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Cubature, Approximation, and
Isotropy in the Hypercube∗

Lloyd N. Trefethen†

Abstract. Algorithms that combat the curse of dimensionality take advantage of nonuniformity prop-
erties of the underlying functions, which may be rotational (e.g., grid alignment) or trans-
lational (e.g., near-singularities localized at certain points of the domain). The significance
of such effects is explored for four different classes of algorithms: low-rank compression,
quasi-Monte Carlo integration, sparse grids, and cubature. The exponentially pronounced
computational consequences of the anisotropy of the hypercube are described, notably its
mismatch with the isotropy of the set of multivariate polynomials of a fixed degree on
which some cubature formulas are based, and it is observed that the tensor product Gauss
quadrature rule in [−1, 1]d requires up to (π/2)d times fewer points if it is transformed to
a nonpolynomial basis.

Key words. cubature, approximation, isotropy, sparse grids, quasi-Monte Carlo, low-discrepancy se-
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1. Introduction. Many algorithms of cubature, approximation, solution of inte-
gral equations or PDEs or stochastic PDEs, uncertainty quantification, data science,
and optimization aim to diminish the “curse of dimensionality.” Such algorithms take
advantage of special properties of the functions being treated, such as alignment with
the axes, but their authors do not always emphasize this aspect of their methods. For
example, fast convergence is sometimes proved for functions that are “smooth,” with
smoothness defined by a measure that is anisotropic (i.e., not invariant with respect
to rotations), typically involving mixed derivatives. Our aim here is to highlight the
importance of rotational and translational nonuniformity for the effectiveness of such
algorithms and to urge that these properties should be considered more explicitly in
their analysis. An analogy to the theory of convergence of Krylov matrix iterations
will be proposed in the conclusions.

The comparator throughout this discussion is the algorithm in the hypercube that
achieves everything one could want, but at exponential cost:

0. Tensor products.

We shall focus on four classes of algorithms, whose combined literature numbers
thousands of books and papers:
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470 LLOYD N. TREFETHEN

1. Low-rank compression.
2. Quasi-Monte Carlo (QMC) integration.
3. Sparse grids.
4. Polynomial-based cubature and Padua points.

The first three beat the curse of dimensionality at least in part by being anisotropic,
taking advantage of alignment of functions with the axes, and as a result, all of these
methods are far from invariant with respect to changes of variables. The first method
additionally takes advantage of localization of near-singularities. The fourth is, in a
sense, perfectly isotropic, since it is based on the set of multivariate polynomials of
a fixed degree, which is invariant with respect to rotations, but we shall show that,
paradoxically, this introduces a difficulty for problems posed in the hypercube, because
this domain is far from isotropic. Specifically, we shall argue that algorithms based
on multivariate polynomials of fixed degree have anisotropic resolution power in the
hypercube, giving less resolution along diagonals than along diameters, and propose
the consideration instead of polynomials of what we call fixed Euclidean degree.

There is no doubt that all of these algorithms are useful in applications. The
explanation for this would appear to be that the functions that arise in applications
are not mathematically arbitrary, but tend to have special properties. This hints at
the complexity of the subject, for it can never be easy to make statements about the
deviation from randomness of practical problems.

This paper is organized as follows. For each of the four classes of methods, we first
describe a uniformity issue that arises and demonstrate its importance. The essential
issues are described with the help of experiments and figures mainly for d = 2, where
multidimensional effects appear in their simplest form. We then discuss theorems
from the literature of the method under consideration to illustrate how anisotropy
or translational nonuniformity may be reflected in a rigorous analysis. Theoretical
analysis in the low-rank, QMC, and sparse grids literatures is typically based on
(anisotropic) measures of smoothness, whereas the cubature literature emphasizes
polynomial degree of exactness.

In the final section 7 we show that a change of variables in each dimension can
improve the complexity of tensor product representations by an exponential factor:

0′. Transformed tensor product grids.

This observation is in line with the discussion of the earlier sections in that, once
again, the key point concerns nonuniformity of standard algorithms.

Of course, some authors do discuss the special properties of multivariate functions
that enable certain algorithms to be effective, and we conclude this introduction with
three examples. On p. 136 of their survey of QMC integration Dick, Kuo, and Sloan
write [23]:

Note that we do not say that all high-dimensional problems can be success-
fully tackled by QMC methods. Rather, the interest is in recognizing and
analysing mathematically the particular features that make some high-
dimensional problems manageable.

Another example comes from the introduction to a recent paper of Dahmen et al. [21]:

Solutions to real-world high-dimensional problems are thought to have
a structure different from high-dimensional regularity that renders them
more amenable to numerical approximation. The challenge is to explicitly
define these new structures, for a given class of problems, and then build
numerical methods that exploit them.
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ISOTROPY IN THE HYPERCUBE 471

Finally, from p. 16 of Constantine’s book on active subspaces [20]:

The only way to fight the curse of dimensionality is to identify and exploit
special structure in the model.

2. Tensor Products. “Method zero” is tensor products. This is the most straight-
forward procedure by which, for generations, expansions and numerical methods on
a one-dimensional interval have been lifted up to a higher-dimensional box.

For numerical convenience, our hypercube will be [−1, 1]d rather than [0, 1]d. In
one dimension, a function may be approximated by a polynomial

(2.1) p(x) =
n−1∑
i=0

aiTi(x),

which we have written in terms of Chebyshev polynomials Ti rather than monomials
xi since this is good practice numerically. Such an approximation might be obtained,
for example, by interpolation in a grid of n Chebyshev points. The two-dimensional
analogue of (2.1) is the bivariate polynomial

(2.2) p(x, y) =
n−1∑
i=0

n−1∑
j=0

aijTi(x)Tj(y),

and in d dimensions it is a multivariate polynomial of maximal degree n− 1,

(2.3) p(x) =

n−1∑
i1=0

· · ·
n−1∑
id=0

ai1,...,idTi1(x1) · · ·Tid(xd),

with x = (x1, . . . , xd). A multivariate polynomial approximation of this form can be
obtained by interpolation in the tensor product grid of N = nd points obtained by
taking the same n values as before in each coordinate, as illustrated later in Figure 10
for n = 16 and d = 2; for any data on the grid, there is a unique interpolant. We
shall return to polynomial interpolation in section 6.

3. Low-Rank Compression. A powerful tool in many areas of computational
science is the approximation of matrices, tensors, and their multivariate function ana-
logues by structures of low rank. (A function f(x, y) is the continuous analogue of a
matrix A = (Aij), and a function such as f(x, y, z) in three or more dimensions is the
continuous analogue of a tensor.) Such ideas have been exploited by Bebendorf [2, 3],
Carvajal, Chapman, and Geddes [15], Drineas, Kannan, and Mahoney [25], Goreinov
et al. [29, 54], Gorodetsky, Karaman, and Marzouk [30], Grasedyck, Kressner, and
Tobler [31], Hackbusch [36], Khoromskij [43], and many others, including my own
Chebfun2 and Chebfun3 projects for computing with functions in two or three di-
mensions, joint work with Townsend and Hashemi, respectively [26, 39, 64]. Some
further references include [6, 21, 38].

Details vary, but the basic idea of low-rank representation of a multivariate func-
tion f(x) in d variables x = (x1, . . . , xd) is to represent it by a finite sum of separated
products,

(3.1) fr(x) =

r∑
i=1

g
(i)
1 (x1)g

(i)
2 (x2) · · · g(i)d (xd)
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(not always written in this fully separated form). If r = 1, we have the familiar
case of a separable function, such as f(x, y) = g(x)h(y) in two dimensions. In many
applications good approximations are obtained for surprisingly small values of r, which
is called the tensor rank of fr if the representation is minimal [44]. For example,
f(x) = exp(α(x2

1+· · ·+x2
d)) has rank 1 for any α and d, and f(x) = sin(α(x1+· · ·+xd))

has rank d (over the real field; the rank is 2 over the complex field [36]). A function
that depends on only one variable, like f(x) = tanh(α(x1)), has rank 1. For d = 2,
optimal low-rank approximations are described by the singular value decomposition
(SVD), and there are generalizations of the SVD to higher dimensions [44, 47]. The
methods referenced above, which can be regarded as approximate generalizations of
Gaussian elimination with complete pivoting [63, 65], are computationally faster than
the SVD, though not optimal in the approximation sense.

Low-rank approximations have been advocated in dimensions ranging from 2 up
to hundreds and higher. At the high-dimensional end, which has found application in
quantum mechanics and stochastic/parametric PDEs, among other areas, a method
that has received particular attention is tensor-train decomposition [30, 43, 53]. At
the low-dimensional end, a major part of this literature is devoted to representing
large matrices not by global low-rank approximations, but by low-rank approxima-
tions of submatrices composed in a hierarchical fashion, which we shall comment on
in the last two paragraphs of this section. A survey of low-rank representations can
be found in [31].

The following example shows that compressing a function by low-rank approxi-
mation is not always possible. Suppose the hyperbolic tangent mentioned above is
rotated in d-space to become

(3.2) f(x) = tanh(α(d−1/2(x1 + · · ·+ xd))).

Instead of rank 1, f now has infinite rank. Computationally we ask, what rank is
needed to approximate it to a given precision? In the case d = 2, we can explore the
matter using Chebfun, which by default computes approximations (2.1) and (2.2) to
about 15 digits of accuracy:

>> f = chebfun2(@(x,y) tanh(10*x));

>> rank(f)

ans = 1

>> f = chebfun2(@(x,y) tanh(10*(x+y)/sqrt(2)));

>> rank(f)

ans = 103

This experiment reveals that with α = 10, the aligned function has rank 1, as expected,
whereas the rotated one has rank 103, a number that grows linearly with α. Further
experiments show that to represent this function to 15-digit precision, a tensor product
Chebyshev grid needs about 14α × 14α points, whereas the low-rank representation
requires about 9α terms each involving two vectors of length about 18α. Thus, the
low-rank representation achieves no compression.

Figure 1, taken from the “square and round pegs” example at www.chebfun.org,
gives a visual illustration of the dependence of low-rank compressibility on alignment
with axes. The two functions shown are

(3.3) f(x, y) =
1

(1 + (2x)20)(1 + (2y)20)
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rank 100rank 1

Fig. 1 “Square peg” and “tilted peg” examples (3.3)–(3.4), both resolved to about 15-digit accuracy
in the unit square by Chebfun2. Chebfun2 constructs low-rank representations by an approx-
imation to a continuous analogue of the algorithm of Gaussian elimination with complete
pivoting of numerical linear algebra [63, 64]. First a rank-1 approximation is formed that
captures the largest function value in the square; then a second rank-1 piece is constructed
that captures the largest value of the error in the first approximation; and so on iteratively
until machine precision is reached.

and its rotated and slightly expanded cousin

(3.4) g(x, y) =
1

(1 + (2x+ 0.4y)20)(1 + (2y − 0.4x)20)
.

The first has rank 1, but the second has numerical rank 100.
Besides functions aligned with the axes, low-rank representations can also be

effective in dealing with functions whose regions of complexity are localized. For a
two-dimensional example, the Runge function

(3.5) f(x, y) = (10 + x2 + y2)−1

can be approximated to 15-digit precision by a 17× 17 tensor product (2.2), or by a
rank r = 5 representation (3.1) involving 2r = 10 univariate functions of degree 20;
this is not much compression. If the singularity is made narrower by changing 10 to
0.01, however, the tensor product dimension increases to 330× 330, whereas the low-
rank approximation increases only to rank 21 with univariate functions of degree 380.
Thus, for this second and sharper function, the compression is substantial. It depends
on the singularity being localized, however. If a second singularity is introduced,

(3.6) f(x, y) = (0.01 + x2 + y2)−1 + (0.01 + (x− 0.5)2 + (y − 0.5)2))−1,

the rank doubles to 43 and thus the compression is halved. The localization effect is
illustrated in Figure 2, which shows skeletons of low-rank approximations to

(3.7) f(x, y) =
(
(x+ 1.05)2 + (y + 1.05)2

)−1/2

and

(3.8) g(x, y) =
1

0.001 + (x− 0.2)2 + (y − 0.5)2
.

In both cases the low-rank representation concentrates attention along lines where
the function is rapidly varying.
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-1 1
-1

1
f

-1 0.2 1
-1

0.5

1
g

Fig. 2 Successful low-rank compression of the functions (3.7) and (3.8) with localized near-
singularities, both computed by Chebfun [64] with accuracy specification 10−12 and rank
19. The function f has a singularity off the bottom-left corner at x = y = −1.05, and g has
complex singularities near x = 0.2, y = 0.5. Dots mark the pivot locations as the 19 rank-1
pieces are successively added up, each such step making the error zero on the corresponding
horizontal and vertical lines. Tensor product representations to the same accuracy would re-
quire on the order of 104 and 105 data values, respectively. In higher dimensions the savings
for functions with localized singularities can be huge.

The foregoing examples make it clear that low-rank approximations can be much
more efficient than tensor products in some cases, but not all. This raises the question
of what theorems are stated in the literature to support their use. To discuss this we
must distinguish the two cases of global and hierarchical representations.

First, concerning global low-rank approximations, there are theorems showing
effective approximation of functions dominated by singularities near one edge or corner
of the domain, as in the function f of Figure 2. See, for example, Theorem 1 of [3].
Such analysis might make use of a notion stemming from [10] of a function being
asymptotically smooth [2, 36, 67], which is a precise formulation of the condition that
the smoothness increases with distance from the singularity.

A quite different set of theorems for tensor algorithms for PDEs appears in [21],
where it is shown under suitable hypotheses that if the right-hand side of an elliptic
PDE can be approximated with low rank, then the solution can be approximated with
low rank too. An analogous result for Lyapunov equations is given in [56].

On the other hand, there are hierarchical representations, applicable for lower di-
mension d. These have a long history, featuring celebrated ideas such as the fast mul-
tipole method [32], wavelets [5], and Calderon–Zygmund decomposition [14]. Closer
to this paper, see the books by Bebendorf [2] and Hackbusch [36] and many other
items in our bibliography. The prototypical application of these representations is to
represent a function f(x, y) that is the kernel of an integral operator singular along
the diagonal line x = y. Viewed as a whole, these are not low-rank representations but
geometrically graded ones, with fine structure near the diagonal and coarser structure
further away. It is the individual patches, which Tyrtyshnikov calls the tiles of a
mosaic, that have low rank, and again a common assumption for analysis is that of
asymptotic smoothness. Under this hypothesis, theorems about efficient representa-
tions based on low-rank tiles have been proved. On an individual tile, the curse of
dimensionality has not been beaten, and indeed, the low-rank approximation on an
individual tile might be represented by a tensor product; it is only in the large that
compression is achieved by the exploitation of the graded nature of the function.
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In summary, both global and hierarchical low-rank representations can take ad-
vantage of the special structure of smoothness increasing with distance from singular-
ities, but it would appear that there is no theory that claims that the representations
can beat the curse of dimensionality for approximating general functions. This reflects
the familiar fact from linear algebra that although some matrices have singular values
decreasing rapidly to zero, many do not.

4. Quasi-Monte Carlo Integration. The low-rank representations of the last
section can be applied to all sorts of problems of function approximation, differen-
tial equations, integral equations, optimization, and other areas. In turning to our
second class of algorithms, we narrow down to the conceptually simplest of all ap-
plications, cubature, which is a standard term for numerical integration in multiple
dimensions [18, 35, 46]. Suppose an integrable function f is defined in the hypercube
[−1, 1]d and we are interested in its integral I = I[f ] over this domain. A cubature
formula is a functional for approximating I of the form

(4.1) IN = IN [f ] =
N∑
i=1

wif(si),

defined by nodes si ∈ [−1, 1]d and weights wi ∈ R. For d = 1, the special case of
quadrature, Gauss and Clenshaw–Curtis and related formulas give high accuracy if
f is smooth. Specifically, if f has a piecewise continuous ν th derivative of bounded
variation for ν ≥ 2, the convergence is algebraic [70],

(4.2) I − IN = O(N−ν−1),

and if f is analytic, the convergence is geometric [66],

(4.3) I − IN = O(C−N ), C > 1.

(Note that these formulas pertain to N -point quadrature formulas applied on a global
grid, corresponding to what is called p-convergence in the literature of finite element
methods, as opposed to quadrature formulas like Simpson’s rule constructed by com-
position of fixed-degree pieces, corresponding to h-convergence.) In d dimensions, one
may take a tensor product of n-point Gauss rules to obtain a product Gauss rule
with N = nd points. The mathematics is essentially the same, but because N grows
exponentially with d, this corresponds to much slower convergence,

(4.4) I − IN = O(N (−ν−1)/d), I − IN = O(C−N1/d

).

For d = 2 or 3 these rates may still be quite good, but in higher dimensions they
become increasingly unsatisfactory.

And so there has been great interest in devising alternative cubature formulas.
An extreme case is Monte Carlo integration, in which the nodes si are simply random
points in the hypercube and the weights wi are all equal to 2d/N ,

(4.5) IN [f ] =
2d

N

N∑
i=1

f(si).

Here the convergence rate is

(4.6) I − IN = O(N−1/2),
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random Halton Fibonaccirandom Halton Fibonaccirandom Halton Fibonacci

Fig. 3 610-point random and QMC point sets in the unit square. Unlike random points, QMC
points generally depend on the orientation of the axes, as does much of the mathematical
analysis of their effectiveness.

independent of d and of the smoothness of f (the constant in the “O” depends only
on the variance of f ) [13, 23]. Quasi-Monte Carlo (QMC) formulas aim to improve
this rate while still being efficient in high dimensions [13, 23, 50]. Their characteristic
feature is that all the weights are equal, so that (4.5) still applies, but the points si are
chosen in a more uniform fashion by a procedure that is partly or fully deterministic.
The traditional aim of such methods is convergence at a rate closer to O(N−1),
which can be a dramatic improvement over (4.6). Theoretical bounds often take
the (disappointingly large) form

(4.7) I − IN = O((logN)d−1N−1),

or sometimes the same form with (logN)d−1 replaced by (logN)d.
Among the well-known choices of points for QMC simulations are the Halton

sequences and Fibonacci sets. Figure 3 illustrates these in two dimensions, taking
N = 610 for the comparison because that is a convenient choice for the Fibonacci
case.

Loosely speaking, one hopes for good convergence of a QMC method if the func-
tion is smooth and the points are well distributed. A foundational theorem for making
this precise is the Koksma–Hlawka inequality [13, 23, 41, 50]. This result asserts that
the error can be bounded by the product of the discrepancy D∗

N of the set of points
and the variation V [f ] of the integrand:

(4.8) |I − IN | ≤ D∗
NV [f ].

The first of these quantities, the (star-)discrepancy D∗
N , is defined as

(4.9) D∗
N = max

x∈[−1,1]d
|I[χx]− IN [χx]| ,

where χx is the characteristic function corresponding to the d-dimensional rectangular
box delimited by vertices x and x1 = · · · = xd = −1 (one corner of the hypercube).
This is a measure of how uniformly distributed the sample points are, and indeed,
QMC sequences are also called low-discrepancy sequences. The best-distributed point
sets known achieve D∗

N = O((logN)d−1N−1) or O((logN)dN−1) and that is where
(4.7) comes from. The other quantity on the right-hand side of the Koksma–Hlawka
inequality, the Hardy–Krause variation V [f ], can be defined in terms of integrals of
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mixed first partial derivatives of f if they are integrable:

(4.10) V [f ] =
∑

∅�=u⊆{1:d}

∫
[−1,1]|u|

∣∣∣∣∂
|u|f
∂xu

(xu; 1)

∣∣∣∣ dxu.

The notation indicates a sum over all nonempty subsets u of {1:d} = {1, 2, . . . , d},
with first derivatives taken with respect to the selected variables and the unselected
variables held at the boundary value 1.

Both D∗
N and V [f ] are anisotropic, for they are defined in terms of the coordinate

axes. As an indication of how pronounced the anisotropy is, we note that both of
these quantities may change exponentially when a function is rotated. For example,
the following is a grid-aligned function with small variation:

f(x) = sin(kπx1) : V [f ] ∼ 4k

(approximation for large k). Rotating the function gives a function with exponentially
larger variance:

f(x) = sin(kπd−1/2(x1 + · · ·+ xd)) : V [f ] ∼ (kπd−1/2)d.

Thus, rotation can turn a very good function into a very bad one. As a milder
example, the square peg function (3.3) of Figure 1 has V [f ] ≈ 4.0, whereas for the
tilted peg function (3.4) it is V [f ] ≈ 16.5.

Similarly, an equispaced tensor product grid ofN = nd points hasD∗
N = O(n−1) =

O(N−1/d), whereas if the grid is tilted slightly, D∗
N may fall closer to O(N−1). Thus,

rotation can turn a very bad grid into a better one. Indeed, it is obvious from Figure 3
that this Fibonacci grid is just a square lattice tilted (this applies to some Fibonacci
grids, but not all). It would have a much higher discrepancy if it were aligned with
the axes—yet would we really expect that to be a much worse quadrature formula?

Yet QMC methods often work, and they hit the headlines in 1995 when Paskov
and Traub evaluated an integral in dimension d = 360 arising in finance [55]. The
explanation of such successes appears to be that for integrands of practical interest, in
the words of Sloan andWoźniakowski, “some coordinate directions are more important
than others, in the sense of being in some way more difficult” [23, p. 178]. One
technique for analyzing this phenomenon has been to consider settings in which some
dimensions are given more weight than others. If the grading of weights is pronounced
enough, then high- or even infinite-dimensional integration problems are effectively
compactified and rendered manageable [22]. For an extensive review of these issues
with references, as well as an outline of the theory of tractability of high-dimensional
integration problems, see [23, 51, 52].

The discussion above has emphasized the apparently modest (though actually
not so modest) goal of improving the error of a Monte Carlo formula from O(N−1/2)
to O(N−1). There is another part of the QMC literature, beginning with the so-
called lattice rules, that aims to achieve still faster convergence for sufficiently smooth
integrands [23, 45, 50]; the Fibonacci grid of Figure 3 is in this category. A prototypical
lattice rule is applied to periodic rather than arbitrary functions in the hypercube,
and much higher rates of convergence can be proved for functions that are smooth in
a certain sense. Given a d-vector h of integers, first r(h) is defined by

(4.11) r(h) =

d∏
i=1

max{1, |hi|}.
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Fig. 4 Hierarchical basis elements for a space of piecewise linear functions with zero boundary values
on an interval in one dimension. The first row shows one basis element, the second two, the
third four, and the fourth eight; together these span a space of dimension 15. The idea of
sparse grids is to employ tensor products of such functions but omit many of the cross-terms
that have small support in multiple dimensions.

Then the smoothness class Ed
α(C) of [50, p. 103], for example, is the set of periodic

functions on [−1, 1]d that satisfy

(4.12) |f̂(h)| ≤ Cr(h)−α,

where f̂(h) is the coefficient of the Fourier series of f associated with wave number
vector h. Similarly, one says that a lattice rule has Zaremba index s if it is exact
for all functions f [18, p. 9] whose Fourier coefficients are zero when r(h) ≥ s. Both
of these definitions are strongly anisotropic: (4.11) implies that a small rotation of
a function like sin(kπx1) will change its smoothness exponentially. One might argue
that if a periodic function in the hypercube is rotated, it will no longer be periodic,
so the idea of rotation should not come into the discussion. However, that argument
loses some force since in an actual application, one might have to render a nonperiodic
function periodic by a suitable transformation of variables [50, sec. 5.1]. In practice,
such transformations in high dimensions are very expensive, and we comment on the
reason for this in the penultimate paragraph of the discussion.

More recently there have also been intensified efforts by Dick, Sloan, and others
to improve Monte Carlo rates of convergence specifically for nonperiodic functions.
See, e.g., [23, 24, 28].

5. Sparse Grids. The subject of sparse grids begins with the idea of a hierarchical
basis for a space of piecewise linear functions in an interval, as sketched in Figure 4 [71].
In one dimension, one could use a basis of 15 hat functions, identical apart from shifts,
to span a space of piecewise linear functions with 16 pieces and zero at the endpoints,
or one could use this basis of nonidentical functions, and it wouldn’t make much
difference which one was chosen. In higher dimensions, however, the difference is
amplified. In two dimensions, for example, if we take products of 15 hat functions in
x and y to form a basis with 225 elements for piecewise linear bivariate functions, then
all the basis elements will be supported on little squares of small measure. However,
suppose we instead take products in x and y of the 15 hierarchical functions shown
in the figure. The space spanned will be the same, but now the difference in support
between some of the products and others is large. The vision of sparse grids is that
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Fig. 5 Schematic indicator of a sparse grid in [−1, 1]2, as described in the text. The full grid would
have (n− 1)2 points (here, n = 32). In the sparse grid, this number reduces to O(n log2(n)),
or O(n(log2(n))

d−1) in d dimensions. The result is good approximation of functions aligned
with the axes, or, as this is typically quantified, of functions that are smooth as measured by
mixed derivatives.

many of the basis elements with small support may be discarded without much loss
of approximation power. Such ideas were introduced by Smolyak in 1963 [58] and
rediscovered independently by Zenger for PDE applications around 1990 [72]; a related
idea stemming from Smolyak’s era is that of the hyperbolic cross [1, 57]. Since 1990,
Smolyak/sparse grids methods have been used extensively by many people, and a
particularly influential group has been that associated with Michael Griebel [12].

Figure 5 shows a schematic to illustrate the choice of which basis functions are
retained in the simplest version of a sparse grid. Each dot p in the figure lies at a
point with dyadic coordinates in x and y and corresponds to a product of hat functions
in the two directions, taking the value 1 at p and the value 0 at four other corner
points. These corner points delimit the smallest rectangle with center p whose vertices
belong to a coarser dyadic grid and are also dots in the figure or on the boundary.
For example, the central dot of the whole figure corresponds to a function with global
support [−1, 1]2, and the central dot of each subsquare corresponds to a function with
support in that subsquare. The remaining dots sit at the centers of rectangles that
are 2, 4, 8, or 16 times as long as they are wide. A basis constructed in this fashion in
d dimensions contains only O(n(log2(n))

d−1) elements, exponentially fewer than the
figure O(nd) for the full tensor product basis.

The resolution power of a sparse grid as in Figure 5 is just as we have seen in
the past two sections: excellent for functions aligned with the axes, less good for
unaligned functions. If f takes the form f(x, y) = φ(x) for some φ, for example,
then the grid of the figure will resolve φ with 32 grid points. The rotated function
f(x, y) = φ(2−1/2(x+ y)), on the other hand, must effectively make do with closer to
8 grid points. Such disparities are amplified as the dimension d increases, yet sparse
grids have been strikingly effective in some applications. As Conrad and Marzouk
explain it, “Smolyak algorithms avoid the exponential cost of full tensor products when
the input dimensions are not fully coupled” [17]. This is an established technology that
has been extended in many directions, including to spatial adaptivity and elements
of higher order than linear.

Looking at the theoretical literature of sparse grids, we find many results to the
effect that if a function is smooth, it can be effectively approximated. To make such
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results possible, smoothness is measured in terms of mixed derivatives. If (k1, . . . , dd)
is a vector of nonnegative integers, then the mixed derivatives of f of order r are those
of the form

(5.1)
∂k1+···+kd

∂xk1
1 · · · ∂xkd

d

with maxj kj ≤ r. Thus, ∂4f/∂x2∂y2, for example, counts as a mixed derivative of
order 2, whereas ∂4f/∂x4 is of order 4. From here we readily see, as shown earlier,
that a function like sin(kx), k � 1, may appear smooth if aligned with an axis and
much less smooth if rotated. For an example of how these measures are employed
in estimating accuracy of sparse grid approximations, see Theorems 1 and 2 of [11],
which state 2-, ∞-, and energy-norm upper bounds derived from (5.1) with k1 = · · · =
kd = 2. One of the early proponents of analysis of this kind was Temlyakov [62].

6. Polynomial-Based Cubature and Padua Points. The subject of quadrature
in one dimension is dominated by the idea of interpolating function samples by a poly-
nomial, then integrating the interpolant. Equispaced points lead to Newton–Cotes
quadrature, Chebyshev points to Clenshaw–Curtis, and roots of Legendre polynomials
to Gauss. Polynomials are equally powerful for other one-dimensional computational
problems too and, in particular, they are the basis of spectral methods for numerical
solution of differential equations [9] and of Chebfun [66].

To find analogous non-Monte Carlo formulas in multiple dimensions, one turns to
multivariate polynomials as in (2.3). The more usual way to describe a multivariate
polynomial is as a linear combination of monomials of the form

(6.1) xk = xk1
1 xk2

2 · · ·xkd

d ,

with the degree (also known as the total degree) defined as |k| = ∑
ki. The degree of

a polynomial is the maximum of the degrees of its monomials, which is very different
from the maximal degree mentioned in section 2. The reason for this standard defini-
tion has to do with isotropy, or as an algebraist would put it, invariance with respect
to linear transformations. For example, x2 is a homogeneous degree-2 polynomial
in x. Rotation into x-y-z space gives

(
x+ y + z√

3

)2

=
x2 + y2 + z2 + 2xy + 2xz + 2yz

3
.

All the terms are still homogeneous of degree 2 according to the standard definition,
and the polynomial is still of degree 2.

Interpolation by polynomials in the multivariate case is straightforward if one is
prepared to work with a tensor product grid of N = nd points and polynomials (2.3) of
the corresponding maximal degree n− 1. Interpolation by polynomials of prescribed
total degree, however, is not straightforward because of the challenge of selecting
interpolation points that guarantee a unique interpolant, the condition known as
unisolvency. (In two dimensions, the Padua points are suitable [7], and there are
generalizations to higher dimensions [8, 19].) Nevertheless, much progress has been
made in investigating cubature formulas that integrate all multivariate polynomials
of degree m exactly, an idea going back to Maxwell [18, 35, 46, 49, 59]. We have
defined a cubature formula as a functional (4.1) determined by nodes si ∈ [−1, 1]d

and weights wi ∈ R. If IN is equal to the integral of f over the hypercube whenever f
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Fig. 6 On the left, absolute values of Chebyshev coefficients ai of (6.2) on [−1, 1], showing that 120
coefficients suffice to resolve f to 15-digit accuracy. On the right, a contour plot of the abso-
lute values of the tensor product Chebyshev coefficients aij of the analogous two-dimensional
function of (6.4). From inside out, the contours represent 10−2, 10−3, . . . , 10−15. These
circular arcs may seem to suggest isotropy, but that is not so: isotropy would correspond to
the triangle of coefficients below the red line, those that appear in bivariate polynomials of
degree 120. The coefficients enclosed by the outermost curve go up to degree about 120

√
2 .

is a multivariate polynomial of degree at mostm, the formula is said to have degree m.
Tchakaloff’s theorem asserts that there exists a degree-m formula with N ≤ (

m+d
d

)
points—for any domain, not just the hypercube [60]. Computing nodes and weights of
cubature formulas of good polynomial degree, however, can be quite challenging [61].

We come now to the paradox mentioned in the introduction. So far in this ar-
ticle we have highlighted the anisotropy of various high-dimensional approximation
strategies. By contrast, these methods tuned to exact integration of multivariate
polynomials of a given degree would appear to be perfectly isotropic. The trouble is,
the hypercube itself is exponentially far from isotropic! The great apparent gain of a
cubature formula based on multivariate polynomials is achieved, in part, by discrim-
inating against most of the volume of the hypercube.

To explain this point, we focus on a concrete example in one, then two, then three
dimensions. Consider the univariate function

(6.2) f(x) = e−100x2

.

On the interval [−1, 1], one needs a polynomial of degree about 120 to resolve f to
15-digit precision. This is shown in the left half of Figure 6, which plots the absolute
values of the Chebyshev expansion coefficients ai corresponding to the Chebyshev
series

(6.3) f(x) =
∞∑
i=0

aiTi(x).

(In Chebfun, the command chebcoeffs(chebfun(@(x) exp(-100*x.^2))) computes
the coefficients. The odd degree coefficients are zero and do not appear in the plot.)
Since f is an entire function (analytic throughout the complex x-plane), the coef-
ficients decrease faster than geometrically [66, Chap. 8], and for i > 120 we have
|ai| < 10−15.

Now we make the function radially symmetric in two dimensions and consider

(6.4) f(x, y) = e−100(x2+y2).
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The right half of Figure 6 shows a two-dimensonal analogue of the last image. Now,
there are Chebyshev coefficients in two variables corresponding to the double series

(6.5) f(x, y) =
∞∑
i=0

∞∑
j=0

aijTi(x)Tj(y).

The plot shows contours of |aij | at levels 10−1, . . . , 10−15. (In Chebfun one can write
chebcoeffs2(chebfun2(@(x,y) exp(-100*(x.^2+y.^2)))). Again, odd-index co-
efficients are zero and are omitted.) The function is isotropic, and multivariate poly-
nomials of a fixed degree are isotropic, so one would expect again to need degree 120
for a 15-digit approximation. One’s first impression might be that the figure confirms
this expectation, but in fact, it reveals that one needs degree about 120

√
2. The

degree required for resolution has increased by a factor of
√
2.

Why has the degree gone up by
√
2? The surprisingly simple explanation is

that the diagonal of the square is
√
2 times longer than its cross-section. In one

dimension, for example, if we approximate exp(−100x2) to 15 digits on [−√
2,
√
2]

instead of [−1, 1], the necessary degree increases from 120 to 170, a factor of 1.42.
For an isotropic function like (6.4), essentially the same effect will determine the
degree needed for resolution along the diagonal direction. (My collaborators and I
are developing a theory to make this rigorous, to appear in a future publication.) In
d dimensions the factor will be

√
d , and the total number of coefficients needed will

exceed what one might have expected by a factor on the order of (
√
d )d = d d/2.

Why are the contours in Figure 6 circular? One can explain this (nonrigorously)
by applying the argument above to functions oriented at angles other than π/4. If
a function f(x, y) = φ(x) requires polynomial degree n to be resolved, we consider
its counterclockwise rotation by some angle θ with 0 < θ ≤ π/4, namely, f(x, y) =
φ(cx + sy) with c = cos θ and s = sin θ. The half-diameter of the unit square as
measured at this angle now increases from 1 to cos θ+sin θ. Thus we expect polynomial
degree n(cos θ + sin θ) to be needed for resolution, and this is just the ratio that
corresponds to inflating the red line segment of the figure to the circular arc. A similar
argument extends this conclusion to higher dimensions: for isotropic resolution in the
hypercube, we need multivariate polynomials coefficients lying in a spherical ball, not
a simplex. Figure 7 is an analogue of the previous figure in three dimensions.

These considerations suggest that the following definition may be useful: the
Euclidean degree of a monomial (6.1) is the 2-norm ‖k‖2 of its vector of exponents,
and the Euclidean degree of a polynomial is the maximum of the Euclidean degrees
of its monomials. For example:

x5y6z7 : (total) degree 18, Euclidean degree
√
110 ≈ 10.5, max degree 7.

The motivation is that the set of all polynomials of a given Euclidean degree may be
well adapted to approximating functions in the hypercube with uniform resolution in
all directions.

Figure 8 presents a schematic representation of this surprising situation. The
set of polynomials of a given total degree corresponds to the positive orthant of the
innermost region of the figure, the unit ball in the 1-norm, whose volume is

(6.6) Vol1 =
2d

d !
∼ 1√

2πd

(
2e

d

)d

.

(This and the next two formulas describe volumes of the whole ball, not just the
fractions in the positive orthant. This is a continuum approximation to a discrete set,
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Fig. 7 Like Figure 6, but for the trivariate function f(x, y, z) = exp(−100(x2 + y2 + z2)). The axes
represent indices of Chebyshev coefficients in the x, y, and z directions, and the isosurface
corresponds to |aijk | = 10−15. As before, the conventional expectation would be for this
surface to take the form of a flat face of a simplex rather than an orthant of a sphere.

coefficients of polynomials of←maximal degree m (tensor products)

coefficients of polynomials of
← Euclidean degree m

(isotropic in the hypercube)

← coefficients of polynomials of total degree m
(isotropic in the hyperball)

Fig. 8 From inside out, the 1-, 2-, and ∞-norm unit balls, shown in two dimensions as a schematic
for d dimensions. The sections in the positive orthant correspond to sets of coefficients of
polynomials whose volumes differ exponentially for large m as d → ∞. The innermost set,
a simplex, corresponds to the set of polynomials of fixed total degree. The outermost set, a
hypercube, corresponds to the set of polynomials of fixed maximal degree, which is needed for
tensor product interpolation as in (2.3). The intermediate set, the intersection of a spherical
hyperball with the orthant, is what is needed for isotropic resolution in the hypercube.

and thus our formulas are aimed at elucidation of behavior for large degrees.) The
set of polynomials of a given maximal degree corresponds to the positive orthant of
the unit ball in the ∞-norm, with volume

(6.7) Vol∞ = 2d.

For isotropic resolution throughout the hypercube, however, our new observation is
that what matters is the in-between region, the positive orthant of the unit ball in
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Table 1 Exponential separation as d → ∞ between the volumes in coefficient space corresponding
to the sets of multivariate polynomial coefficients associated with isotropic resolution in
the hyperball (Vol1), isotropic resolution in the hypercube (Vol2), and tensor products in
a hypercube (Vol∞).

Dimension Tensor product over- Cubature
d sampling ratio (6.9) undersampling ratio (6.10) Cubature aim (6.11)

1 1 1 1
2 1.27 1.57 2
3 1.91 3.14 6
4 3.24 7.40 24
5 6.08 19.7 120
6 12.4 58.1 720
7 27.1 186. 5040
8 62.1 639. 40320
9 155. 2338. 362880
10 402. 9037. 3628800

the 2-norm,

(6.8) Vol2 =
πd/2

(d/2)!
∼ 1√

πd

(
2πe

d

)d/2

(for odd dimensions we define (d/2)! = Γ(d/2 + 1)). We can thus compute

(6.9)
Vol∞
Vol2

=
(d/2)!

(π/4)d/2
∼

√
πd

(
2d

πe

)d/2

,

(6.10)
Vol2
Vol1

=
(π/4)d/2d !

(d/2)!
∼

√
2

(
πd

2e

)d/2

,

(6.11)
Vol∞
Vol1

= d ! ∼
√
2πd

(
d

e

)d

,

and Table 1 lists these ratios for dimensions d = 1, . . . , 10.
Let us summarize our observations and comment on the headings of the columns

in Table 1. The final column, the “cubature aim,” reflects the ambition of polynomial-
based cubature: to get similar accuracy as a tensor product formula using d ! times
fewer points. The claim of this section is that this aim is about half achievable, for
one can view this number as the product of two ratios. A tensor product formula
is anisotropic in the sense that it can resolve

√
d times higher wave numbers along

a diagonal than along an axis; the price paid for this in grid points is the “tensor
product oversampling ratio.” A cubature formula of a given degree, on the other
hand, can only resolve

√
d times lower wave numbers along a diagonal than along an

axis, because the formula is isotropic while the hypercube is not, and this is quantified
by the “cubature undersampling ratio.” These considerations suggest the interesting
challenge of constructing what one might call Euclidean cubature formulas, whose aim
would be to neither oversample nor undersample. A Euclidean cubature formula of
degree s would be a formula (4.1) that is exact for all polynomials of Euclidean degree
s. (Ideas with some of this flavor can be found in [17] and in the theory of optimized
sparse grids [33].) Perhaps such formulas might be useful in numerical practice.
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Fig. 9 The same as Figure 6, but for the Runge functions (6.12). Again, the coefficients decrease
geometrically at a rate determined by the Euclidean degree, not the total degree.

In this discussion we have considered just the single example trio exp(−100x2),
exp(−100(x2+y2)), exp(−100(x2+y2+z2)), functions that are analytic for all values
of x, y, and z. One might wonder if this special property makes the example somehow
atypical, but in fact, the same effects appear generally. Another familiar example of
a function in x with an isotropic extension to x and y is the Runge function pair

(6.12) f(x) =
1

1 + 10x2
, f(x, y) =

1

1 + 10(x2 + y2)
,

which is analytic for (x, y) ∈ [−1, 1]2 but singular for complex values of x and y with
x2 + y2 = −1. The coefficient 10 has been chosen so that, as in the earlier example,
a polynomial of degree about 120 is needed to resolve f on [−1, 1], as shown in the
left-hand side of Figure 9. The right-hand side of the figure shows that just as before,
the expansion coefficients in the bivariate case decrease with Euclidean degree, not
total degree. However, note the difference between Figures 6 and 9. For the former,
an entire function, the dicurve on the left bends downward and the curves on the right
lie closer together further from the origin. For the latter, analytic but not entire, the
curve on the left is a straight line and the curves on the right are evenly spaced.

Our illustrations have involved perfectly isotropic functions, exactly invariant
with respect to rotation. Of course, the same issues will control resolution in the
hypercube of nonisotropic functions too. As mentioned earlier, we expect to provide
rigorous formulations of this claim in a future publication.

It was mentioned above that Padua points provide a unisolvent system in [−1, 1]2,
with generalizations to higher dimensions. There has been some interest in using
Padua points to define novel discretizations of PDEs. However, the considerations
above suggest that the results of such experiments may be disappointing, since such
discretizations may also underresolve along diagonals.

7. Transformed Tensor Product Grids. Throughout this article we have con-
sidered alternatives to tensor products. In this final section we return to the tensor
product setting and highlight a method proposed in [37] that requires fewer samples
than tensor product Gauss quadrature by a factor of up to (π/2)d. This method is
derived from a principle analogous to isotropy: assuming that a function is trans-
lationally as opposed to rotationally uniform. See Chapter 22 of [66] for a general
presentation.
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Instead of Gauss quadrature in each dimension, the idea is to use a transformed
Gauss formula obtained by transplanting Gauss quadrature in the variable t ∈ [−1, 1]
to the problem variable s ∈ [−1, 1] by a conformal map g. Polynomials have far
greater resolution near the ends of an interval than the middle, and this is reflected
in the clustering of the nodes in Gauss quadrature and other methods derived from
polynomials. The purpose of g is to diminish this effect by replacing polynomials by
nonpolynomial functions with more uniform resolution. To this end, g is chosen to
map Bernstein ellipses with foci ±1 in the x-plane onto regions with straighter sides,
with the points ±1 mapping to themselves. As described in [66], one choice for g is
the “sausage map” obtained by truncating the Taylor series of (2/π) sin−1(t) at an
odd degree and rescaling the result so that g(±1) = ±1; for degree 9, this gives

(7.1) g(t) =
1

53089
(40320t+ 6720t3 + 3024t5 + 1800t7 + 1225t9).

The result is a quadrature formula of the standard form

(7.2) In =

n∑
i=1

wif(si),

but with nodes si and wi that differ from the usual. Shown next are MATLAB codes
for computing Gauss and transformed Gauss nodes and weights based on (7.1):

function [s,w] = gauss(n)

beta = .5./sqrt(1-(2*(1:n-1)).^(-2));

T = diag(beta,1) + diag(beta,-1); [V,D] = eig(T);

s = diag(D); [s,i] = sort(s); w = 2*V(1,i).^2;

function [s,w] = sausage(n);

[sg,wg] = gauss(n); p = 9; c = zeros(1,p+1);

c(p:-2:1) = [1 cumprod(1:2:p-2)./cumprod(2:2:p-1)]./(1:2:p);

c = c/sum(c); s = polyval(c,sg);

cp = c(1:p).*(p:-1:1); w = wg.*polyval(cp,sg)’;

Figure 10 shows the corresponding 16×16 Gauss and transformed Gauss grids, where
the transformation g has been applied in each direction.

Transforming the Gauss formula does not always improve convergence; it may
have the opposite effect for functions that are analytic in a large neighborhood of
[−1, 1]d or which are dominated by singularities near the boundary. For many cases
it accelerates convergence, however, and, in particular, this is provably the case in the
class of functions analytic in a small ε-neighborhood of [−1, 1]. A detailed analysis
is given in [37]. As an example, Figure 11 plots the errors in approximation of the
Runge function

(7.3) f(x) =
1

1 + 10(x2
1 + · · ·+ x2

d)

with d = 8 with m = 3, . . . , 20 points in each direction (the value of the integral is
I ≈ 10.359057801). The transformed rule achieves 6- or 8-digit accuracy with ten
times fewer sample points than the Gauss rule.

8. Discussion. Many researchers in high-dimensional problems know that their
methods take advantage of special properties of the functions being approximated,
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Gauss grid transformed Gauss grid

Fig. 10 16 × 16 Gauss and transformed Gauss grids in [−1, 1]2. The latter, derived from the con-
formal map (7.1) of a Bernstein ellipse to a region with straighter sides, has approximately
30% better resolution in each dimension [37].

N = number of evaluation points
10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11

er
ro
r

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

Gauss

transformed
Gauss

Fig. 11 Errors in Gauss and transformed Gauss quadrature for the d-dimensional Runge function
(7.3) with d = 8. The transformed formula requires an order of magnitude fewer sample
points. In both cases the error is O(exp(−Cn1/d)) with C > 0, but the constant C for the
transformed formula is larger.

such as alignment with axes, but this matter is rarely emphasized in print. Indeed,
it is startling how many articles contain remarks to the effect that because of the
curse of dimensionality, we will now present a method to compress the data—as if the
need for compression were synonymous with its possibility! For arbitrary functions,
compressing away the curse of dimensionality is probably impossible. The surprise
is that in practice it is so often possible after all. By paying more attention to the
properties of multivariate functions that lead to this situation, perhaps we can better
understand these schemes and improve them.

An interesting contrast is with the subject of Krylov subspace iterations for solving
linear systems of equations, which begins with the conjugate gradient method [40].
Here, it is universally recognized that iteration achieves nothing for arbitrary matrices,
and the whole subject is explicitly focused on how to exploit special matrix properties
and enhance them with preconditioners [69].

In talking with colleagues about this work, I have been fascinated to hear of the
many ways in which matters of high-dimensional geometry, and specifically the shape
and volume of the hypercube, enter into mathematical and algorithmic research. For
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example, another field where high-dimensional problems arise is nonlinear optimiza-
tion. Nick Gould has pointed out to me that the differences between the unit ball in
the ∞-norm (the hypercube) and the 2-norm (the hyperball) have pervasive conse-
quences in optimization, both theoretical and practical. Trust-region algorithms face
the basic choice of whether to use balls or cubes [16], with advantages on both sides,
and the problem of nonconvex quadratic programming is known to be NP-hard in a
hypercube but of only polynomial complexity in a hyperball [68]. High-dimensionality
is particularly challenging for global optimization [27, 42], where the starting idea,
dividing a cube into many small subcubes, has the exponential complexity of tensor
product grids, but alternative algorithms, and the theorems that support them, may
not be rotationally invariant.

Virtually all the volume of a high-dimensional region is near the boundary, and
virtually all the volume of a high-dimensional hypercube is outside the inscribed
hypersphere. In this article we have seen the influences of these facts on numerical
algorithms. Perhaps a general observation to be made is that the choice to set one’s
problem in a square or cube, which seems just a matter of convenience in two or
three dimensions, may become a matter of exponential significance as d → ∞. If
the essence of the problem has nothing to do with the hypercube, then one may pay
a heavy price for this convenience. Conversely, many problems live naturally in a
hypercube—one may think, for example, of constraints of the form a ≤ xj ≤ b in
optimization or cubature—and this may entail an anisotropy that is the very reason
why fast algorithms are effective.

A related subject that has attracted much attention among purer mathematicians
is the phenomenon of concentration of measure [48]. The theme here is that in a
high-dimensional domain such as a hypercube or a hyperball, any set that includes
a sizable fraction of the total volume (measure) must come close to almost every
point in the region. If you transform a function smoothly to make it zero on the
boundary of the hypercube, for example, so that a periodic lattice rule can be applied
as discussed in section 4, then you have made it close to zero nearly everywhere inside
the hypercube—so the cost in the number of grid points needed to resolve the part of
the function you care about will probably be exponential.

We close with a passage from the 1961 book by Richard Bellman [4, p. 94], who
coined the famous phrase:

In view of all that we have said in the foregoing sections, the many obstacles
we appear to have surmounted, what casts the pall over our victory cele-
bration? It is the curse of dimensionality, a malediction that has plagued
the scientist from earliest days.

Note Added in Proof. Since this article was written, a theorem has been es-
tablishd confirming the observation of section 6. See L. N. Trefethen, “Multivariate
Polynomial Approximation in the Hypercube,” Proc. Amer. Math. Soc., to appear.
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