developers, end users, managers, and domain experts). This

would be useful in order to obtain user interfaces able to
easily support the desired activities, thus implying that the

user taskmodel (howusers think that the activities should be
performed) and the system task model (how the application

assumes that activities are performed) correspond closely.
Task models have been used in various approaches to

support different phases of the software development life

cycle:

. Requirement analysis: where, through a task analysis,
designers identify requirements that should be
satisfied in order to perform tasks effectively
(GTA [31]).

. Design of interactive applications (Adept [33], Trident
[5], Mobile [25]): in this case, the goal is to use
information contained in logical models to identify
the interaction and presentation techniques best
suited to support the tasks at hand and the dialogues
whose temporal constraints are closest to those of
the model.

. Usability evaluation: it can be supported in various
ways: for example, identifying task efficiency (such
as in the KLM [9] approach) or analyzing logs of user
interactions with the support of task models (see, for
example, RemUSINE [20]).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 8, AUGUST 2002 797

. The authors are with ISTI, an Institute of the National Research Council of
Italy, Via G. Moruzzi 1, 56124 Pisa, Italy.
E-mail: giulio.mori@guest.cnuce.cnr.it.,
{fabio.paterno, carmelina.santoro}@cnuce.cnr.it.

Manuscript received 6 July 2000; revised 16 Feb. 2001; accepted 3 Jan. 2002.
Recommended for acceptance by P. Johnson.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 112398.

0098-5589/02/$17.00 ß 2002 IEEE

Task models can be used for descriptive and prescriptive
purposes, for example, to describe how tasks are supported
by an existing system or to prescribe how tasks should be
supported by a new system to develop. They can be
developed at different levels of abstractions (artifact-
independent or related to the use of specific devices).

1.3 Software Engineering and
Human-Computer Interaction

There is a need for greater integration of research in
software engineering and human-computer interaction. The
field of interactive systems development will benefit
considerably if the different theories, models, techniques,
and tools can be brought together effectively.

Task models represent the intersection between user
interface design and more formal software engineering
approaches by providing designers with a means of
representing and manipulating a formal abstraction of
activities that should be performed to reach user goals.
Although task models have long been considered in
human-computer interaction, only recently have user inter-
face developers and designers realized their importance
and the need for engineering approaches to task models to
better obtain effective and consistent solutions.

An engineering approach should address at least four
main issues:

. Availability of flexible and expressive notations able
to describe clearly the possible activities. It is
important that these notations are sufficiently
powerful to describe interactive and dynamic
behaviors; such notations should be readable so
that they can also be interpreted by people with
little formal background.

. Need for systematic methods to support the specifica-
tion, analysis, and use of task models, to facilitate
their development, and support designers in using
the knowledge that they incorporate to address the
design of the user interface and its evaluation. We
note that, often, even designers who developed some
task analysis and modeling did not use them for the
detailed design of the user interface because of this
lack of structured methods, which should give rules
and suggestions about how to use information in the
task model for the concrete design.

. Support for the reuse of good design solutions to
problems which occur across many applications [15].
This is relevant, especially in an industrial context,
where developers often have to design applications
which address similar problems, thus it would be
useful to have design solutions structured and
documented in such a way as to support easy reuse
and tailoring in different applications.

. Availability of automatic tools to support the various
phases of the design cycle. Also, the development of
these tools should pay attention to user interface
aspects so as to have intuitive representations and
provide information useful for the logical activities
of designers.

While these concepts have long been considered in
software engineering, there is a lack of approaches that have
considered how to apply them to address the design of
human-computer interactions. This goal requires attention

to aspects that have been poorly considered in software
engineering: the user, how users perceive and interpret
information, organize their activities, and interact with
systems in order to perform them. Task models can be a
bridge between the two communities and their advance-
ment would benefit highly from the integration and
enhancement of concepts and techniques utilized in both.

One of the main problems in task modeling is that it is a
time-consuming, sometimes discouraging, process. To over-
come such a limitation, interest has been increasing in the
use of tool support [8]. Despite this widespread interest,
tools developed for task models have been rather rudimen-
tary, mainly research tools used only by the groups that
developed them, whereas more systematically engineered
tool support is strongly required in order to ease the
development and analysis of task models and make them
acceptable to a large number of designers. If we consider
the first generation of tools for task models we can notice
that they are mainly research prototypes aiming at support-
ing the editing of the task model and related information.
This has been a useful contribution, but further automatic
support is required to make use of task models acceptable
to a large number of designers. Thus, there is a strong need
for engineered tools with the ability to support task
modeling of applications, including cooperative and mul-
tiuser ones, which are on the rise, and the analysis of such
models' contents, which may can be complex in the case of
many real applications.

To overcome such problems, we have designed and
developed the ConcurTaskTrees Environment (CTTE),
which is a tool that can be used to support the design of
interactive applications, for teaching purposes, and to
produce interactive documentation of applications. In
developing the approach, we have also paid attention to
the usability of the notation and related environment in
order to ease the work of designers.

1.4 Structure of the Article

In the paper, we start with a discussion of related works,
and introduce the approach and the notation used for task
modeling of multiuser applications (single user applications
can be seen as a simplified case of this more general case).
Then, we move on to describe and discuss the automatic
tool that we have designed and developed to give support
in the development and analysis of such models. We also
give brief examples of specifications, discuss the applica-
tions designed with the support of the tool, and report more
generally on its use. We conclude by discussing the lessons
learned and providing some concluding remarks.

2 RELATED WORKS

2.1 Task Analysis and Modeling

The earlier works in model-based design of user interfaces
mainly focused on abstractions related to the objects that
have to be manipulated. For example, in UIDE [13], the
authors structure the logical models in terms of objects
associated with pre and post conditions. Their purpose is to
indicate what should be verified in order to enable
interaction with the object and to indicate the effects
triggered by such interactions. A set of similar abstractions
was developed also for other model-based approaches, such
as Humanoid [30].

798 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 8, AUGUST 2002

Some research work has been focusing on identifying the
goals that users want to achieve and how to perform
activities able to reach such goals. One of the first
contributions in this area was GOMS (Goals, Operators,
Methods, Selection Rules) [9] with which it is possible to
describe the action sequences required to reach a goal and
group them into methods that may have an associated
selection rule to indicate when their performance is
recommended. However, most GOMS approaches consider
only sequential tasks. In addition, the tool support provided
for them is still far from what designers and evaluators
expect from GOMS tools [3] because of limited pragmatics,
partial coverage of the GOMS concepts, limited support for
cognitively plausible models, and lack of integration in the
development process.

A richer set of temporal operators can be specified in
UAN (User Action Notation) [17]. It is a textual notation
where it is possible to describe the temporal relationships
among asynchronous tasks and, finally, the basic tasks
(those that are no longer decomposed) are described by
tables indicating: user actions, system feedback, and
modifications in the state of the application. However, the
textual syntax of UAN and its lack of tool support has been
a strong limitation to its diffusion.

GTA [31] is another relevant work in the area; it mainly
focuses on the analysis phase aiming at eliciting require-
ments that can be important in the user interface design.
Some tool support for this approach has started with
Euterpe [32], but it is still at a prototypal phase.

Also, the need for more human-centered specifications is
argued in [18], where intent specifications are proposed,
with particular attention to the design of safety-critical
systems. However, tool support for such a framework has
not been provided.

In the meantime, the use of task models for supporting
design has been recognized and interesting methods have
been developed for this purpose, but the tool support
provided was still either limited [33], [28] or wholly missing
[29]. The tool support for models for user interface has been
provided in Pet-Shop, which is an environment allowing
development of a technique combining Petri Nets and
object-oriented techniques [6]. The dialogue of the user
interface is modeled by Petri Nets; more precisely, for each
widget in the user interface, there is a Petri Net modeling its
dynamic behavior. Such a tool has shown to be useful for
modeling the runtime user interface behavior. It also
supports the possibility of connecting the user interface
and the related Petri Net and shows how the tokens evolve
while the user interacts with the application. Thus, the
purpose is to support the analysis of the user interface
system, rather than the related task model: It provides a
description of the objects making up the user interface and
the underlying system and how they behave, whereas, in
the task model, there is a description of the logical activities
supported. There is an intersection between the aspects
described by the two models (the actions that can be
performed at the user interface level), but each of them also
captures aspects that are not represented in the other one:
The task model also describes cognitive user activities (such
as deciding a strategy to find information) and the system

model contains a description of the system architecture.
Another tool has been developed in the Teallach project [4],
where task models are considered but the tool support
focuses on the generation of the user interface for database
applications rather than the analysis of the task models.
While we think tool support for the user interface
generation is useful and important, we believe that there
is also a strong need for helping designers to develop and
analyze the task models and, in this phase, there is a strong
lack of tool support.

2.2 UML and Task Models

Model-based approaches have often been used in software
engineering. If we consider UML [7], the most successful
model-based approach for the design of software systems,
we can notice a considerable effort to provide models and
representations to support the various phases and parts of
the design and development of software applications.
However, despite the nine representations provided by
UML, none of them is particularly oriented to supporting
the design of user interfaces. Of course, it is possible to use
some of them to represent aspects related to the user
interface, but it is clear that this is not their main purpose.
Aimed at integrating the two approaches (task models
represented in ConcurTaskTrees and UML), there can be
various basic philosophies that are outlined below. Such
approaches can exploit, to different extents, the extensibility
mechanisms built into UML itself (constraints, stereotypes,
and tagged values) that enable extending UML without
having to change the basic UML metamodel. The types of
approaches are:

. Representing elements and operators of a task model by an
existing UML notation, for example, considering a
ConcurTaskTrees model as a forest of task trees,
where ConcurTaskTrees operands are nodes and
operators are horizontally directed arcs between
sibling nodes, this can be represented as UML class
diagrams. Specific UML class and association stereo-
types, tagged values, and constraints can be defined
to factor out and represent properties and con-
straints of CTT elements [21].

. Developing automatic converters from UML to task
models, for example, using the information contained
in system-behavior models supported by UML (use
cases, use case diagrams, interaction diagrams) to
develop task models.

. Building a new UML for interactive systems, which can
be obtained by explicitly inserting ConcurTaskTrees
in the set of available notations while still creating
semantic mapping of ConcurTaskTrees concepts into
UML metamodel. This encompasses identifying
correspondences, at both the conceptual and struc-
tural levels, between ConcurTaskTrees elements and
concepts and UML ones and exploiting UML
extensibility mechanisms to support this solution.

Of course, there are advantages and disadvantages in
each approach. In the first case, it would be possible to have
a solution compliant with a standard that is already the
result of many long discussions involving many people.
This solution is surely feasible. An example is given in [21]:

MORI ET AL.: CTTE: SUPPORT FOR DEVELOPING AND ANALYZING TASK MODELS FOR INTERACTIVE SYSTEM DESIGN 799

CTT diagrams are represented as stereotyped class dia-
grams; furthermore, constraints associated with UML class
and association stereotypes can be defined so as to enforce
the structural correctness of ConcurTaskTrees models.
However, the key issue is not only a matter of the expressive
power of notations, but it is also a matter of representations
that should be effective and support designers in their work,
rather than complicate it. The usability aspect is not only
important for the final application, but also for the
representations used in the design process. For example,
activity diagrams are general and provide good expressive
power to describe activities. However, they tend to provide
lower-level descriptions than those in task models and they
require rather complicated expressions to represent task
models describing flexible behaviors. Thorny problems also
emerge from the second approach. It is difficult to first
model a system in terms of object behaviors and then derive
a meaningful task model from such models because object-
oriented approaches are usually effective for modeling
internal system aspects but less adequate for capturing
users' activities and their interactions with the system. The
third approach seems to be more promising in capturing the
requirements for an environment supporting the design of
interactive systems. However, attention should be paid so
that software engineers who are familiar with traditional
UML can make the transition to this new method easily
while limiting the degree of extension from the current UML
standard. More specifically, use cases could be useful in
identifying tasks to perform and related requirements, but
then there is no notation suitable to representing task
models, while there are various ways to represent the
objects of the system to design. This means that there is a
wide gap that needs to be filled in order to support models
important for the design of user interfaces. However, the
purpose of this paper is to present CTTE and not its
integration with UML. A proposal aimed at obtaining a
UML for interactive systems based on the integration of CTT
and current UML is outlined in [23].

2.3 Modeling Multiuser Interactions

A need for approaches able to consider cooperative
applications as well is also motivated by the current toolkits
for multiuser interface development: Even when they have
proposed innovative solutions [27], they have provided
designers and developers with rather low-level constructs.
As described in [12] and [10], a groupware system covers
three domain specific functions: production, coordination,
and communication. The production space denotes the set of
domain objects that model the multiuser manipulation of
common artifacts, such as documents, or that motivate a
common undertaking, such as flying an airplane between
two locations. The coordination space covers dependencies
among activities including temporal relationships between
the multiuser activities. The communication space supports
person-to-person communication. Coordination seems to be
a rather important part in designing cooperative applica-
tions. Task models with descriptions of temporal relation-
ships among tasks can provide useful logical descriptions of
such coordination. They also address the identification of
domain objects and communication aspects.

3 HOW THE TASK MODEL IS REPRESENTED

In our environment, the task models considered are
structured in a hierarchical fashion according to the
ConcurTaskTrees notation that was introduced in [22]. It
provides a rich set of operators to describe the temporal
relationships among tasks. In addition, for each task,
further information can be given, such as its type, the
category (indicating how the performance is allocated),
the objects manipulated, and attributes, such as frequency
of performance.

ConcurTaskTrees was developed after first studies
developed to specify graphical user interfaces by using
the LOTOS notation [1]. LOTOS is a concurrent formal
notation that seemed a good choice to specify user
interfaces because it allows designers to describe both
event-driven behaviors and state modifications. However, it
showed some limitations that make it unlikely to be widely
used in the human-computer interaction domain. It was
soon realized that there was a need for new operators to
express a richer set of dynamic behaviors in task models in
a compact way (such as optional tasks and order indepen-
dence performance) and additional information useful in
analyzing and representing task models capturing their
relevant attributes. Moreover, LOTOS has a textual syntax
that can easily generate complex expressions, even when
the behavior to describe is quite simple. Thus, a new
notation was developed, ConcurTaskTrees. Its main aim is
to be an easy-to-use notation that can support the design of
real industrial applications, which usually means applica-
tions with medium-large dimensions.

The main features of ConcurTaskTrees are:

. Focus on activities. It allows designers to concentrate
on the activities that users aim to perform that are
the most relevant aspects when designing interactive
applications that encompass both user and system-
related aspects, avoiding low-level implementation
details that, at the design stage, would only obscure
the decisions to take.

. Hierarchical structure. A hierarchical structure is
something very intuitive; in fact, often, when people
have to solve a problem, they tend to decompose it
into smaller problems still maintaining the relation-
ships among the various parts of the solution. The
hierarchical structure of this specification has two
advantages: It provides a wide range of granularity,
allowing large and small task structures to be
reused, and it enables reusable task structures to
be defined at both low and high semantic level.

. Graphical syntax. Often, a graphical syntax is easier to
interpret; in this case, it reflects the logical structure,
so it has a tree-like form.

. Concurrent notation. A rich set of possible temporal
relationships between the tasks can be defined. This
sort of aspect is usually implicit, expressed infor-
mally in the output of task analysis. Making the
analyst use these operators is a substantial change to
normal practice. The reason for this innovation is
that, after an informal task analysis, we want
designers to clearly express the logical temporal

800 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 8, AUGUST 2002

relationships. This is because such ordering should
be taken into account in the user interface imple-
mentation to allow the user to perform, at any time,
the tasks that should be enabled from a semantic
point of view.

. Task allocation. How the performance of the task is
allocated is indicated by the related category and it is
explicitly represented by using icons. There are four
possibilities: user task (only internal cognitive
activity such as selecting a strategy to solve a
problem), application task (only system performance
such as generating the results of a query), interaction
task (user actions with the possibility of immediate
system feedback such as editing a diagram), and
abstract tasks (tasks that have subtasks belonging to
different categories).

. Objects. Once the tasks are identified, it is important
to indicate the objects that have to be manipulated to
support their performance. Two broad types of
objects can be considered: the user interface objects
and the application domain objects. Multiple user
interface objects can be associated to a domain
objects (for example, temperature can be represented
by a bar-chart of a textual value).

The resulting notation allows designers to describe a
greater range of behaviors than those that can be described
by Hierarchical Task Analysis or GOMS. Richer sets of
operators were introduced in UAN, but this notation
supports only asynchronous tasks, whereas, we also give
the possibility of describing how tasks exchange informa-
tion. In addition, UAN is a textual notation with no tool
support, thus unsuitable for developing and analyzing large
specifications. In Fig. 1, there is an excerpt of a task model.
We consider the tasks associated to a customer in an ERP
application. At the beginning, the customer can insert data

to connect. After that (>> is the enabling operator) he can

perform some editing operations. This activity can be

interrupted (�> is the disabling operator) by closing

operations. The operations that the customer can perform

are editing customer data, editing draft lines, editing data in

the header, and managing other operations. Most of these

tasks can be performed repeatedly (* is the iterative

operator) and can be performed in any order (jjj is the

operator for concurrent performance). The Manage other

Draft Quotation Order task can be decomposed to describe

the possibility of requesting conversion of a draft into an

order or quotation or a quotation into an order.
The tasks inherit the temporal constraints of the parent

tasks. For example, in Fig. 1, the Closing Operations task

disables the Editing Operation and all its subtasks. When

sequential tasks are considered, the temporal evolution of

the task model can be followed by reading the model from

left to right. For example, Editing Operation is performed

after Insert Data to Connect. However, iterative tasks (those

indicated with the * symbol) allow going back within the

scope of their subtasks (for example, Manage Existing Drafts

is iterative and, thus, once one occurrence is terminated) by

performing either Request Convert Drafts into Orders or

Request Convert Drafts into Quotations, (�� is the choice

operator), then its first subtask, Analyze Existing Drafts, is

enabled again.
The priority order among operators is: choice (�� operator)

> parallel composition (jjj and j��j operators) > disabling (�>

operator) > suspend-resume (j > operator) > order inde-

pendence (j�j operator) > enabling (>> and �� >>

operators).
An extended description of the temporal operators can

be found in the appendix (Table 1).

MORI ET AL.: CTTE: SUPPORT FOR DEVELOPING AND ANALYZING TASK MODELS FOR INTERACTIVE SYSTEM DESIGN 801

Fig. 1. Example of task model.

3.1 Description of Single Task

For each single task, it is possible to directly specify a
number of attributes and related information. They are
classified into three sections (Fig. 2 shows how CTTE
supports access to each of them):

. General information. It includes the identifier and
extended name of the task, its category and type,
frequency of use, some informal annotation that the
designer may want to store, indication of possible
preconditions, and whether it is an iterative,
optional, or connection task. While the category of
a task indicates the allocation of its performance, the
type of a task allows designers to group tasks,
depending on their semantics. Each category has its
own types of tasks. In the interaction category,
examples of task types are selection (the task allows
the user to select a piece of information), control (the
task allows the user to trigger a control event that
can activate a functionality), and editing (the task
allows the user to enter a value). This classification is
useful to drive the choice of the interaction or
presentation techniques more suitable to support the
task performance. Frequency of use is another useful
information because the interaction techniques asso-
ciated with more frequent tasks need to be better
highlighted to obtain an efficient user interface.

. Objects. It is possible to indicate the objects that have
to be manipulated to perform a task. Objects can be
either user interface or domain application objects. It
is also possible to indicate the access rights of the
user to manipulate the objects. In multiuser applica-
tions, different users may have different access
rights.

. Time performance. It is also possible to indicate
estimated time of performance (including a distinc-
tion among minimal, maximal, and average time of
performance) to allow some performance evaluation
of tasks.

3.2 Representation of Multiuser Cooperation in
ConcurTaskTrees

Providing support for cooperative applications is important
because the increasing spread and improvement of Internet
connections makes it possible to use many types of
cooperative applications. Consequently, tools supporting
the design of applications where multiple users can
interactively cooperate are more and more required.

In our approach, when there are multiuser applications,
the task model is composed of various parts. A role is
identified by a specific set of tasks and relationships among
them. Thus, there is one task model for each role involved.
In addition, there is a cooperative part whose purpose is to
indicate the relationships among tasks performed by
different users.

The cooperative part is described in a manner similar to
the single user parts: It is a hierarchical structure with
indications of the temporal operators. The main difference
is that it includes cooperative tasks: those tasks that imply
actions by two or more users in order to be performed. For
example, negotiating a price is a cooperative task because it

requires actions from both a customer and a salesman.
Cooperative tasks are represented by a specific icon with
two persons interacting with each other.

In the cooperative part, cooperative tasks are decom-
posed until we reach tasks performed by a single user that
are represented with the icons used in the single user parts.
These single user tasks will also appear in the task model of
the associated role. They are defined as connection tasks
between the single-user parts and the cooperative part. In
the task specification of a role (see, for example, Fig. 3, top
part), we can identify connection tasks because they are
annotated by a double arrow under their names.

The effect of this structure of representation is that, in
order to understand whether a task is enabled to be
performed, we have to check both the constraints in the
relative single user part and the constraints in the
cooperative part. It may happen that a task without
constraints regarding the single user part is not enabled
because there is a constraint in the cooperative part
indicating that another user must first perform another
task. If we consider the example in Fig. 3, we can see the
Search Product task performed by a customer and the Provide
products info task performed by a salesman. If we consider
each part of the task model in isolation, these two tasks can
be started immediately. However, if we consider the
additional constraint indicated in the bottom part of the
figure, we can see that the Provide products list task (by the
salesman) needs to first wait for the performance of the Ask
information task (by the customer) in order to be enabled.

We are aware that, in cooperative applications, users
interact not only while performing their routine tasks, but
also when some external event blocks the work flow.
Moreover, such events can create situations where pre-
viously defined tasks need to be changed and/or repeated.
Cooperative work combines communication, individual
action, and collaboration. Our task models aim to provide

802 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 8, AUGUST 2002

Fig. 2. Template to provide information concerning a task.

an abstract representation of these aspects. The task model
associated with a certain role enables distinguishing both
individual tasks and tasks that are related to cooperation
with other users. Then, moving on to the cooperative part, it
is possible to see what the common goals are and what
cooperation among multiple users is required in order to
achieve them. The set of temporal operators also allows
describing flexible situations in which the performance of
the different activities depends on the occurrence of specific
conditions. Of course, specifying flexible behaviors implies
increasing the complexity of the specification. Trying to
anticipate everything that could go wrong in complex
operations would render the specification exceedingly
complex and large. The extent to which designers want to
increase the complexity of the specification to address these
issues depends on many factors, such as the importance for
the current project, resources available, and experience in
task modeling.

The tool allows browsing the task model of cooperative
applications in different ways. The designer can interac-
tively select the frame associated with the part of the task
model of interest (in Fig. 4, there is an example with a task
model composed of a cooperative part and two roles,
Customer and Sales Representative). In addition, when
connection tasks are selected in the task model of a role
(they are highlighted by a double arrow below their name),
it is then possible to automatically visualize where they
appear in the cooperative part and vice versa.

4 HOW THE TOOL SUPPORTS THE EDITING AND

ANALYSIS OF TASK MODELS

The tool provides a large number of possibilities for
supporting easy development and analysis of task models,
the richest currently available. It leverages the ConcurTask-
Trees notation, which allows designers to represent the
structure of the task model in a hierarchical way, which has
been shown to be an intuitive and modular way (one part
for each role plus the cooperative part). In addition, the tool
supports different views of the task model (complete view,
summary view, view by levels, folding and unfolding of
subtrees, etc.). Moreover, the task model's structure can be
easily modified with the additional support of an inter-
active simulator that allows designers to better understand
the dynamic behavior of the model specified.

In this section, we describe the features of the tool, how
they are supported, and the motivations underlying their
inclusion. Section 5 is dedicated to the simulator: its
functionality and underlying algorithm.

4.1 Editing of Task Models

New tasks are added by selecting the category icon;
depending on the selection mode, the new task is added
either as the last right child or as a left sibling of the
current selected task. It is possible to line up a group of
tasks, to change the distance between two levels of the
tree, to automatically change the layout to avoid over-
lapping nodes.

The tool allows for the easy copying and pasting of entire
subtrees. Nodes, including whole subtrees, can be discon-
nected and reconnected arbitrarily, so it is easy to

restructure the tree. It is possible to construct a library of
patterns associated with subtrees for common tasks which
the analyst can reuse in future models. It is possible to
interactively select a node and expand or collapse the
related subtree. Folding a subtree can be useful when
designers do not want to be disturbed by too many details.

The tool is also able to show only a specific number of
levels of the task model that is interactively indicated by the
user. When the model extends beyond the bounds of the
initial window, the tool automatically enables vertical and
horizontal scrollbars to allow the designer to still access the
entire model.

The tool also supports automatic search of a task in the
graphical representation of the model.

4.2 Multiple Interactive Views of the Specification

One usability problem often occurring with tools graphi-
cally representing models of realistic systems is that such
models do not fit in a window. The usual solution is to
include scroll-bars to navigate in the representation. These
are useful but often not sufficient to support designers in
analysing such models. Thus, to better support the analysis
of large specifications, we added an overview window (top
right part in Fig. 4), where the logical structure of the task
model is represented without reporting details, such as the
task names or the icons indicating task allocation perfor-
mance. In the overview window, the part currently
represented in the large window is highlighted by a red
rectangle. Thus, designers can have, at the same time, a
detailed view on a part of interest in the task model that can
be edited by direct manipulation and then have an
overview on where such a part is located in the overall
structure of the model. It is possible to change the part

MORI ET AL.: CTTE: SUPPORT FOR DEVELOPING AND ANALYZING TASK MODELS FOR INTERACTIVE SYSTEM DESIGN 803

Fig. 3. Simplified example of cooperative task model.

displayed in the detailed view by just selecting another part

in the overview window. In addition, it is possible to zoom

the view in or out on the detailed representation and the

center of the zooming can be either the center of the

specification or a task selected by the designer.

4.3 Editing of Task Models for Cooperative
Applications

When cooperative task models are developed, the overall

model is structured in one model for each role involved and

one part that is associated with modeling the cooperations

among users belonging to different roles. There is a tabbed

window associated with each part (possible parts are the

roles defined and the cooperative part) and, at any time,

designers can select which one to bring to the front. To

better analyze relationships between cooperative and single

user parts, when a single user task in the cooperative part (a

connection task) is selected, then the tool automatically

shows the task model of the corresponding user and it

highlights where it is located within it.

To facilitate the consistent development of the various

parts of the task model of a cooperative application when

the cooperative part is selected, the designer can select a

role from the list on the right side and the tool lists the

connection tasks that have been identified for that role (for

example, in Fig. 4, the roles are Customer and Sales

Representative, Customer has been selected, and, below,

the list of related connection tasks is displayed). This allows

designers to easily check whether there is any connection

task that has not yet been included in the cooperative part

and, in that case, they can immediately add it. They just

have to create a new task and the name and the role of the

connection task will automatically be associated to the new

task by selecting the associated connection task.

4.4 Using Informal Descriptions in
Supporting Modeling

Often, it is difficult to immediately create a model from
scratch. Thus, to support the initial modeling work, we give
the possibility of loading an informal textual description of
a scenario or a use case and interactively selecting the
information of interest for the modeling work. In this way,
the designer can first identify tasks, then create a logical
hierarchical structure, and, finally, complete the task model.

To develop a task model from an informal textual

description, designers first have to identify the different

roles (they are in box 2 and they are derived from the part of

the scenario highlighted by box 1 in Fig. 5). Then, they can

start to analyze the description of the scenario, trying to

identify the main tasks that occur in the scenario's

description and refer each task to a particular role. For

example, as you can see from Fig. 5, the looking at the

taxiways task has been identified within the scenario's

description of an example in the air traffic control domain

(see box 3). As this task refers to the ground controller, the

804 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 8, AUGUST 2002

Fig. 4. The editor of task models for cooperative applications.

Ground role has been selected in the list of roles and the task

has been added to it (see circle 4). It is possible to specify the

category of the task in terms of performance allocation. In

this case, the task has been considered as a user task. In

addition, not only a description of the task can be specified,

but also the logical objects used and handled (see circle 5).

Reviewing the scenario description, the designer identifies

the different tasks and then adds them to the list. This must

be performed for each user in the environment.
When each user's main tasks in the scenario have been

identified, it might be necessary to make some slight
modifications to the newly defined task list. This allows
designers to avoid task repetition, refine the task names so
as to make them more meaningful, and so on. For example,
in Fig. 5, two similar tasks have been identified: the
communicating to the pilot the tower radio frequency and issues
the instructions to shift to the tower controller radio frequency
tasks (see circle 6-7). They both concern the task of
communicating the tower frequency to a departing aircraft
that has reached the starting point of the runway, so they
can be merged into a single task.

4.5 Checking Completeness of the Specification

There is also automatic support to check that the specifica-
tion is complete according to the syntax and the semantics
of the notation. This means, for example, that the temporal
relationships for all tasks are defined as follows: If a task is a
leaf in the cooperative part, then it should appear in a single
user part and, vice versa, if a task is defined as a connection
task in a single user part, then it should appear in the
cooperative part. Another control is that each nonbasic task
has at least two children because it is not meaningful to
have a decomposition into one child.

Fig. 6 shows an example of the results provided by the
automatic check. As can be seen, there are errors that stop
the user from going any further with the analysis, whereas
warnings, which are errors as well (such as a basic task
assigned to an abstract category), allow the user to continue
with the analysis, for example, by activating the simulator.

4.6 Saving the Specification in Various Formats

At any time, it is possible to save all or parts of the
specification and, vice versa, to insert parts of specifications
previously saved into the current specification. It is also
possible to save all or parts of the specification as jpeg
images. This is particularly useful when inserting them in
documents, manuals, or reports related to the application
that is being considered.

It is also possible to save the task model in XML format.
To this end, the DTD format for task models specified by
ConcurTaskTrees has been developed. Its purpose is to
indicate the syntax for XML expressions that correctly
represent task models. This can be useful to facilitate the
possibility of analyzing its information from other environ-
ments or to build rendering systems able to generate user
interfaces for specific platforms using the task model as
abstract specification.

Automatic generation of an HTML version of the
hierarchical structure of the task model is also supported.

4.7 Comparing Task Models

There is often a need to compare task models. This occurs

when people want to compare how people work in the

current system and how they could work in a new

envisioned system or the designer could be interested in

comparing the implications of two alternative designs at

task level. Previously, no tool has given this support for task

models. CTTE gives some information that can be helpful

for this purpose. To be comparable, the two task models

should consider the same roles. The comparison is

performed in terms of number of tasks, number of basic

tasks (the tasks that are no longer decomposed), allocation

of tasks, number of instances of temporal operators, and the

structure of the task models (number of levels, maximum

number of sibling tasks). This information can also be given

for single task models in order to analyze them. By

comparing this type of information, it is possible to deduce

some general features of a solution with respect to another

one. For example, a higher number of application tasks and

a lower number of user tasks imply that there is a strong

shift toward allocating task performance to the system or a

higher number of sequential operators implies that the

solution supports a higher number of modes in its

dialogues with the user.
In Fig. 7, there is an example of comparison; designers

have to select which part of the task model they want to

compare (the tower controllers, TWR, in the example) and

then the result of the comparison of the information relative

to that part in the two task models appears. There is also the

possibility of activating the presentation of the details

related to some parameters. For example, if the details of

interaction tasks are selected, then the tool shows the

interaction tasks of the selected role that are in one task

MORI ET AL.: CTTE: SUPPORT FOR DEVELOPING AND ANALYZING TASK MODELS FOR INTERACTIVE SYSTEM DESIGN 805

Fig. 5. Moving from informal to formal.

model but not in the other and vice versa (see, for example,

Fig. 7, lower part).
We would rather avoid having the tool provide

definitive interpretations of these results because they often

depend on the type of application considered and features

that would characterize a good solution in one application

domain may represent a bad solution in another. On the

other hand, the automatic analysis highlights specific

features of the solutions considered that otherwise would

have been difficult to identify, especially when large models

of real applications are considered.

4.8 Automatic Expansion of Task Patterns

The tool supports the possibility of automatically expand-

ing task patterns. This means that, if the designer defines

the structure of a high-level task in a point of the model and

if the same task has to occur somewhere else, then they do

not have to again provide all the specification, but it is

sufficient to indicate the name of the high-level task. In fact,

the tool is able to automatically identify if there are high-

level tasks that have been defined in one point and occur in

others and then expand them also in the other occurrences

(Fig. 8 shows an example). This is not performed in case of

recursive tasks in order to avoid infinite expansions. If two

tasks have the same name but different categories (task

allocation), they are considered different tasks (a search

performed by the user or the system is two different

activities). If the tool detects that the same task is defined in

different ways at different points, it generates an error

indicating where it occurs.

4.9 Additional Features

The tool supports additional features such as automatic
translation of ConcurTaskTrees specifications into LOTOS
specifications. One reason for such a translation is that there
are a number of model checking tools (for example, CADP
[14]) that can receive LOTOS specifications as input. These
tools allow designers to check formal properties, usually
expressed in temporal logics, over the specification.
Examples of properties that can be verified are reachability
properties (once a task has been performed, designers want
to know whether it will be possible to perform another
task). With our approach, it is also possible to consider
properties of multiuser interactions (such as mutual
awareness whenever one user performs an interaction the
other users receive feedback).

Another possibility of the tool is to automatically
calculate enabled task sets for each level of the task tree.
Each set is composed of tasks that are enabled over the
same period of time according to the constraints indicated
in the model. This information is useful during user
interface design because the interaction techniques support-
ing the tasks belonging to the same enabled task set should
often be part of the same presentation. Such enabled task
sets can be also saved in XML format.

5 THE SIMULATOR

5.1 Motivations and Overall Description

A simulator for task models can be useful to better analyze
the dynamic behavior of task models, including those for
cooperative applications. This is a support that only a few

806 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 8, AUGUST 2002

Fig. 6. Example of errors identified while checking specification completeness.

tools provide [2]. Also, in the case of tools for UML, this is a

feature usually missing. In addition, CTTE gives the

possibility of simulating task models of applications where

the resulting behavior depends on the interactions of

various users.
When analyzing an existing application or designing a

new one, it can be rather difficult for the designer to

understand the dynamic behavior resulting from the

temporal relationships specified in the task model. The

reason is that, especially for real applications, the number of

ways in which the application can evolve is high and it is

difficult to mentally remember the various temporal

constraints among tasks and their possible effects. It

becomes important to support a what-if analysis aimed at

identifying what tasks are logically enabled if one specific

task is performed. To support this analysis of the dynamic

behavior of task models, interactive simulators can be

helpful. The basic idea is that, at any time, they show the list
of enabled tasks according to the constraints specified in the
task model. In the list of enabled tasks, only basic tasks,
those that are not further decomposed in the model, are
considered. Before starting the simulation, the tool auto-
matically checks that the task model is complete and
consistent. The designer can interactively select one of them
and the simulator shows, after the performance of the
selected task, what the enabled tasks are. This interaction
can be iteratively performed a number of times. Since we
can describe task models for cooperative applications, in the
simulation, we can also see the role of the user involved by
the performance of the selected task.

When the simulator is started, then the window on the
right displays the list of tasks enabled (see Fig. 9). The tasks
that appear in such a list are basic tasks, tasks that are not
further decomposed in the model. They are grouped
according to the role to which they are assigned. In
addition, the tasks that are part of cooperative tasks are
listed again under the Cooperations label. The enabled tasks
are also highlighted in the task model by a green frame.

Then, the user can interactively select a task to perform
and the simulator shows what the next enabled tasks are. At
any time, it is possible to go back through the performance

MORI ET AL.: CTTE: SUPPORT FOR DEVELOPING AND ANALYZING TASK MODELS FOR INTERACTIVE SYSTEM DESIGN 807

Fig. 7. Example of comparison of task models.

Fig. 8. An example of task pattern automatically identified and

expanded.

of the tasks, which means that the effects of the performance
of the last task are undone and the list of enabled tasks
becomes the same as that previous to the performance of
the last task. At this point, the user can choose to go further
backward in the task sequence or forward, either through
the same path or a different one.

At any time, the designer can also display the specific
sequence of tasks that has been performed in the current
simulation (see, for example, Fig. 10). They appear with an
indication of the role of the user that performs the task. This
is a way to interactively identify an abstract scenario that
can be saved in a file and used to compare different task
models. The tool is able to load a scenario created with
another task model in order to simulate performance of the
same sequence of tasks. If this is not possible, either because
a task is not supported in the other model or because the
temporal relationships in that task model do not allow such
a sequence, then it means that the scenario is not supported.
This can be useful to compare the task model of an existing
application with that of an envisioned one or two different
task models that are related to two different designs of the
same application. Further possibilities are supported when
loading a previously created scenario, such as extending it
by adding further tasks or exploring variants of that
scenario by performing it partially and then choosing
different possible evolutions.

The simulator has shown to be useful in several cases:

. Designers can check whether the specified behavior
is really what they intended to describe. This is
important because, especially in the case of large
specifications, it is difficult to immediately under-
stand the overall behavior deriving from the
combination of the hierarchical structure and the
temporal operators.

. It can support a multidisciplinary discussion where
people with different backgrounds (designers, soft-
ware developers, end users) discuss design decision
at the task level.

. It can be employed as interactive documentation of
an application to explain to end users how to use it
(indicating in which order tasks can be performed,
possible choices, and other dynamic information).

5.2 Underlying Algorithm

The inputs for the simulator are the task model and the
semantics of the temporal operators. The formal semantics
of each temporal operator was specified using labeled
transition systems.

The first step aims to build the data structures required
by the simulator. The purpose is to create a binary tree
corresponding to the structure of the model according to the
operator priorities. For each part of the task model (each
role and the cooperative part), there is a top-down visit of
the corresponding tree. During this visit, a new data
structure is created that stores the corresponding binary
tree identified by following the priorities among operators
and going from left to right when multiple instances of the
same operator are found.

Next, the main goal of the simulator is to identify the set
of enabled tasks at any time. Each task is associated with a

unique key. Also, each part of the task model has an

associated, unique index (indexRole variable). The method

BottomUp(exp, indexRole) has to identify the enabled tasks

where exp is either a basic task or a high-level task. To this

end, two steps are performed: When the simulator is

started, all the basic tasks for each part of the model are

analyzed and the method BottomUp is applied to them.

Then, during the interactive simulation, when the user

selects a task, the simulator then checks what the next

enabled tasks are by applying the method BottomUp to each

basic task.
The method BottomUp first checks whether the task in

question is a connection task. If so, then it has to call the

method BottomUpEnabled on both the cooperative part and

the part of the model corresponding to the role to which that

task belongs (in the case of a nonconnection task, only the

latter needs to be performed). In turn, the BottomUpEnabled

method can use three other methods: DownHard, which

returns true if the task has been completely performed;

DownSoft, which returns true if it is a high-level task with at

least one of its subtasks already performed or if it is a basic

task that has already been performed; DownSoftHard, which

checks if the task is part of an order-independent expression

and returns true if the corresponding expression has been

performed and the other one not at all.
The BottomUpEnabled method performs a bottom-up visit

of the binary tree version of the model. For each task, it

analyzes what the corresponding temporal operator is.

Depending on the operator, it first checks whether it is the

left or the righthand part of the expression and, then,

depending on the result, it starts a specific analysis that

aims to identify if the parent tasks and the task currently

under analysis are enabled.
The type of analysis depends on the type of operator

associated with the task and its formal semantics; in all

cases, the method first checks recursively whether all the

ancestor tasks are enabled:

808 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 8, AUGUST 2002

Fig. 9. The interactive simulator of task models.

. In the case of the choice operator, it also checks that
performance of the other part of the choice has not
started.

. In the case of order independence, it also checks
whether performance of the other part has either
already been completed or has not yet started.

. In the case of interleaving, there is no additional
check.

. In the case of disabling, if it is the left part of the
operator, then it checks that the right part has not
been started, whereas, if it is the right part, then the
left part must not be completed.

. In the case of suspend-resume, if it is the left part,
then either the right part should not have started or
the right part should be completed, whereas, if it is
the right part, then the left part should not be
completed.

. In the case of enabling, if it is the left part, then
performance of the right part should not have
started, whereas, if it is the right part, then the left
part should be completely performed.

Before starting the analysis of the enabled tasks, the tool

analyzes the list of iterative tasks, then checks which of

them have completely performed one iteration and, last,

removes the associated basic tasks from the list of

performed basic tasks so that a new iteration can start.
Optional tasks are analyzed by the DownHard method

and, in these cases, the tool checks whether at least one

subtask has been performed, then it is treated like the other

tasks; whereas, if it has not been performed at all, then it is

treated as if it were completed and the next tasks at the

same level are thereby enabled. By way of example,

suppose we have an optional high-level task A followed

by task B. At the beginning, both are enabled and this

means that the tool treats A as if it had been performed;

whereas, if A has already started, then it must complete in

order to enable task B again.

If it is possible to reach the root of the tree in this bottom-
up analysis, then the task is enabled (Fig. 11 summarizes the
algorithm of the BottomUpEnabled method). If the user elects
to have a task performed, this task is added to an array of
executed basic tasks.

5.3 A Small Example of Simulator Analysis

In order to better explain how the simulator works, we
can consider a small example. Fig. 12 shows a task model
where various temporal relationships are included. The
tool first transforms it into the corresponding binary
version (see Fig. 13).

Suppose that the following tasks have been performed:
Connection to the site, Show Home Page, and Type Name and
the simulator has to check whether Close session is enabled.

Close session is a subtask of D0 and it is in its righthand
part. Thus, the simulator checks whether D0 is enabled
through the BottomUp method and that execution of the left
part of D0 (Search) has not completed (see the branch of the
algorithm related to disabling operator). The second
condition is true because Search has not been completely
performed. Thus, only the first condition has to be checked.
D0 is the righthand part of Access Virtual Museum, thus the
simulator has to check if Access Virtual Museum is enabled
and that its left part (E0) has been performed. The second
condition is true because Connection to the site and Show
Home Page have both been performed. Thus, we only need
to check that Access Virtual Museum is enabled. However,
Access Virtual Museum is the root and reaching it is the
condition sufficient to consider the Close session task enabled
that is, thus, inserted into the list of enabled tasks.

If we consider another task, Return to Home Page, the
result is different. It is the right part of Search. Thus, we
need to check that both Search is enabled and that the left
part of Search has been performed by using the DownHard
method. However, it can be immediately detected that E4
has not been completely performed because the subtree
Select parameter has not been completed and the basic tasks,
Send Request, Show result, and Analyse result, that are
composed through a sequential operator, have not been
performed. Thus, Return to Home Page is not enabled.

6 APPLICATIONS OF CTTE AND EXPERIENCES

OF USE

The tool has been used in a number of projects and at
several universities for teaching purposes.

For example, it was used [24] to support the design of an
adaptable web museum application. The application pro-
vided different ways to navigate and present information,
depending on the current user model (tourist, expert,
student). We developed a task model for each type of user.
The task models also shared some portions for tasks that
were common to different types of users.

In the MEFISTO project (http://giove.cnuce.cnr.it/
mefisto.html), CTTE has been used to model various air
traffic control applications and support their design and
evaluation. Large specifications including hundreds of tasks
were developed. In this project, the tool was proposed to
several teams belonging to organizations that design and
develop systems for air traffic control; in some cases, the

MORI ET AL.: CTTE: SUPPORT FOR DEVELOPING AND ANALYZING TASK MODELS FOR INTERACTIVE SYSTEM DESIGN 809

Fig. 10. Example of scenario derived from simulation.

teams also included people with different backgrounds.
One team expressed their appreciation of a tool for task
modeling that can be easily downloaded and installed and
allow task model-specification at various abstraction levels
(including a level independent of the interaction technology
considered). However, they found it less easy to understand
the exact semantics associated with temporal operators and
the development of descriptions for complex multiagent
interactions. On another team, the tool was used to develop
a task model of an envisioned system from which a number
of design recommendations were drawn. The task model
was then used in the evaluation of a prototype that was
developed. Designers found developing models useful to
better understand the problem domain and were stimulated
to think more carefully about tasks and their relationships.
They found that having some formal background was
useful in following the proposed approach, but the
notation's hierarchical structure and graphical syntax
allowed reducing the designers' efforts to understand the
models. One aspect that created problems was when
multiple operators appear on the same task level with
possible ambiguity in the interpretation of the expression.
The notation defines the priorities among operators, thus
each expression is associated with a single meaning.
However, often designers forget these priorities. Thus, we
modified the layout of the tool, arranging the list of
operators in descending order of priority, with labels
indicating the sorting order. This small modification was
useful, but proved to be insufficient. Thus, we added a view
of the model (View priority tree) in which, whenever

multiple operators are present at the same level, a new task
node is included and the lower priority operator is demoted
by one level together with its related tasks. Of the features
of the tool, those that they liked most were the ability to
check whether a scenario is complete according to the task
model, if the model is consistent with the notation, and to
interactively simulate the performance of scenarios. They
also would have liked tool support to move from the task
model to the concrete user interface implementation.

More generally, the experience showed that software
engineers who were used to working with tools and
structured representations during software design and
development found it easy to learn and use. People from
other backgrounds, such as psychologists or end users (in
this case, they were air traffic controllers), had more
problems, but this seemed to depend more on the fact
that they were not at all used to working with formal
representations or systematic methods. However, software
designers found it useful to interact with these people
and then use the results of the discussion to improve
their task models.

At the University of York, an evaluation exercise was
developed using a number of techniques (including
cognitive dimensions for notations [16] and cooperative
evaluation). The trials included computer science students
and research associates (thus, people with a background
similar to that of industry software engineers). The exercises
provided useful feedback and suggestions for small im-
provements in the usability of the tool: Some icons were
changed to better represent the related functionality and
some minor functionality was added to further ease editing
of the models. Once again, the representations of the
temporal operators were not found to be particularly
intuitive (we added text tooltips to the icons representing
temporal operators to indicate the meaning of the opera-
tors). The functionalities that they liked most were the
global view of the specification, the automatic support for
improving layout of the specification, and the availability of
good support for editing the model.

In the GUITARE project, various teams from software
companies have used the tool for different application

810 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 8, AUGUST 2002

Fig. 11. The algorithm of the BottomUpEnabled method.

Fig. 12. An example of a task model.

domains. Some of these teams included people without any
background in computer science, who nevertheless were
able to use the tool satisfactorily. One of these companies
developed a single-user interface generator for ERP
(Enterprise Resource Planning) applications starting with
ConcurTaskTrees task models. Such a generator also
applies organization guidelines to the user interface

generation process. Another company was particularly
intrigued by the ability to save the task model specification
in XML. So, they developed a tool that produces Web-
browsable documentation based on the information con-
tained in the task model and a prototype version of a user
interface prototyping tool based on the use of task models
and related enabled task sets. This team liked the support
that the CTTE tool provides for carefully weighing the
activities to be performed and their relationships and then
refining them until the basic interactions have been
described. They too would have liked to have some support
for rapid user interface prototyping consistent with the task
model earlier in the design process.

Methods have also been developed [19], [26], [11] for
supporting user interface design and generation starting
with task models specified by CTTE.

7 SUMMARY AND LESSONS LEARNED

In the initial part of the paper, we introduced how task
models can be useful in the software development life cycle.
CTTE is particularly oriented to supporting the design
phase because it allows designers to specify and analyze
how the activities should be structured and dynamically
evolve. The information that is obtained with CTTE can also
be used to support usability evaluation through other tools
(see, for example, [20]).

Often, the social and time constraints in software design
and development result in designers' feeling pressured
when adopting model-based approaches. The cost of using
models is often criticized. The use of tools strongly decreases
such cost. Some application areas (such as interactive safety-
critical applications) can better justify such effort. In
addition, tools can also facilitate reuse of the specification
across various phases, including documentation.

We have seen how CTTE represents an engineered
approach to task models, thus overcoming the limitations of
previous approaches, which either had no or very limited
tool support or used unsuitable notations with limited
operators (and, in some cases, no precise semantics). This
engineered approach is of particular importance for soft-
ware engineers who have to develop interactive software
systems, often with no systematic support for obtaining
effective solutions.

The groups that have thoroughly tested the tool
(including ourselves, because, apart from being the de-
signers and developers of the tool, we are also users, as we
have used it in various projects) have found it useful in
various ways to obtain better task models, especially when
the size of the specification becomes larger. It speeds up the
process of developing and analyzing models that can be
used for evaluation, documentation, and user interface
generation. The ability to interactively identify abstract
scenarios through the simulator provides useful insights
into the dynamic behavior of the model. The identification
of metrics concerning the task model and the possibility of
comparing two models against them is useful in under-
standing the characteristic features of a given design from
the specification. The types of model representations
provided are particularly useful when analyzing large
specifications: There is both a global and a local view of
the part of the model considered, the model is split into
different parts (one for each role and the cooperative part),

MORI ET AL.: CTTE: SUPPORT FOR DEVELOPING AND ANALYZING TASK MODELS FOR INTERACTIVE SYSTEM DESIGN 811

Fig. 13. The binary version of the example.

and there is support to clearly understand the relationships
among the various parts.

In addition, the rich set of temporal operators associated

with the hierarchical structure allows designers to describe

flexible behaviors of both individual and multiuser activ-

ities, taking into account possible interruptions and the

various ways in which such behaviors may evolve.
The overall feature set represents a substantial advance-

ment to approaches to task modeling. Thus, ConcurTask-

Trees, and the relative tool, can better provide the missing

link between modeling a user interface and building/

evaluating it.

8 CONCLUSIONS AND FUTURE WORK

We have described CTTE, a tool that provides feature-rich

automatic support for developing and analyzing task

models. The tool's functionalities give designers useful

indications concerning aspects that they should consider

when developing interactive software applications.
For this purpose, we have outlined how task models are

represented in ConcurTaskTrees and then described how

the tool can be used to easily edit and analyze such models

in order to gain useful insights, as well as the underlying

algorithm of the interactive simulator. Last, we have briefly

reported on how the tool has been applied in various

projects to indicate its level of maturity.
The tool has been used in various projects for several

application areas by many groups in academia and

industry. It has been implemented in Java 1.3 beta and

has been found useful in clarifying design issues and

supporting analysis and evaluation of design options. It is

freely available at http://giove.cnuce.cnr.it/ctte.html and

has already been downloaded by hundreds of sites all over

the world.
Future work will be dedicated to extending the tool in

order to obtain an environment for the design of multi-

context applications that can be accessed from a wide

variety of devices (ranging from cellular phones to large,

flat screens) and environments. The new tool will be able to

take information from the task model and the description of

the target platforms and provide suggestions for imple-

menting corresponding easy-to-use interfaces. The

approach will be semiautomatic in order to allow designers

to tailor solutions to the specific case studies.
We also plan to integrate this tool with UML environ-

ments (such as Rational Rose) in order to obtain more

thorough support in designing interactive software sys-

tems. In particular, we envision a solution where Use Cases

can be used to collect the high-level requirements to be

considered in the development of task models. The objects

associated with the task model can be integrated with those

belonging to a domain model described with UML

notations.

APPENDIX

An extended description of the temporal operators can be

found in Table 1.

812 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 8, AUGUST 2002

TABLE 1
Temporal Operators Used in ConcurTaskTrees

ACKNOWLEDGMENTS

The authors wish to thank Giulio Ballardin and Riccardo
Galiberti for their help in the implementation of an early
version of the environment. We gratefully acknowledge
support from the European GUITARE project (http://
giove.cnuce.cnr.it/guitare.html).

REFERENCES

[1] T. Bolognesi and E. Brinksma, ªIntroduction to the ISO Specifica-
tion Language LOTOS,º Computer Network ISDN Systems, vol. 14,
no. 1, pp. 25-59, 1987.

[2] M. Biere, B. Bomsdorf, and G. Szwillus, ªSpecification and
Simulation of Task Models with VTMB,º Proc. Computer-Human
Interaction Conf. (CHI '99), pp. 1-2, 1999.

[3] L. Baumeister, B. John, and M. Byrne, ªA Comparison of Tools for
Building GOMS Models,º Proc. Computer-Human Interaction Conf.
(CHI '00), pp. 502-509, 2000.

[4] P. Barclay, T. Griffiths, J. McKirfy, N. Paton, R. Cooper, and J.
Kennedy, ªThe Teallach Tool: Using Models for Flexible User
Interface Design,º Proc. Int'l Conf. Computer-Aided Design of User
Interfaces (CADUI '99), pp. 139-158, 1999.

[5] F. Bodart, A. Hennerbert, J. Leheureux, and J. Vanderdonckt, ªA
Model-Based Approach to Presentation: A Continuum from Task
Analysis to Prototype,º Proc. Int'l Eurographics Workshop Design,
Specification, and Verification of Interactive Systems (DSV-IS '94),
pp. 77-94, 1994.

[6] R. Bastide and P. Palanque, ªA Visual and Formal Glue between
Application and Interaction,º Int'l J. Visual Language and Comput-
ing, vol. 10, no. 6, pp. 481-507, 1999.

[7] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language
Reference Manual. Addison-Wesley, 1999.

[8] B. Bomsdorf and G. Szwillus, ªTool Support for Task-Based User
Interface Design,º Proc. Computer-Human Interaction Conf.
(CHI '99), pp. 169-170, 1999.

[9] S. Card, T. Moran, and A. Newell, The Psychology of Human-
Computer Interaction. Hillsdale: Lawrence Erlbaum, 1983.

[10] G. Calvary, J. Coutaz, and L. Nigay, ªFrom Single-User
Architectural Design to PAC*: A Generic Software Architectural
Model for CSCW,º Proc. Computer-Human Interaction Conf.
(CHI '97), pp. 242-249, 1997.

[11] G. Calvary, J. Coutaz, and D. Thevenin, ªA Unifying Reference
Framework for the Development of Plastic User Interfaces,º Proc.
Eng. Human-Computer Interaction Conf. (HCI '01), pp. 218-238, 2001.

[12] C. Ellis and J. Wainer, ªA Conceptual Model of Groupware,º Proc.
ACM Conf. Computer Supported Cooperative Work (CSCW'94),
R. Furuta and C. Neuwirth, eds., pp. 79-88, 1994.

[13] J. Foley and N. Sukaviriya, ªHistory, Results, and Bibliography of
the User Interface Design Environment (UIDE), an Early Model-
Based System for User Interface Design and Development,º
Interactive Systems: Design, Specification, Verification, F. Paterno
ed., pp. 3-14, 1994.

[14] J. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier,
and M. Sighireanu, ªCADP (CAESAR/ALDEBARAN Develop-
ment Package): A Protocol Validation and Verification Toolbox,º
Proc. Eighth Conf. Computer-Aided Verification, pp. 437-440, 1996.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[16] T. Green andM. Petre, ªUsability Analysis of Visual Programming
Environments: A `Cognitive Dimensions' Framework,º J. Visual
Languages and Computing, vol. 7, no. 2, pp. 131-174, June 1996.

[17] R. Hartson and P. Gray, ªTemporal Aspects of Tasks in the User
ActionNotation,ºHumanComputer Interaction, vol. 7, pp. 1-45, 1992.

[18] N. Leveson, ªIntent Specifications: An Approach to Building
Human-Centered Specification,º IEEE Trans. Software Eng., vol. 28,
no. 1, pp. 15-35, Jan. 2000.

[19] Q. Limbourg, B. Ait El Hadj, J. Vanderdonckt, G. Keymolen, and
E. Mbaki, ªTowards Derivation of Presentation and Dialogue from
Models: Preliminary Results,º Proc. Int'l Eurographics Workshop
Design, Specification, and Verification of Interactive Systems (DSV-
IS '00), pp. 227-248, 2000.

[20] A. Lecerof and F. PaternoÁ, ªAutomatic Support for Usability
Evaluation,º IEEE Trans. Software Eng., vol. 26, no. 10, pp. 863-888,
Oct. 1998.

[21] N. Numes and J. Falcao, ªTowards a UML Profile for User
Interface Development: The Wisdom Approach,º Proc. Unified
Modeling Language Conf. (UML '00), pp. 50-58, 2000.

[22] F. PaternoÁ , Model-Based Design and Evaluation of Interactive
Application. Springer Verlag, 1999.

[23] F. PaternoÁ , ªTowards a UML for Interactive Systems,º Proc. Eng.
Human-Computer Interaction Conf. (HCI '01), pp. 175-185, 2001.

[24] F. PaternoÁ and C. Mancini, ªDesigning Usable Hypermedia,º
Empirical Software Eng., vol. 4, no. 1, pp. 11-42, 1999.

[25] A. Puerta, E. Cheng, T. Ou, and J. Min, ªMOBILE: User-Centred
Interface Building,º Proc. Computer-Human Interaction (CHI '99),
pp. 426-433, 1999.

[26] F. PaternoÁ, C. Santoro, and V. Sabbatino, ªUsing Information in
Task Models to Support Design of Interactive Safety-Critical
Applications,º Proc. Advanced Visual Interfaces Int'l Working Conf.
(AVI '00), pp. 120-127, May 2000.

[27] M. Roseman and S. Greenberg, ªBuilding Real-Time Groupware
with GroupKit, A Gropware Toolkit,º ACM Trans. Computer-
Human Interaction, vol. 3, no. 1, pp. 66-106, Mar. 1996.

[28] D. Scapin and C. Pierret-Golbreich, ªTowards a Method for Task
Descrption: MAD,º Proc. Work with Display Unit, pp. 78-92, 1989.

[29] A. Sutcliffe, ªTask-Related Information Analysis,º Int'l J. Human-
Computer Studies, vol. 47, pp. 223-257, 1997.

[30] P. Szekely, P. Luo, and R. Neches, ªBeyond Interface Builders:
Model-Based Interface Tools,º Proc. Conf. Human Factors and
Computing Systems (INTERCHI '93), pp. 383-390, 1993.

[31] G. van der Veer, B. Lenting, and B. Bergevoet, ªGTA: Groupware
Task AnalysisÐModeling Complexity,º Acta Psychologica, vol. 91,
pp. 297-322, 1996.

[32] M. van Welie, G.C. van der Veer, and A. ElieÈns, ªAn Ontology for
Task World Models,º Proc. Int'l Eurographics Workshop Design,
Specification, and Verification of Interactive Systems (DSV-IS '98),
pp. 57-70, 1998.

[33] S. Wilson, P. Johnson, C. Kelly, J. Cunningham, and P.
Markopoulos, ªBeyond Hacking: A Model-Based Approach to
User Interface Design,º Proc. Eng. Human-Computer Interaction
Conf. (HCI '93), pp. 40-48, 1993.

Giulio Mori received a degree in informatics
enginering from the University of Pisa and is a
research assistant at the Human-Computer
Interaction Group of the National Research
Council of Italy, ISTI-CNR working on the design
and development of interactive applications.

Fabio PaternoÁ is the head of the Human-
Computer Interaction Group of the National
Research Council of Italy, ISTI-CNR. He has
been the coordinator of a number of European
and national projects on user interface-related
topics. He is a member of the IFIP TC13
technical committee. He is the President of
ACM-SIGCHI, Italy. He has been member of
the program committees of the main interna-
tional HCI conferences. He has published more

than 80 papers in refereed international conferences or journals. His
main interests are in methods and tools for design and evaluation of
usable interactive systems accessible from many types of contexts.

Carmen Santoro received a degree in compu-
ter science from the University of Pisa, Italy, and
is a research assistant with the Human-Compu-
ter Interaction Group of the National Research
Council of Italy, ISTI-CNR. Her current research
interests are design and development of effec-
tive user interfaces for mobile devices.

MORI ET AL.: CTTE: SUPPORT FOR DEVELOPING AND ANALYZING TASK MODELS FOR INTERACTIVE SYSTEM DESIGN 813

