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This paper describes the release of the detailed building operation data, including electricity 

consumption and indoor environmental measurements, of the seven-story 11,700-m2 office 
building located in Bangkok, Thailand. The electricity consumption data (kW) are that of individual 

air conditioning units, lighting, and plug loads in each of the 33 zones of the building. The indoor 
environmental sensor data comprise temperature (°C), relative humidity (%), and ambient light (lux) 

measurements of the same zones. The entire datasets are available at one-minute intervals for the 
period of 18 months from July 1, 2018, to December 31, 2019. Such datasets can be used to support a 
wide range of applications, such as zone-level, floor-level, and building-level load forecasting, indoor 
thermal model development, validation of building simulation models, development of demand 

response algorithms by load type, anomaly detection methods, and reinforcement learning algorithms 

for control of multiple AC units.

Background & Summary
�e global energy consumption of the building sector which includes both commercial and residential buildings 
is approximately 20%1. With the rapid increase in population as well as economic growth, energy consumption 
in buildings is projected to increase at the rate of 1.3% per year from 2018 to 20502. With the building sector 
accounting for one-third of greenhouse gases, two-thirds of halo-carbon and approximately 25–33% of black 
carbon emissions3, this growing energy demand has raised signi�cant concerns worldwide of its negative impact 
on the environment. Currently available technologies can help reduce electricity consumption in buildings by 
approximately 30 to 80%4. In order to meet the rising electricity demand, an e�cient and cost e�ective operation 
is needed. Buildings are increasingly equipped with building automation systems (BAS) and smart meters which 
gather load and other related data at a granular level. And, with such a large amount of building-level data, this 
has paved ways for data-driven approaches, i.e., statistical/machine learning related approaches instead of the tra-
ditional physics based approaches. However, it is very important to have good quality building data for research 
related to data-driven approaches.

In building electricity research, publicly available datasets are from both commercial and residential buildings.
In the residential space, several public datasets are available at various time resolutions. Typically, one-minute 

to one-hour resolution data are bene�cial for the identi�cation of peak demand reduction opportunities and 
understanding building electricity characteristics. �ese are: the UMass smart datasets5; the UCI dataset6; the 
Almanac dataset7,8; the programmable thermostat data9; and the Household Electricity Survey (HES) dataset10. 
�e UMass datasets5 provide electricity consumption data of 400+ homes at one minute intervals. Potential 
applications include home energy e�ciency improvement, operating cost optimization, peak demand �attening 
and renewable energy prediction. �e UCI dataset6 provides electrical consumption data of a house for the period 
of four years at one minute intervals. It also consists of various sub-metering values, as well as di�erent electrical 
quantities. �e Almanac datasets7,8 provide measurements of electricity, natural gas and water at one-minute 
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intervals for the period of around two years. �e programmable thermostat dataset9 contains relative humidity, 
temperature and HVAC system state data at 10-minute intervals for 79 apartments. �e HES dataset10 contains 
electricity consumption data at an appliance level from 2010 to 2011 for 250 homes in the UK.

Higher resolution data, i.e., one-second or less, are also available for non-intrusive load monitoring and occu-
pancy detection research. �ese are such as the PECAN street project dataset11, the tracebase dataset12,13, the ECO 
dataset (Electricity Consumption & Occupancy)14, Dutch Residential Energy Dataset (DRED)15,16, the Reference 
Energy Disaggregation Dataset (REDD)17,18, the BLUED dataset19,20, the UK-DALE dataset21, the ENERTALK 
dataset22, and several others23. �e PECAN dataset11 has whole-home electricity measurements from 40 homes, 
including solar generation, electric vehicle (EV) charging, HVAC, major appliances and other in-home circuits, 
for one year at one-second intervals. �is enables remote diagnosis of HVAC systems, solar panels, EV charging 
systems, and also some household appliances. �e tracebase dataset12,13 contains power consumption of a range of 
electrical appliances at one-second intervals in Darmstadt, Germany in 2012 and Sydney, Australia in 2013. �e 
ECO dataset14 contains electricity consumption and occupancy data of six Swiss households during the period 
of eight months, which can be useful for non-intrusive load monitoring and occupancy detection research. �e 
DRED dataset15,16 contains details of various parameters of a single household, like occupancy status, ambient 
conditions, and electricity data for approximately around six months. �e REDD dataset17,18 contains power con-
sumption data of six households for several weeks, some of which include high-frequency voltage/current data. 
Current and voltage measurements sampled at 12 kHz are available in the BLUED dataset19,20 for a single-family 
home located in the U.S.. �e whole-house electricity consumption data are recorded in the UK-DALE dataset21 
at the sampling rate of 16 kHz. �e whole-house and individual-appliance consumption data are available in the 
ENERTALK dataset22 sampled at 15 Hz.

In commercial building research, most of the available data are building-level electricity consumption data, 
which can be useful for data analytic and load forecasting. �ese are such as: the Building Data Genome Project24, 
which provides public datasets from 507 non-residential building electrical meters at one-hour intervals; the 
ENERNOC dataset25, which contains �ve-minute resolution power consumption data of 100 buildings; the elec-
tricity and gas consumption dataset from Lawrence Berkeley National Laboratory (LBNL) Building 7426; as well 
as the 15-minute electricity consumption and outdoor air temperature data for 11 commercial buildings (o�ce/

Fig. 1 3D visualization of the seven-story academic o�ce building.

No EMU Digital Meter Multi-sensor Gateway

Floor1 3 1 — 1

Floor2 3 4 4 1

Floor3 3 5 4 1

Floor4 3 5 4 1

Floor5 3 5 4 1

Floor6 3 5 4 1

Floor7 3 5 4 1

Total 21 30 24 7

Table 1. CU-BEMS Hardware: the number of deployed units.
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retail)27. Some higher resolution data are also available for energy disaggregation research. �ese are: BERDS 
(BERkeley EneRgy Disaggregation Dataset)28, which includes energy consumption and outdoor temperature data 
of a building at 20 second intervals; BLOND (a building-level o�ce environment dataset of typical electrical 
appliances)29, which provides whole building energy measurements and appliance-level energy consumption at 
high sampling rate; and COMBED (the Commercial Building Energy Dataset)30, which provides 30-second data 
across 200 smart meters on a university campus for one month. OpenEI31 hosts one-year occupant behavior/
environmental data for a medium U.S. o�ce. �e data are available for the period of one year, which have been 
used to track human-building interaction32. Building fault detection data33 have recently been made available to 
benchmark the performance of fault detection and diagnostic algorithms.

Additionally, a series of datasets34 that relate energy usage in buildings and occupant behaviors are also availa-
ble. Authors in35 provide data of 24 U.S. o�ce occupants, including their thermal comfort, preference, behavioral 
information, and environmental conditions for one year. Authors in36 o�er data related to outdoor and indoor 
environment, as well as energy and occupant behavior collected from 17 cell o�ces over the period of four years. 
Authors in37 provide data on energy use and occupant behavior recorded from six net-zero energy senior housing 
units over the period of nine months. And, authors in38 provide data on room-level occupant counts and environ-
mental data of three rooms in a building recorded over the period of 44 days.

�e uniqueness of the CU-BEMS dataset described in this paper is the breakdown of building-level electricity 
consumption (kW) into each zone and each �oor of the building. �e CU-BEMS dataset captures the operation of 
individual AC units, lighting, and plug loads in each zone of the building at one-minute intervals. �ese are three 
major loads in commercial buildings. In addition, corresponding indoor environmental sensor data (tempera-
ture, humidity, and ambient light) are also measured in each zone at one-minute intervals. Such a detailed dataset 
enables potential reuse values, which include:

Fig. 2 Floor plans on Floors 1–2 (le�) and Floors 3–7 (right). Red dots illustrate the approximate locations of 
multi-sensors on each �oor. Note that Floor 1 has no sensor.

Fig. 3 CU-BEMS hardware deployment.
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•	 Load forecasting at the zone level, �oor level, and building level,
•	 Development and validation of buildings simulation models (electricity consumption and thermal model),
•	 Development of methods for coordinated control of air conditioning units to reduce the peak demand,
•	 Development of methods for controlling AC, lighting and plug loads in buildings,
•	 Anomaly detection of malfunctioned AC and sensors,
•	 Building-level data analytics.

Methods
In mid-2018, CU-BEMS –the building energy management system, developed at Chulalongkorn University using 
an open standard IEEE1888, was installed at the seven-story academic o�ce building located at Chulalongkorn 
University. �e building has an area of around 11,700 square meters (126,000 sq�) with a peak load of about 
700 kW. �e 3D drawing of this building is shown in Fig. 1.

Fig. 4 Overall communication architecture.

Year 2018 Year 2019

Floor1 2018Floor1.csv 2019Floor1.csv

Floor2 2018Floor2.csv 2019Floor2.csv

Floor3 2018Floor3.csv 2019Floor3.csv

Floor4 2018Floor4.csv 2019Floor4.csv

Floor5 2018Floor5.csv 2019Floor5.csv

Floor6 2018Floor6.csv 2019Floor6.csv

Floor7 2018Floor7.csv 2019Floor7.csv

Table 2. CU-BEMS dataset �le names.

File name Category Measurement (time-series) Unit

YFloorX.csv
Electricity 
consumption data

Individual air conditioning (AC) unit kW

for X ∈ [1, …, 7]
Lighting load kW

Plug load kW

for Y ∈ [2018, 2019]
Indoor environmental 
sensor data

Indoor temperature °C

Relative humidity %

Ambient light lux

Table 3. Available measurements and their units of records in CU-BEMS dataset.
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�e overall CU-BEMS system comprises Energy Monitoring Units (EMU), digital meters, multi-sensors, gate-
ways and a CU-BEMS server. EMUs, multi-sensors, gateways and the server have been developed in house. Each 
CU-BEMS building block is explained below.

Energy Monitoring Unit (EMU). An EMU is a communicating electrical meter that can measure power 
consumption of up to 36 circuits and communicate via Ethernet LAN with Modbus protocol. An EMU comprises 
potential transformers, a microcontroller module and an Ethernet-based communication module. An EMU can 
connect to up to 36 external current transformers (CT, rating up to 60 Ampere). Based on current and voltage 
readings, the built-in microcontroller unit calculates power consumption (Watts). �en, the Ethernet module 
transfers the calculated electricity consumption to the CU-BEMS server using an open standard IEEE 1888 pro-
tocol. An EMU has been designed to store data locally during a communication failure, and transmit the data to 
the server once the communication network comes back. Each EMU has been designed to have class 2 accuracy 
according to IEC/AS Standard 62053-11. Note that each CT used is of split core type, Heyi KCT-10 (accuracy 
class 1.0, i.e., typical current error of 1%). To make sure that all readings are not biased, each CT has been cal-
ibrated before the installation. For clarity, the manual of the o�-the-shelf CT has been uploaded on �gshare39.

Digital meter. Each digital meter used is a commercial o�-the-shelf product (Siemens SENTRON PAC3100), 
which provides basic metering and monitoring applications. It provides open communications using Modbus 
RTU over RS485 interface. It measures current, voltage, and provides real, reactive power measurements, meeting 
ANSI C12.16 (accuracy class 1.0, i.e., typical error of 1%) speci�cation for revenue meters. For clarity, the manual 
of the o�-the-shelf digital meter has been uploaded on �gshare39.

File name Zone No. AC Light Plug Sensor
No of Data 
Columns

Floor1.csv

Zone 1 0 1 0 0

11
Zone 2 4 1 1 0

Zone 3 0 1 1 0

Zone 4 0 1 1 0

Floor2.csv

Zone 1 1 1 1 3

36
Zone 2 14 1 1 3

Zone 3 0 1 1 3

Zone 4 1 1 1 3

Floor3.csv

Zone 1 4 1 1 3

29

Zone 2 1 1 1 3

Zone 3 0 1 1 0

Zone 4 1 1 1 3

Zone 5 1 1 1 3

Floor4.csv

Zone 1 4 1 1 3

29

Zone 2 1 1 1 3

Zone 3 0 1 1 0

Zone 4 1 1 1 3

Zone 5 1 1 1 3

Floor5.csv

Zone 1 4 1 1 3

29

Zone 2 1 1 1 3

Zone 3 0 1 1 0

Zone 4 1 1 1 3

Zone 5 1 1 1 3

Floor6.csv

Zone 1 1 1 1 3

29

Zone 2 1 1 1 3

Zone 3 0 1 1 0

Zone 4 4 1 1 3

Zone 5 1 1 1 3

Floor7.csv

Zone 1 4 1 1 3

29

Zone 2 1 1 1 3

Zone 3 0 1 1 0

Zone 4 1 1 1 3

Zone 5 1 1 1 3

TOTAL All zones 55 33 32 72 192

Table 4. �e number of electricity consumption and indoor environmental data.
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Multi-sensors. Multi-sensors have also been developed in house at the university. It has been designed 
to measure temperature (0 °C − 90 °C ± 0.4 °C), humidity (0–100%RH ± 2%RH) and ambient light 
(0.11 − 10000lux). Hence, it comprises temperature, humidity and ambient light sensors, as well as a Wi-Fi com-
munication module.

Gateway. CU-BEMS gateways have been developed in house to gather data from multi-sensors. Each gateway 
comprises a microprocessor and an Ethernet module. It has been designed to collect data at one-minute intervals. 
Table 1 summarizes CU-BEMS hardware deployment.

�e overall CU-BEMS deployment at Chamchuri 5 building comprises the installation of: 21 EMUs, 30 
digital meters, 24 multi-sensors, and 7 gateways. Each EMU measures the power consumption of individual 

Fig. 5 Data availability for all 55 AC units from July 2018 to December 2019 (black = data available).
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wall-mounted AC units, i.e., 1–2 kW, as well as lighting and plug load circuits. Each digital meter is for measuring 
a large AC compressor, i.e., 20–40 kW unit. Each multi-sensor measures temperature, humidity, and ambient light 
condition. Floorplans and approximate locations of multi-sensors are depicted in Fig. 2.

EMUs, smart meters and multi-sensors are depicted in Fig. 3.
Each gateway networks all hardware devices on the same �oor to the CU-BEMS server. Figure 4 illustrates 

how all hardware devices are networked together.
As shown in Fig. 4, on each floor, EMUs, digital meters, and sensors communicate with a gateway via 

Ethernet LAN, Modbus TCP, and Wi-Fi (CU-IoT), respectively. Note that EMU has been developed in house at 

Fig. 6 Data availability for all 33 + 32 lighting and plug loads from July 2018 to December 2019 (black = data 
available).
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Chulalongkorn University. Since each EMU needs to transmit electrical readings from 36 channels, it is important 
to choose a reliable communication technology. Hence, LAN has been chosen to support EMU communications. 
Digital meters, on the other hand, are commercial o�-the-shelf products. Modbus is a popular protocol as it 
communicates over RS-485, which is noise-tolerance for long distance communications. For multi-sensors, since 
multi-sensors need to be placed on the ceiling, it is practical to connect the sensors using WiFi. �e CU-BEMs 
server is located in the building, comprising the proxy server, the storage unit, and the web application. �e net-
working of equipment with the server is via the University’s Intranet (CU-Intranet).

Data Records
�e entire datasets are divided into 14 comma-separated value (csv) �les according to the �oor and year of the data 
recorded, as summarized in Table 2. �is is because CSV �les can be easily imported in spreadsheets, or any database 
or a programming language, making it easier and more organized to work with. Note that one CSV �le is provided 
for each �oor of the building. �is makes the total of seven CSV �les for each year. Since each �le does include data of 
each zone on a single �oor, a user has the �exibility to work with any individual zones, which can be extracted (based 
on the column names) from the CSV �les. �ese data are available for download on �gshare39.

Each �le combines the measurements available in each zone on the same �oor of the building in a particular 
year. �ese measurements are summarized in Table 3, which are the electricity consumption (kW) of individual 
air conditioning (AC) units, lighting loads and plug loads, as well as the environmental sensor data, including 
indoor temperature (°C), relative humidity (%) and ambient light (lux). Note that the monitored loads do not 
include the two elevators and emergency exit signs. �ese loads added up to about 1–2 percent of the total build-
ing loads.

Each of the 2018 data �les has 264,960 rows, which indicate one-minute interval data (1,440 data points/day) 
for 184 days during the second half year of 2018. Each of the 2019 data �les has 525,600 rows, which indicate 
one-minute interval data (1,440 data points/day) for 365 days during the entire year of 2019.

�e number of columns is di�erent in each �le, depending on the number of data measurements on the �oor. 
Table 4 summarizes the number of measurements available in each zone on each �oor of the building.

Fig. 7 Data availability for all sensors from July 2018 to December 2019 (black = data available). Sensors were 
taken down for maintenance between September 15, 2019 and March 5, 2019. �is period was excluded from 
calculating data availability.
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For example, the �les 2018Floor1.csv and 2019Floor1.csv have 11 data columns, and one timestamp column. 
�ese 11 data columns are: Zone 1–Power consumption (kW) of lighting loads (one column); Zone 2–Power 
consumption (kW) of four individual AC units, one lighting load and one plug load (six columns); Zone 3–Power 
consumption (kW) of one lighting and one plug loads (two columns); and Zone 4–Power consumption (kW) of 
lighting and plug loads (two columns). Floor 1 has no sensor.

�e �les 2018Floor2.csv and 2019Floor2.csv have 36 data columns, which are: Zone 1–Power consumption 
(kW) of the AC unit, lighting loads and plug loads, as well as indoor temperature (deg C), relative humidity (%) 
and ambient light condition (lux) measured in this zone (six columns). Zone 2–Power consumption (kW) of 14 
individual AC units, lighting loads and plug loads, as well as indoor temperature (deg C), relative humidity (%) 
and ambient light condition (lux) in this zone (19 columns); Zone 3–Power consumption (kW) of lighting loads 
and plug loads, and indoor temperature (deg C), relative humidity (%) and ambient light condition (lux) in this 

Fig. 8 Power consumption histograms of selected AC units (le�), lighting (middle) and plug loads (right) on 
Floor 7, zones 1–5.
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zone (�ve columns); and Zone 4: Power consumption (kW) of the AC unit, lighting loads, plug loads and indoor 
temperature (deg C), relative humidity (%) and ambient light condition (lux) in this zone (six columns).

For Floor 3 to Floor 7, each �oor has �ve zones. Each zone has one lighting load and one plug load meas-
urements. �ere are a total of seven AC units and four sensors (each measuring three quantities: temperature, 
humidity, and ambient light) on each �oor. Hence, each �le has 29 data columns.

For the entire building, there are power consumption data of 55 individual AC units; power consumption of 
lighting loads in 33 zones of the building; power consumption of plug loads in 32 zones of the building (Zone 1 
on Floor 1 does not have plug load); and temperature, humidity and ambient light readings at 24 locations (72 
values) in the building.

Technical Validation
�is section presents the visualization of data to show the quality and technical validity of the dataset, including 
missing data, histogram, and weekly pattern plots. �e missing data plot provides insight into data availability. 
Data histogram plots help to understand the range of measurements on each �oor/zone of the building. Weekly 
patterns show the relationship between AC operation and indoor temperature/humidity, as well as lighting/plug 
load operation and indoor ambient light conditions.

Fig. 9 Histograms of indoor temperature (le�), humidity (middle) and ambient light (right) on Floor 7, zones 
1–5.
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Missing data. AC load data. Figure 5 depicts missing power consumption data of all 55 AC units, grouped 
by �oors (1–7) and by zones (1–5). �e horizontal bar chart on the le� summarizes the percentage of data availa-
bility, and the missing data plot is shown on the right from July 2018 to December 2019 (where white indicates the 
missing data). As shown, the majority of the AC units have data availability of at least 95%. �e exceptions are for 
some AC units on Floor 3 and Floor 4, which have around 10–20% of missing data. �e reason for missing data 
was because of the change in IT con�gurations of the entire �oors. Hence, the corresponding gateways could not 
communicate to the main network during such periods. Note: Only Zone 2 on Floor 1 is air-conditioned. �ere 
is no AC in Zone 3 on all �oors because Zone 3’s are non air-conditioned staircases.

Lighting and plug load data. Figure 6 plots the missing power consumption data of all 33 lighting and 32 plug 
load measurements, grouped by �oors and by zones. Similar to those of AC units, the majority of lighting and 
plug loads have data availability of 95% or higher, except for some lighting and plug loads on Floor 3 and Floor 
4, which have around 10% of missing data. Again, the missing data were attributed to the LAN communication 
network interruption.

Sensor data. Figure 7 shows the missing sensor data. Note that Floor 1 has no sensor and that there is no sensor 
in Zone 3 on each �oor (except Floor 2) as they are non air-conditioned staircases. During the period between 
September 15, 2018, and March 5, 2019, the CU-BEMS team took all sensors down for maintenance. Note that: 
at the beginning of the measurement campaign, sensors were disconnected o�en and this was deemed because 
of the �rmware. Hence it was necessary to take down the sensors to update the �rmware. Since the sensors were 
taken down for six months, the measurement period hence was extended for an additional six months to com-
pensate for the missing period. Overall, for most of the sensors, data are available more than 95% of the time. 
�ere have been sporadic missing data because the sensors communicate via Wi-Fi, and they occasionally are 
disconnected from the network.

(No AC, no sensor)

Load (kW)
Temp (degC)
RH(%)

Load (kW)
Temp (degC)
RH(%)

Load (kW)
Temp (degC)
RH(%)

Load (kW)
Temp (degC)
RH(%)

Load (kW)
Temp (degC)
RH(%)

Fig. 10 AC power consumption, indoor temperature and humidity during a one-week period on Floor 7, zones 
1–5.
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Data histograms. Figure 8 depicts the histogram plots, capturing the power consumption of selected AC 
units, lighting loads, and plug loads on Floor 7. As shown, AC3 in Zone 1 is a window unit, and its power con-
sumption is between 0 and 1 kW. �e rests of the AC units shown are larger units with a peak load between 20 and 
40 kW. For the lighting loads, the peak loads range from 1 to 6 kW, depending on the zone. Zone 3 has the lowest 
lighting load consumption as it is a staircase. For the plug loads, their peak loads are between 0.5 and 1.5 kW. Zone 
3 again has the lowest plug load consumption for the same reason. Since the power consumption of each device, 
i.e., AC, lighting and plug loads, seems to coincide with its rating and usage characteristics, the power consump-
tion histograms are deemed to be valid.

Figure 9 illustrates the histogram plots of temperature, humidity, and ambient light on Floor 7. Temperatures 
on Floor 7 are between 18 to 35 °C and humidity varies from 40 to 80%. �is is in line with typical temperature 
and humidity in �ailand. �e ambient light condition varies between 0 and 75 lux, depending on the zone. �e 
readings are also in line with the ambient light conditions in this building. Note that all sensors are attached to 
the ceiling.

Weekly patterns. Figure 10 shows the electricity consumption (kW) of AC units, indoor temperature (°C), 
and humidity (%) measurements in each zone on Floor 7, during a period of one week from Sunday to Saturday 
(August 5–11, 2018). Here, only the consumption of large AC units (20–40 kW) is plotted as they have high 
in�uence on indoor temperature and humidity in their respective zone. As expected, when an AC unit operates, 
the indoor temperature in the same zone drops correspondingly; and when an AC unit is turned o�, the indoor 
temperature rises. Zone 3 is non air-conditioned, and there is no AC, nor sensor data to display.

Figure 11 illustrates the relationship between lighting/plug load consumption (kW) and ambient light meas-
urements (lux) on Floor 7 in each zone, during the same period. As can be observed, when the lights are on (i.e., 
the power consumption of lighting load is non-zero), ambient light measurement of the corresponding zone 

Lighting load (kW)
Plug load (kW)
Illuminance (lux)

Lighting load (kW)
Plug load (kW)
Illuminance (lux)

Lighting load (kW)
Plug load (kW)
Illuminance (lux)

Lighting load (kW)
Plug load (kW)
Illuminance (lux)

Lighting load (kW)
Plug load (kW)
Illuminance (lux)

Fig. 11 Lighting/plug load consumption and ambient light conditions during a one-week period on Floor 7, 
zones 1–5.
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increases. Also, the ambient light measurements in Zone 4 indicate that the sensors can capture natural light. In 
Zone 2, there is a partition within the zone that in�uences the amount of light that the sensor can capture. �is 
re�ects in the measurements on Sunday and Saturday, when not all lighting loads are turned on.

Usage Notes
Since each csv �le is large (30–80 MB), it is not suitable to be open in Excel. It is suggested to use a programming 
language, like Python, for data visualization and manipulation. �e code to perform data visualization as pre-
sented in this paper is available at SGRU github (https://sgrudata.github.io/) under “Sample Data Analytics” tab. 
Python libraries, such as Numpy, Pandas, Matplotlib and Seaborn, were used.

Code availability
The code implementation was done in Python3 using Jupyter notebook. The scripts to perform data pre-
processing, technical validation, visualization are available at SGRU github repository (https://nbviewer.jupyter.
org/github/mpipatta/mpipatta.github.io/blob/master/CHAM5.ipynb).

Received: 27 January 2020; Accepted: 30 June 2020;

Published: xx xx xxxx

References
 1. U.S. Energy Information Administration. Global energy consumption driven by more electricity in residential, commercial 

buildings, https://www.eia.gov/todayinenergy/detail.php?id=41753 (2019).
 2. U.S. Energy Information Administration. International Energy Outlook 2019, https://www.eia.gov/outlooks/ieo/ (2019).
 3. Johansson, T. B., Patwardhan, A., Nakicenovic, N. & Gomez-Echeverri, L. Global Energy Assessment: Toward a Sustainable Future, 

https://doi.org/10.1017/CBO9780511793677 (2012).
 4. U.S. Department of Energy. Quadrennial technology review: an assessment of energy technologies and research opportunities, 

https://www.energy.gov/sites/prod/�les/2017/03/f34/qtr-2015-chapter5.pdf (2015).
 5. UMassTraceRepository. Smart* data set for sustainability, http://traces.cs.umass.edu/index.php/Smart/Smart (2019).
 6. Hebrail, G. UCI machine learning repository: Individual household electric power consumption dataset, http://archive.ics.uci.edu/

ml/datasets/Individual+household+electric+power+consumption (2012).
 7. Makonin, S. AMPds2: �e Almanac of Minutely Power dataset (Version 2), https://doi.org/10.7910/DVN/FIE0S4 (2016).
 8. Makonin, S., Ellert, B., Bajić, I. V. & Popowich, F. Electricity, water, and natural gas consumption of a residential house in Canada 

from 2012 to 2014. Scienti�c data 3, 160037 (2016).
 9. Urban, B. Multifamily programmable thermostat data, https://openei.org/datasets/dataset/multifamily-programmable-thermostat-

data (2015).
 10. Department of Energy Climate Change, GOV.UK Household electricity survey, https://www.gov.uk/government/collections/

household-electricity-survey (2014).
 11. PECAN STREET. PECAN street residential electricity data set, https://dataport.pecanstreet.org/ (2020).
 12. Reinhardt, A. et al. On the accuracy of appliance identi�cation based on distributed load metering data. Proceedings of the 2nd IFIP 

Conference on Sustainable Internet and ICT for Sustainability (SustainIT), Pisa, Italy (2012).
 13. Reinhardt, A. Tracebase: �e tracebase appliance-level power consumption data set, http://www.tracebase.org (2017).
 14. Kleiminger, W., Beckel, C. & Santini, S. ECO: Electricity Consumption & Occupancy dataset, https://doi.org/10.5905/ethz-1007-35 

(2016).
 15. Nambi, A. S. DRED: Dutch Residential Energy Dataset (DRED), http://www.st.ewi.tudel�.nl/akshay/dred/ (2015).
 16. Nambi, A. S., Lua, A. & Prasad, V. R. LocEd: Location-aware energy disaggregation framework. Proceedings of the 2nd ACM 

International Conference on Embedded Systems for Energy-E�cient Built Environments, 45–54 (2015).
 17. Kolter, J. Z. & Johnson, M. J. REDD: �e reference energy disaggregation Data Set, http://redd.csail.mit.edu/ (2011).
 18. Kolter, J. Z. & Johnson, M. J. REDD: A public data set for energy disaggregation research. Proceedings of the SustKDD workshop on 

Data Mining Applications in Sustainability (2011).
 19. Anderson, K. et al. Building-Level fUlly labeled electricity disaggregation dataset,http://portoalegre.andrew.cmu.edu:88/BLUED/ 

(2012).
 20. Anderson, K. et al. Blued: A fully labeled public dataset for event-based non-intrusive load monitoring research. Proceedings of the 

2nd KDD Workshop on Data Mining Applications in Sustainability (SustKDD), Beijing, China (2012).
 21. Kelly, J. & Knottenbelt, W. �e UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from �ve 

UK homes. Scienti�c data 2, 150007 (2015).
 22. Shin, C. et al. �e ENERTALK dataset, 15 Hz electricity consumption data from 22 houses in Korea. Scienti�c data 6, 1–13 (2019).
 23. NILM Wiki. NILM datasets, http://wiki.nilm.eu/datasets.html (2019).
 24. Miller, C. & Meggers, F. �e Building Data Genome Project: An open, public data set from non-residential building electrical 

meters. Energy Procedia 122, 439–444 (2017).
 25. Miller, C. ENERNOC commercial building dataset, http://cargocollective.com/buildingdata/100-EnerNOC-Commercial-Buildings 

(2012).
 26. OpenEI. Long-term electricity and gas consumption for LBNL Building 74, https://openei.org/datasets/dataset/lbnl-building-74 

(2015).
 27. OpenEI. Long-term energy consumption & outdoor air temperature for 11 commercial buildings, https://openei.org/datasets/

dataset/consumption-outdoor-air-temperature-11-commercial-buildings (2015).
 28. Maasoumy, M., Sanandaji, B. M., Poolla, K. & Vincentelli, A. S. BERDS-Berkeley energy disaggregation data set. Proceedings of the 

Workshop on Big Learning at the Conference on Neural Information Processing Systems (NIPS), 1–6 (2013).
 29. Kriechbaumer, T. & Jacobsen, H. BLOND, a building-level o�ce environment dataset of typical electrical appliances. Scienti�c data 

5, 180048 (2018).
 30. Batra, N., Parson, O., Berges, M., Singh, A. & Rogers, A. A comparison of non-intrusive load monitoring methods for commercial 

and residential buildings, https://arxiv.org/abs/1408.6595 (2014).
 31. Langevin, J. One year occupant behavior/environment data for medium U.S. o�ce, https://openei.org/datasets/dataset/one-year-

behavior-environment-data-for-medium-o�ce (2015).
 32. Langevin, J., Gurian, P. L. & Wen, J. Tracking the human-building interaction: A longitudinal �eld study of occupant behavior in 

air-conditioned o�ces. Journal of Environmental Psychology 42, 94–115 (2015).
 33. Granderson, J. et al. Building fault detection data to aid diagnostic algorithm creation and performance testing. Scienti�c data 7, 65 

(2020).
 34. Huebner, G. M. & Mahdavi, A. A structured open data collection on occupant behaviour in buildings. Scienti�c data 6, 293 (2019).

https://doi.org/10.1038/s41597-020-00582-3
https://sgrudata.github.io/
https://nbviewer.jupyter.org/github/mpipatta/mpipatta.github.io/blob/master/CHAM5.ipynb
https://nbviewer.jupyter.org/github/mpipatta/mpipatta.github.io/blob/master/CHAM5.ipynb
https://www.eia.gov/todayinenergy/detail.php?id=41753
https://www.eia.gov/outlooks/ieo/
https://doi.org/10.1017/CBO9780511793677
https://www.energy.gov/sites/prod/files/2017/03/f34/qtr-2015-chapter5.pdf
http://traces.cs.umass.edu/index.php/Smart/Smart
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://doi.org/10.7910/DVN/FIE0S4
https://openei.org/datasets/dataset/multifamily-programmable-thermostat-data
https://openei.org/datasets/dataset/multifamily-programmable-thermostat-data
https://www.gov.uk/government/collections/household-electricity-survey
https://www.gov.uk/government/collections/household-electricity-survey
https://dataport.pecanstreet.org/
http://www.tracebase.org
https://doi.org/10.5905/ethz-1007-35
http://www.st.ewi.tudelft.nl/akshay/dred/
http://redd.csail.mit.edu/
http://wiki.nilm.eu/datasets.html
http://cargocollective.com/buildingdata/100-EnerNOC-Commercial-Buildings
https://openei.org/datasets/dataset/lbnl-building-74
https://openei.org/datasets/dataset/consumption-outdoor-air-temperature-11-commercial-buildings
https://openei.org/datasets/dataset/consumption-outdoor-air-temperature-11-commercial-buildings
https://arxiv.org/abs/1408.6595
https://openei.org/datasets/dataset/one-year-behavior-environment-data-for-medium-office
https://openei.org/datasets/dataset/one-year-behavior-environment-data-for-medium-office


1 4SCIENTIFIC DATA |           (2020) 7:241  | https://doi.org/10.1038/s41597-020-00582-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

 35. Langevin, J. Longitudinal dataset of human-building interactions in U.S. o�ces. Scienti�c data 6, 288 (2019).
 36. Schweiker, M. et al. Long-term monitoring data from a naturally ventilated o�ce building. Scienti�c data 6, 293 (2019).
 37. Paige, F. et al. �EECe, an energy use and occupant behavior dataset for net-zero energy a�ordable senior residential buildings. 

Scienti�c data 6, 291 (2019).
 38. Schwee, J. H. et al. Room-level occupant counts and environmental quality from heterogeneous sensing modalities in a smart 

building. Scienti�c data 6, 287 (2019).
 39. Pipattanasomporn, M. et al. CU-BEMS, smart building electricity consumption and indoor environmental sensor datasets. �gshare 

https://doi.org/10.6084/m9.�gshare.11726517 (2020).

Acknowledgements
�e authors would like to thank O�ce of Physical Resources Management, Chulalongkorn University for the 
permission to share CU-BEMS data. �e authors would like to thank NDR Solution (�ailand) Co., Ltd. for 
engineering deployment of CU-BEMS at the Chamchuri 5 building.

Author contributions
M. Pipattanasomporn prepared the manuscript and the code for data visualization. G. Chitalia downloaded, 
pre-processed the data, and edited the manuscript. J. Songsiri edited the writing of the manuscript. C. Aswakul 
designed and implemented data communication and storage for CU-BEMS. W. Pora designed and developed 
sensors and metering hardware for sensing and metering for CU-BEMS. S. Suwankawin and K. Audomvongseree 
architected and managed the entire CU-BEMS project. N. Hoonchareon provided conceptual guidance and 
recommendations for data analytic.

Competing interests
�e authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

�e Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ 
applies to the metadata �les associated with this article.
 
© �e Author(s) 2020

https://doi.org/10.1038/s41597-020-00582-3
https://doi.org/10.6084/m9.figshare.11726517
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

	CU-BEMS, smart building electricity consumption and indoor environmental sensor datasets
	Background & Summary
	Methods
	Energy Monitoring Unit (EMU). 
	Digital meter. 
	Multi-sensors. 
	Gateway. 

	Data Records
	Technical Validation
	Missing data. 
	AC load data. 
	Lighting and plug load data. 
	Sensor data. 

	Data histograms. 
	Weekly patterns. 

	Usage Notes
	Acknowledgements
	Fig. 1 3D visualization of the seven-story academic office building.
	Fig. 2 Floor plans on Floors 1–2 (left) and Floors 3–7 (right).
	Fig. 3 CU-BEMS hardware deployment.
	Fig. 4 Overall communication architecture.
	Fig. 5 Data availability for all 55 AC units from July 2018 to December 2019 (black = data available).
	Fig. 6 Data availability for all 33 + 32 lighting and plug loads from July 2018 to December 2019 (black = data available).
	Fig. 7 Data availability for all sensors from July 2018 to December 2019 (black = data available).
	Fig. 8 Power consumption histograms of selected AC units (left), lighting (middle) and plug loads (right) on Floor 7, zones 1–5.
	Fig. 9 Histograms of indoor temperature (left), humidity (middle) and ambient light (right) on Floor 7, zones 1–5.
	Fig. 10 AC power consumption, indoor temperature and humidity during a one-week period on Floor 7, zones 1–5.
	Fig. 11 Lighting/plug load consumption and ambient light conditions during a one-week period on Floor 7, zones 1–5.
	Table 1 CU-BEMS Hardware: the number of deployed units.
	Table 2 CU-BEMS dataset file names.
	Table 3 Available measurements and their units of records in CU-BEMS dataset.
	Table 4 The number of electricity consumption and indoor environmental data.


