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Abstract—In this paper, we extend the cubature Kalman filter
(CKF) to deal with nonlinear state-space models of the continuous-
discrete kind. To be consistent with the literature, the resulting
nonlinear filter is referred to as the continuous-discrete cubature
Kalman filter (CD-CKF). We use the Itô-Taylor expansion of order
1.5 to transform the process equation, modeled in the form of sto-
chastic ordinary differential equations, into a set of stochastic dif-
ference equations. Building on this transformation and assuming
that all conditional densities are Gaussian-distributed, the solu-
tion to the Bayesian filter reduces to the problem of how to com-
pute Gaussian-weighted integrals. To numerically compute the in-
tegrals, we use the third-degree cubature rule. For a reliable im-
plementation of the CD-CKF in a finite word-length machine, it is
structurally modified to propagate the square-roots of the covari-
ance matrices. The reliability and accuracy of the square-root ver-
sion of the CD-CKF are tested in a case study that involves the use
of a radar problem of practical significance; the problem consid-
ered herein is challenging in the context of radar in two respects-
high dimensionality of the state and increasing degree of nonlin-
earity. The results, presented herein, indicate that the CD-CKF
markedly outperforms existing continuous-discrete filters.

Index Terms—Bayesian filters, cubature Kalman filter (CKF),
Itô-Taylor expansion, nonlinear filtering, square-root filtering.

I. INTRODUCTION

I
N [1], we described a new nonlinear filter named the cuba-
ture Kalman filter (CKF), for hidden state estimation based

on nonlinear discrete-time state-space models. Like the cele-
brated Kalman filter for linear Gaussian models, an important
virtue of the CKF is its mathematical rigor. This rigor is rooted
in the third-degree spherical-radial cubature rule for numeri-
cally computing Gaussian-weighted integrals [3]. Although the
idea of constructing cubature rules has been known for over four
decades in the mathematical literature, to the best of our knowl-
edge, there has been no reference made to it in the literature on
nonlinear filtering except in [1] for the first time.
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A unique characteristic of the CKF is the fact that the cu-
bature rule leads to an even number of equally weighted cu-
bature points ( points, where is the dimensionality of the
state vector); these points are distributed uniformly on an ellip-
soid centered on the origin. In a related context, the unscented
Kalman filter (UKF) due to Julier et al. [26] has an odd number
of sigma points ( points) also distributed on an ellipsoid
but with a nonzero center point. Whereas the cubature points of
the CKF follow rigorously from the cubature rule, the sigma
points of the UKF are the result of the “unscented” transforma-
tion applied to inputs. In other words, there is a fundamental
difference between the CKF and UKF:

• The CKF follows directly from the cubature rule, an im-
portant property of which is that it does not entail any free
parameter;

• In contrast, the UKF purposely introduces a nonzero
scaling parameter, commonly denoted by , which defines
the nonzero center point that is often given more weighting
than the remaining set of sigma points (see Section III for
more details).

Indeed, it is the inclusion of the parameter that is responsible
for the UKF to underperform compared to the UKF. What is
truly interesting is that when of the “plain” UKF is set to zero
(by “plain” we mean the UKF without using a scaled unscented
transformation), the sigma point set boils down to the cubature
point set and the algorithmic steps of the plain UKF become
identical to that of the CKF. It is ironic that the observation
for setting equal to zero has been largely overlooked in the
literature on nonlinear filtering for the past many years.

To proceed on, the original derivation of the CKF is lim-
ited to a discrete-time domain, where the process and measure-
ment equations are both described by stochastic difference equa-
tions. However, in many nonlinear filtering problems considered
in practice, the state-space model is of the continuous-discrete
kind. Specifically, the process equation is formulated from the
underlying physics of a dynamic system and therefore expressed
in the form of a set of stochastic ordinary differential equations
(ODEs). As before, with digital devices as the method of choice,
the measurements are naturally made in the discrete-time do-
main. Filtering problems in the continuous-discrete time domain
often arise in numerous applications such as target tracking [8],
[41], navigation [21], stochastic control [4], and finance [35].

The motivation of this paper is to extend the CKF to deal with
state-space models of the continuous-discrete kind. The key
to successful filtering in such continuous-discrete background
lies in the effective extraction of useful information about
the system’s states from available measurements. A “good”
process equation in discrete-time will certainly facilitate this
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information extraction to a great extent. In this paper, we use
the Itô-Taylor expansion of order 1.5 to transform the process
equation in the stochastic ODE form into a more familiar
stochastic difference equation for the first time in the nonlinear
filtering literature. This transformation yields a more accurate
yet approximate process equation in discrete time. Building on
this transformation and assuming that all conditional densities
are Gaussian-distributed, the filtering solution to the contin-
uous-discrete state-space model reduces to the problem of how
to compute Gaussian-weighted integrals. Given such a setting,
we go on to use a third-degree cubature rule to numerically
compute them. To be consistent with the literature, we have
named the resulting algorithm the Continuous-Discrete Cuba-

ture Kalman Filter (CD-CKF).
The rest of the paper is structured as follows: Section II de-

fines the continuous-discrete filtering problem and presents the
conceptual yet optimal Bayesian filtering solution. Section III
briefly reviews a number of existing continuous-discrete fil-
ters. Section IV presents the Itô-Taylor expansion of order
1.5, a powerful numerical method used to approximate sto-
chastic ODEs. In Section V, we derive the CD-CKF using
the Itô-Taylor expansion of order 1.5. We go on to derive a
square-root version of the CD-CKF for improved reliability in
a limited-precision system in Section VI. Section VII presents a
number of unique features of the proposed CD-CKF that distin-
guish it from existing continuous-discrete filters. Section VIII
is devoted to a challenging experiment, which compares the
square-root CD-CKF against existing continuous-discrete
filters in tracking coordinated turns in an air-traffic-control
environment. Section IX concludes the paper with some final
remarks.

II. BAYESIAN FILTERING IN NONLINEAR

CONTINUOUS-DISCRETE STATE-SPACE MODELS

We consider a state-space model whose process equation is
given by a stochastic differential equation [25]

(1)

where denotes the -dimensional state of the system at time
; denotes the -dimensional standard Brownian motion

with increment that is independent of ;
is a known nonlinear drift function having appropriate

regularity properties; and is called the diffusion
matrix, also known as the spectral density matrix or gain matrix
of the process noise. The behavior of the system is observed
through noisy measurements at sampled time instants ,
as shown by

(2)

where ; ; the measurement noise
is assumed to be Gaussian with zero mean and known

covariance matrix ; and
is the measurement sampling interval. We use the symbols
and for the expectation operator and the Kronecker

delta, respectively. It is assumed that the initial condition and
noise processes are all statistically independent.

A. Optimal Bayesian Filter

In the Bayesian filtering paradigm, the conditional density
of the state given the measurements, also called the posterior
density of the state, provides a complete statistical description
of the state at that time [22]. The optimal continuous-discrete
Bayesian filter consists of the following:

• Propagation of the ’old’ posterior density between the mea-
surement instants; this first equation is called the time up-

date.
• Use of Bayes’ rule to update this propagated posterior den-

sity at the measurement instants; this second equation is
called the measurement update.

Let us examine the time update first. It is well known that for
(1), the propagation or the temporal evolution of the
old posterior density of the state from time to obeys the
well-known Fokker-Planck equation, also called Kolmogorov’s
forward equation [19], [25], [37]

(3)

with the initial condition , where “tr” is used to de-
note the trace operator, with and the
measurement history up to time denoted by

.
Considering the measurement update, on the receipt of ,

the use of Bayes’ rule yields the updated posterior density

(4)

where the likelihood function

with being the conventional symbol for a Gaussian den-
sity; and the normalizing constant

(5)

The predictive density is obtained from (3).
The pair of (3) and (4) describes the continuous-discrete

Bayesian filter only in conceptual terms. Apart from a few
special cases, the new posterior will not remain within a closed
family of distributions described by a finite summary statistic
and so the Fokker-Planck equation has to be solved approx-
imately. Known exact solutions are limited to the following
cases. For a linear process equation, (3) reduces to the time-up-
date of the Kalman-Bucy filter [28]. For a Beneš-type nonlinear
process equation, (3) reduces to the time-update of the Beneš
filter [10]. Finally, in [16], Daum has further extended the class
of nonlinear dynamic systems that admit a sufficient statistic of
a constant finite dimension. Apart from these restricted known
cases, we have to be content with an approximate solution. The
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next section reviews existing approximate continuous-discrete
nonlinear filters.

III. TIME UPDATE OF EXISTING FILTERS: A BRIEF REVIEW

The time update of a continuous-discrete filter can be divided
into two broadly defined types. Type-I filters compute the
conditional density by explicitly solving the Fokker-Planck (3).
For example, in the past, researchers have used a number of
numerical methods such as the finite-difference method [29],
adaptive finite-element methods [6, pp. 115–123]), the adjoint
method [18], Galerkin’s method [9], particle methods [13],
[14], [36] and Markov chain Monte Carlo methods [11]. On
the other hand, type-II filters compute merely a finite number
of summary statistics in terms of conditional moments after
discretizing the Itô-type process equation using the Euler or
higher-order Runge-Kutta methods [23], [30]. The computa-
tional complexity of type-I filters increases exponentially with
the dimension of the state vector, whereas the computational
complexity of type-II filters varies only polynomially with the
dimension of the state vector [17]. Because type-II filters are
computationally cheaper than type-I filters and the proposed
new filter, (the CD-CKF), fits into the type-II filter family, in
what follows, we present a detailed review of the time-updates
of two well-known type-II filters—continuous-discrete ex-
tended Kalman filter (CD-EKF) [25] and continuous-discrete
unscented Kalman filter (CD-UKF) [38]. In so doing, we also
facilitate comparisons presented in Section VII between the
proposed CD-CKF and these two existing filters.

Before diving into the details of the CD-EKF and CD-UKF,
we first set a common stage used for their derivations. Applying
the Euler approximation to the stochastic differential (1) over
the time interval yields

(6)

where the -dimensional Gaussian random variable is related
to the standard Gaussian random variable via

with being used to denote the -dimensional iden-
tity matrix. Taking the expectation yields

(7)

Because is independent of , the associated error covari-
ance matrix satisfies

(8)

CD-EKF: Historically, the first applicable continuous-dis-
crete nonlinear filter was derived in Chapters 6 and 9 of [25] as
generalization of the classical EKF. To approximately solve the
moment equations given by (7) and (8) over the time interval

, the CD-EKF uses the first-order Taylor series,
which expands around the latest known estimate

(9)

where refers to higher-order terms and the Jacobian of
evaluated at is

Consider the case where and , which also
implies that . Substituting (9) into (7) yields the predicted
state estimate

(10)

Similarly, substituting (9) into (8) yields the predicted state-
error covariance matrix

(11)

The predicted state estimate (10) and its covariance (11) collec-
tively form the time-update of the CD-EKF.

CD-UKF: Next, we focus on the time-update of the CD-UKF
[38], [39]. At the heart of the CD-UKF is the unscented transfor-

mation, which uses a set of sigma points to approximate
a symmetric density of an -dimensional random variable

with mean and covariance as shown by

(12)

where is the Dirac delta function and the sigma points
are chosen to match the first and second moments, such that

where the th column of a matrix is denoted by ; and the
parameter is chosen to be . Hence, a nonlinear
expectation is approximately computed using this sigma-point
set

(13)

(14)

By neglecting terms of the order , the predicted state-error
covariance matrix (8) is simplified to obtain the following
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approximate result (see, for example, [38, Appendix B])

(15)

As tends to zero, the moments equations in (7) and (15) can
be expressed in vector and matrix differential equations, respec-
tively, as follows:

(16)

(17)

Given that at time is Gaussian distributed with the mean
and covariance ,

and are obtained as follows: First, the operations
and present on the right-hand side (RHS) of (16) and

(17) are approximated by the unscented transformation as dis-
cussed above. Then, the results are numerically integrated up to
time ; the Runge-Kutta method is used as a numerical inte-
gration tool in [38].

In this section, so far, we have considered only a single-step
time update. To compute the predicted state and its error covari-
ance more accurately at time , an -step prediction over the
“small” time intervals of length , where

and the integer , is usually performed in a recursive
manner.

On the receipt of a new measurement , the posterior den-
sity is obtained by fusing with the predictive density using
Bayes’ rule. Because the measurement-update relies only on
the measurement equation, which is modeled in discrete time
for a continuous-discrete state-space model case, the measure-
ment-updates of the CD-EKF and CD-UKF reduce to that of
the EKF and UKF, respectively. In the next section, we describe
the Itô-Taylor Expansion that directly transforms the process
equation into a stochastic difference equation. As it captures
process-model nonlinearity and process noise more accurately,
this new approach is well suited to continuous-discrete filtering
problems. In fact, it provides increased stability and improved
state estimation.

IV. ITÔ-TAYLOR EXPANSION OF ORDER 1.5 FOR SOLVING

STOCHASTIC ODES

Itô-Taylor expansions, including the stochastic versions of
the Euler and Milstein schemes, are a general method for dis-
cretizing stochastic differential equations [30]. An Itô-Taylor
expansion for a stochastic differential equation is said to be
strongly convergent with order if, for any and
time interval , the error of the -step approximation of

to representing the exact solution given the initial
condition , satisfies

Here, and is a constant uniform in .
Hence, the expansion becomes more accurate as increases.

According to [30, Sec. 10.2], the Euler approximation (6) is
equivalent to the Itô-Taylor expansion of order .

Because an Itô-Taylor expansion of higher order is theoreti-
cally more accurate than that of lower order, the Itô-Taylor ex-
pansion of order 1.5, which we denote by IT-1.5 in the rest of the
paper, is ideal for our purpose. According to [30, Sec. 10.4], ap-
plying the IT-1.5 to the stochastic differential (1) over the time
interval yields

(18)

This equation entails the following notations:
• Two differential operators, and ,

which are, respectively, defined by

• The term denotes a square matrix with its th ele-
ment being , ;

• Noise-free process function, which, in discrete time, is de-
fined by

(19)

• Pair of correlated -dimensional Gaussian random vari-
ables , which can be generated from a pair of in-
dependent -dimensional standard Gaussian random vari-
ables as follows:

Accordingly, we find the following three covariance ma-
trices:

A. Motivating Example Using the IT-1.5

For a target moving with a ’nearly’ constant velocity in a
single physical dimension, we assume that the velocity follows
a random walk with a constant diffusion gain and position is
the integral of velocity. Hence, the target dynamics evolve ac-
cording to the following equation:

(20)



ARASARATNAM et al.: CKF FOR CONTINUOUS-DISCRETE SYSTEMS 4981

where the two-dimensional state of the target with
and denoting the position and velocity of the target, re-

spectively; the drift function ; and the gain ma-

trix . Because of the linear structure of the
process equation, this stochastic ODE can be analytically solved
over the interval , obtaining [8, Sec. 4.3.1]:

where and the Itô integral can be com-

puted to be a two-dimensional zero-mean Gaussian with covari-

ance matrix .

Applying the IT-1.5 to (20) over the same time interval yields

where

and is a white noise sample from zero-mean Gaussian process
with covariance matrix

We thus see that in this model, the IT-1.5 is exactly the same as
the above analytical solution.

V. CD-CKF

In this section, we extend the CKF with the state-space
models of the continuous-discrete kind using the Itô-Taylor
expansion for discretizing the process equation. We refer to
the resulting algorithm as the CD-CKF. Given that the process
equation is approximated by a stochastic difference equation,
the key assumption taken to develop this new algorithm is that
the state and measurement processes at time , given the past
measurement history up to time , are jointly approximated to
Gaussian. Under this assumption, the Bayesian filter reduces to
the problem of how to compute integrals whose integrands are
of the form

To numerically compute these integrals, we adopt a similar tech-
nique presented in [1]. For completeness, the technique is briefly
described next.

A. Review of Third-Degree Cubature Rule

Cubature rules approximate a multidimensional weighted in-
tegral of the form

(21)

where is some arbitrary function, is the re-
gion of integration, and the known weighting function

, using a set of weighted points:

(22)

For example, a third-degree cubature rule can be constructed to
approximate an -dimensional Gaussian weighted integral as
follows [40]:

where and the cubature points

Thus, the cubature rule uses an even set of equally weighted
symmetric cubature points. The cubature rule is exact for non-
linear functions belonging to monomials of degree three or less
[3, Proposition 3.1]. Next, we derive the time update of the
CD-CKF using the third-degree cubature rule.

B. Time-Update of the CD-CKF

Equipped with the third-degree cubature rule, we can now
use the IT-1.5 to update the old posterior density of the state
before receiving a new measurement, and obtain the first and
second moments of the predictive density. In what follows, we
use the notation to denote at time , where

and . Given the statistic of such that
, for we may thus write the predicted

state estimate

where ; ; and
. Because the noise terms are independent of the state

vector and zero-mean Gaussian, we may further simplify mat-
ters by writing

(23)

Similarly, we may write the predicted state-error covariance ma-
trix [see (24) at the bottom of the next page]. Note that the
CD-CKF not only propagates the state estimate (23) but also the
predicted state error covariance matrix (24) for each during the
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time-update. As long as the nonlinearity of is not “se-
vere,” we have found that a simpler approximation will be as ef-
fective as (24), namely to replace by

(25)

The alternative expression (25) allows us to compute the pre-
dicted state-error covariance matrix efficiently. Because (25) ad-
mits a simple expression as a sum of squared matrices, it also
helps us formulate a square-root version of the CD-CKF, which
is discussed in Section VI.

To numerically compute the integral present on the RHS of
(23), we now use the third-degree cubature rule, obtaining

(26)

where

Similarly, we numerically compute (25) and obtain

(27)

where

(28)

The RHS of (28) appears as a scaled version of a set of terms,
from each of which the prior mean is subtracted off; hereafter,

we refer to such a matrix ’a weighted-centered matrix’. To com-
pute the predicted state statistics at time

, the integration steps (26) and (27) are performed in
a successive manner. The measurement update of the CD-CKF
is exactly the same as that of the CKF, the equations of which
can be found in [1]. For completeness and coding purposes, all
the equations involved in computing the CD-CKF are summa-
rized in Appendix A.

VI. SQUARE-ROOT CONTINUOUS-DISCRETE CUBATURE

KALMAN FILTERING FOR IMPROVED RELIABILITY

The CD-CKF performs numerically sensitive operations such
as matrix inversion and subtraction of two positive definite ma-
trices. Unfortunately, these operations can lead to meaningless
covariance matrices that fail to be symmetric and positive (semi-
)definite. Specifically, the loss of positive definiteness becomes
unacceptable as it stops the CD-CKF from running continu-
ously.

In order to preserve the properties of symmetry and positive
(semi-)definiteness and to improve numerical accuracy, various
ad hoc methods have been introduced in the literature on
Bayesian filtering. Some of them include measurement-update
with a sequence of scalar measurements in a preferred order,
decoupled or quasi-decoupled covariances, symmetrization
of covariances, Joseph’s covariance update and use of large
process and measurement noise covariance matrices. These ad
hoc methods were developed in an era of limited computing
power. Equipped with the power of currently available com-
puters, to find a systematic solution that preserves the properties
of a covariance matrix and improves numerical accuracy, we
look to square-root filtering algorithms, which propagate the
square-roots of various error covariance matrices [2], [27].
Following this line of thinking, we may also structurally re-
formulate the CD-CKF developed for a continuous-discrete
state-space model.

To this end, a covariance matrix of the CD-CKF is written
in the form

(29)

where , , is a ’fat’ matrix.
Though in (29) can be considered as a square-root of ,
we prefer to keep the square-root as an triangular ma-
trix for computational reasons. The transformation of into a

(24)
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triangular matrix is performed by a triangulariza-
tion procedure (e.g., Gram-Schmidt based QR-decomposition).
When the matrix is decomposed into an orthogonal matrix

and an upper triangular matrix such that
, we get

where the ’new’ square-root of , . In this paper, we
simplify matters by using the notation

where is referred to as the ’old’ square-root of .
In what follows, we illustrate how this triangularization algo-

rithm is fitted into the two-step square-root continuous-discrete
cubature filter involving the time and measurement updates. In-
deed, we may construct a square-root factor of the predicted
state-error covariance matrix in a straightforward way (see the
time-update of the square-root CD-CKF in Appendix B). Be-
cause the measurement update of the square-root CD-CKF is
not straightforward, it is derived in the following subsection.

A. Measurement-Update of the Square-Root CD-CKF

From the measurement-update of the CD-CKF, we recall that
the following three covariance matrices may be expressed in
squared-matrix forms (see Appendix A):

(30)

(31)

(32)

where the weighted-centered matrices

(33)

(34)

We combine (30)–(32) together and rewrite them in a squared-
matrix form, as shown by

(35)

where is the zero matrix. Applying the triangular-
ization procedure to the square-root factor available on the RHS
of (35) yields

(36)

where , and are lower-triangular
matrices, and . Hence, we may rewrite (35) in the
“new” squared-matrix form:

(37)

Recalling from the cubature filter, the filter gain is defined by

(38)

Substituting the results obtained in (37) into (38) yields

(39)

Because is a lower-triangular matrix, we may efficiently
compute . Using the new symbol ‘/’ to represent the
matrix right-divide operator, we may write to be

and thus essentially apply the forward substitution

algorithm to compute . We therefore write the updated
state estimate

(40)

Next, we consider how the associated updated state error co-
variance matrix is written in matrix-squared form. We
first write

(41)

Then, substituting the results obtained in (37) into (41) yields

Hence, the ’new’ square-root factor of is .
To sum up, given the weighted-centered matrices , and

, and the square-root factor of the measurement noise
covariance matrix , the heart of the measurement-update
of square-root continuous-discrete cubature filtering resides in
computing the matrices and as defined in (36).
Subsequently, we compute the updated state estimate
as shown in (40) and the square-root of the corresponding error
covariance matrix that is simply given by .

Remarks:

• The CD-CKF derived in this paper shares a number
of common features with its predecessor CKF such as
the approximate formulation under Gaussian assump-
tion and the use of the third-degree cubature rule for
Gaussian weighted integrals. For a continuous-discrete
setting, we have used the IT-1.5 method to discretize
the Itô-type process equation which in turn translates the
continuous-discrete filtering problem into a discrete-time
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filtering problem. In this context, we could raise a ques-
tion: After this time-domain transformation using the
IT-1.5 method, what aspects of the CD-CKF make it
distinct from the CKF and its square-root version? Indeed,
to make the CD-CKF more accurate, stable and computa-
tionally efficient, we have done a number of clever things:
— An -step iterative time-update for improved

perdition. This idea has been in the literature for many
years.

— The way we simplify the time-update for efficient com-
putations [see (25)].

— The way we restructure the time-update for a stable
square-root formulation using Tria.

— The way we elegantly reformulate the square-root mea-
surement-update by combining submatrices into a big
one.

• Comparison of the measurement-update of the existing
square-root CKF derived in [1] with the square-root
CD-CKF derived in this paper reveals that both algo-
rithms approximately require the same computational
cost of flop counts (or simply flops)
per update cycle (see Appendix C). In computing these
costs, note that we do not account for flops associated
with problem-specific function evaluations, which are
common to both algorithms. However, the derivation of
the square-root CD-CKF is more elegant in that it applies
the triangularization procedure to the array of matrices
only once; in so doing, the square-root CD-CKF avoids
an explicit computation of the cross-covariance matrix
and repeated use of the forward substitution algorithm in
computing the cubature Kalman gain.

• The square-root CD-CKF closely resembles the square-
root formulation of the linear Kalman filter proposed by
Kaminski et al. [27]. In this regard, a key exception is that
in the square-root CD-CKF, various covariance matrices
are expressed in the form of outer products of weighted-
centered matrices.

VII. WHAT MAKES THE CD-CKF DISTINCT FROM THE

CD-EKF AND THE CD-UKF?

In this section, we summarize three unique features that
distinguish the proposed CD-CKF from the CD-EKF [25] and
CD-UKF [38]:

• Use of the IT-1.5: The CD-CKF uses the IT-1.5 whereas
current versions of both the CD-EKF and the CD-UKF
use the Euler approximation, which is equivalent to the
IT-0.5; they are therefore less accurate than the IT-1.5.
To the best of the authors’ knowledge, this is the first
time that the IT-1.5 is utilized for Bayesian filtering in
continuous-discrete systems. Because the IT-1.5 captures
the state evolution more accurately, the proposed CD-CKF
provides a more accurate state estimate and increased
filter stability than existing continuous-discrete filters.
Moreover, the IT-1.5 is almost as easy to compute as
lower-order methods even in high-dimensions. Though
it may be tempting to go for an Itô-Taylor expansion
of higher-orders (higher than 1.5), our experience has

revealed that the use of such an expansion in the CD-CKF
does not help improve estimation accuracy significantly.

• Continuous-Discrete Filtering from the Integration Per-

spective: After transforming a continuous-discrete filtering
problem into a more familiar stochastic difference equation
using the IT-1.5, the Bayesian filter under the Gaussian as-
sumption boils down to the problem of how to compute
Gaussian-weighted integrals. As such, the CD-CKF uses
the cubature rule to approximate these integrals. On the
other hand, to solve the moment (7) and (8) for the first
and second moments, the CD-EKF and CD-UKF use adhoc
methods- As described in Section III, the CD-EKF uses
the first-order Taylor expansion around its latest estimate
whereas the CD-UKF is built on the unscented transforma-
tion idea.

• Square-root Continuous-Discrete Filtering: The CD-CKF
and the CD-EKF naturally inherit the square-root fil-
tering feature of classical Kalman filter theory whereas
the CD-UKF is not always guaranteed to preserve this
capability. In this paper, the square-root version of the
CD-CKF is obtained by clever matrix manipulations and
ideas from linear algebra such as the least-squares method
and matrix triangularization.

VIII. CASE STUDY: RADAR TRACKER FOR

COORDINATED TURNS

To illustrate the information processing power of the
CD-CKF, we now consider a typical air-traffic-control scenario
where the objective is to track the trajectory of an aircraft that
executes a maneuver at (nearly) constant speed and turn rate in
the horizontal plane. Specifically, the motion in the horizontal
plane and the motion in the vertical plane are considered to
be decoupled from each other. In the aviation language, this
kind of motion is commonly refereed to as (nearly) coordinated
turn [8, Sec. 4.2]). Hence, we may write the coordinated turn
in the three-dimensional space, subject to fairly “small” noise
modeled by independent Brownian motions as shown by

(42)

where the seven-dimensional state of the aircraft
with , and denoting positions and

, and denoting velocities in the , and Cartesian
coordinates, respectively; denotes the turn rate; the drift
function ; the noise term

with ,
being all mutually independent standard Brownian motions,
accounts for unpredictable modeling errors due to turbu-
lence, wind force, etc.; and finally the diffusion matrix

. For the experiment at
hand, the radar is located at the origin and equipped to measure
the range, , azimuth angle, , and elevation angle, , at mea-
surement sampling time . Hence, we write the measurement
equation
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where the measurement noise with
.

Why Is This Tracking Problem Challenging? The considered
radar problem of tracking coordinated turns entails a number of
desirable features:

• The problem is nonlinear in process and measurement
models.

• It is a problem of practical significance that has not been
successfully solved in the past; it is our belief that the
CD-CKF is capable of solving this tracking problem in the
3-D space for the first time ever.

• From a practical perspective, the importance of the
CD-CKF becomes highly significant as the degree of
nonlinearity or the dimensionality of the problem at hand
is relatively high; in this line of thinking, the considered
seven-dimensional estimation problem may well be the
highest dimensional problem tackled in the context of
target tracking.

• We have a better control over the degree of nonlinearity
via the turn rate parameter, —as increases, the aircraft
maneuvers more quickly as illustrated in Fig. 1, which, in
turn, makes the tracking job more difficult. Note that mo-
tion trajectories of shapes other than circles can be obtained
by varying the magnitude and sign of .

• Finally, in the later part of this section, we demonstrate
that the CD-CKF is indeed far superior to the traditional
CD-EKF and the recently published CD-UKF [38].

Data Description: ; ; ;
; ; and the true initial state

.
As aforementioned, we use the notation to denote at

time , where and . Applying
the IT-1.5 to (42), we get the stochastic difference equation

(43)

where

For the purpose of generating independent aircraft trajectories,
we used the IT-1.5 with time-steps/sampling in-
terval.

Fig. 1. Change of motion trajectories with varying turn rate,�, when simulated
for 60 s (The filled circle denotes the starting point).

We are now ready to compare the performance of the
CD-CKF against the CD-EKF and the CD-UKF. All three ap-
proximate Bayesian filters were initialized with the same initial
condition for each run. The initial state density was assumed to
be Gaussian and the two-point differencing method, which uses
the first two measurements to estimate the states’ statistics, was
adopted for initialization [8, Sec. 5.5.3 ].

Performance Metric. To compare the three filter perfor-
mances, we use the accumulative root-mean square error
(RMSE) of the position, velocity and turn rate. For example,
we define the accumulative RMSE in position as

where and are the true and estimated
positions at time index in the th Monte Carlo run. In a sim-
ilar manner, we may also write formulas of the accumulative
RMSE in velocity and turn rate. For a fair comparison, a total of

independent Monte Carlo runs were made with mea-
surements collected for time intervals of 210s. However, the ac-
cumulative RMSEs were computed for a period of 60s-210s.

In addition to turn rate, the accumulative RMSE is depen-
dant on the measurement sampling interval and the number
of time update iterations/sampling interval ( , where

in our experiment). For example, as increases,
the measurements that contain information about the state are
available only after long ’waiting’ periods; if the time update of
a tracking filter is capable of capturing the state evolution more
accurately, it will continue to satisfactorily run even for a sub-
stantially longer without divergence. In fact, to alleviate the
detrimental performance due to increased , we may increase

. In our experiment, we also wanted to see how helps re-
duce estimation errors and divergence rates of a tracking filter.

Observations. Referring to the results displayed in Figs. 2–5,
we now make the following observations:

• Fig. 2 was obtained by fixing sampling interval at
and varying turn rate from to as

depicted in Fig. 1. When increases, the performances of
the CD-EKF and the CD-UKF tend to improve as expected.
On the other hand, from Fig. 2 we see that the CD-CKF
has already approached a steady state and therefore, unlike
the CD-EKF and CD-UKF, it does not require any further
time-update iterations. The CD-CKF uses the approximate
discretized process equation, which, with small , seems
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Fig. 2. Accumulative RMSE ��. ���� ��� � ��, where � is the number of time-update iterations/sampling interval, for a fixed sampling interval � 	 
 � and
varying turn rates. (a)–(c) � 	 � ��; (d)–(f) � 	 �� ��; (g)–(i) � 	 � ��. (a) RMSE in Position. (b) RMSE in Velocity. (c) RMSE in Turn Rate. (d) RMSE in
Position. (e) RMSE in Velocity. (f) RMSE in Turn Rate. (g) RMSE in Position. (h) RMSE in Velocity. (i) RMSE in Turn Rate.

sufficient to closely capture the underlying state process
responsible for the trajectory generation. For insight, con-
sider the case where increases and is fixed; for this
scenario, we see that unlike the CD- EKF, the CD-UKF sur-
vives in many cases but at the expense of a large number of
steps to get closer to the CD-CKF as shown in Fig. 2(a),
(d), and (g) (see also Table I).

• In Figs. 3–5, we repeated the experiments for different
sampling intervals, namely, , , and

, respectively, while was varied from
to . In all these cases, the CD-CKF outper-
forms the CD-EKF and CD-UKF. Its importance becomes
more and more obvious as increases (compare, for ex-
ample, Figs. 2(g)–(i) and 5(g)–(i)). Also, as can be seen
from Fig. 5(c), (f), and (i), the CD-CKF improves its per-
formance in tracking the turn rate as increases and sat-
urates after . However, if we are interested only

TABLE I
DIVERGENCE TABLE FOR A FIXED � 	 
 �: THREE ARGUMENTS

WITHIN EACH PARENTHESIS GOING FROM LEFT TO RIGHT DENOTE

THE NUMBER OF DIVERGENCES OUT OF 100 EXPERIMENTS FOR THE

CD-EKF, CD-UKF, AND CD-CKF, RESPECTIVELY

in accurate position and velocity estimates, it will be suf-
ficient to use the CD-CKF with at most two time update
iterations/sampling interval (i.e., ).

• Divergence is declared when the positional error

is greater

than 500 m. The results are shown in Tables I–III. All three
filters do not diverge when the tracking scenario assumes
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Fig. 3. Accumulative RMSE ��. ���� ��� � ��, where � is the number of time-update iterations/sampling interval, for a fixed sampling interval � 	 
 � and
varying turn rates. (a)–(c) � 	 � ��; (d)–(f) � 	 
�� �; (g)–(i) � 	  �. (a) RMSE in Position. (b) RMSE in Velocity. (c) RMSE in Turn Rate. (d) RMSE in
Position. (e) RMSE in Velocity. (f) RMSE in Turn Rate. (g) RMSE in Position. (h) RMSE in Velocity. (i) RMSE in Turn Rate.

to be and equals or ; similarly, they do
not diverge when and are set at and 2s. For
this reason, we do not present them in the tables. Again,
we consider the case where is fixed, and increases-
in this case, as increases, the CD-EKF and CD-UKF
diverge more frequently. The CD-EKF and CD-UKF
completely break down when and are fixed at
and 6s, respectively, irrespective of (see Table III). One
of the striking features of the CD-CKF lies in its relia-
bility despite the fact that its computational complexity is
comparable to that of the CD-EKF and CD-UKF for fixed

. From Table IV, we see that the CD-CKF has reached
its own breakdown condition- it diverges in more than
half of Monte Carlo trials when and are fixed at
and 8s, respectively. However, it is important to note that
the underlying target parameters for this condition are far
more severe than those experienced with the CD-EKF and
CD-UKF.

More specifically, of the three approximate Bayesian filters,
the CD-CKF is the most accurate and reliable followed by the
CD-UKF and then the CD-EKF. We may therefore say that the
CD-CKF is the method of choice for challenging radar tracking
problems, exemplified by the case study chosen herein.

Remark: The considered tracking problem falls under the
simple class of single-target single-sensor target tracking
without considering complications such as false alarms
and misdetections. To handle such complications in a more
complicated multitarget multisensor environment, the joint
probabilistic data association (JPDA) filter [7], [12], the multi-
hypothesis tracking (MHT) filter [7], [12] and the probability
hypothesis density (PHD) filter [34], [42], [43] are often used.
For tracking problems defined by a nonlinear continuous-dis-
crete state-space model, the continuous-discrete version of
these filters can be easily derived by adopting ideas from the
CD-CKF. For example, consider the JPDA filter, a classical
filter for tracking a known number of targets in clutter. It uses
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Fig. 4. Accumulative RMSE ��. ���� ��� � ��, where � is the number of time-update iterations/sampling interval, for a fixed sampling interval � 	 
 � and
varying turn rates. (a)–(c) � 	 � ��; (d)–(f) � 	 �� ��; (g)–(i) � 	 
 ��. (a) RMSE in Position. (b) RMSE in Velocity. (c) RMSE in Turn Rate. (d) RMSE in
Position. (e) RMSE in Velocity. (f) RMSE in Turn Rate. (g) RMSE in Position. (h) RMSE in Velocity. (i) RMSE in Turn Rate.

measurements weighted by their association probabilities. The
continuous-discrete version of the JPDA may use the time-up-
date of the CD-CKF in order to propagate state statistics in
time; to fuse measurements with the predicted density, it may
utilize a number of steps of the measurement update of the
CD-CKF, e.g., to compute the predicted measurements and the
filter gain, which is the function of the innovations covariances
and cross covariances.

IX. CONCLUSION

In this paper, we have expanded the CKF to extend its appli-
cability to continuous-discrete systems and named the resulting
algorithm the “continuous-discrete cubature Kalman filter (CD-
CKF).” For its time-update, we have employed two different nu-
merical integration tools:

• Discretization of the continuous-time process equation
modeled by a stochastic differential equation based on
the Itô-Taylor expansion of order 1.5; this tool transforms

the process equation into a familiar stochastic difference
equation.

• Computing the second-order statistics of various condi-
tional densities using the third-degree cubature rule; this
second tool accurately computes Gaussian-weighted inte-
grals whose integrands are well-behaved nonlinear func-
tions.

For improved numerical stability, we also developed a square-
root version of the CD-CKF.

To demonstrate the computing power of the square-root
CD-CKF in terms of reliability and accuracy, we tested it in
tackling a seven-dimensional radar tracking problem, where
an aircraft executes a coordinated turn. The experiment also
involved comparing performance of the CD-CKF with the
CD-EKF and CD-UKF with all three approximate Bayesian
filters having comparable computational complexities. The
experiment was repeated under two different conditions:
varying turn rate for fixed measurement sampling time interval
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Fig. 5. Accumulative RMSE ��. ���� ��� � ��, where � is the number of time-update iterations/sampling interval, for a fixed sampling interval � 	 
 � and
varying turn rates. (a)–(c) � 	 � ��; (d)–(f) � 	 �� ��; (g)–(i) � 	 � ��. (a) RMSE in Position. (b) RMSE in Velocity. (c) RMSE in Turn Rate. (d) RMSE in
Position. (e) RMSE in Velocity. (f) RMSE in Turn Rate. (g) RMSE in Position. (h) RMSE in Velocity. (i) RMSE in Turn Rate.

and varying measurement sampling time interval for fixed
turn rate. The conclusions to be drawn from the experiments
are summarized as follows: Among the three approximate
Bayesian filters considered herein, the CD-CKF is the most
accurate and reliable, followed by the CD-UKF and then the
CD-EKF. The CD-CKF becomes the method of choice for
the air-traffic-control problem considered in this paper as
the degree of nonlinearity increases or the measurements are
available in substantially long time intervals. This improved
performance of the CD-CKF compared to the CD-UKF is
attributed to the basic differences between these two filters as
highlighted in Section VII.

Note that this paper considers different algorithms as the
number of steps, , varies; however, given , the sam-
pling-time is equally divided to yield a fixed step-size time
update. In contrast, for improved accuracy and fast conver-
gence, the authors of [41] implement the CD-UKF that uses an
adaptive step-size Runge-Kutta method as a tool for numerical

integration. It will be an interesting future research topic to
undertake a detailed comparative study on the feasibility of
various adaptive step-size numerical tools for the development
of an approximate continuous-discrete filter.

APPENDIX A
CONTINUOUS-DISCRETE CUBATURE FILTER

-step Time-Update: Initialize to be zero. That is,
and .

1) Factorize

2) Evaluate the cubature points

where refers to the set of cubature points as defined
in Section V-A.
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TABLE II
DIVERGENCE TABLE FOR A FIXED � � � �: THREE ARGUMENTS WITHIN EACH PARENTHESIS GOING FROM LEFT TO RIGHT DENOTE THE

NUMBER OF DIVERGENCES OUT OF 100 EXPERIMENTS FOR THE CD-EKF, CD-UKF, AND CD-CKF, RESPECTIVELY

TABLE III
DIVERGENCE TABLE FOR A FIXED � � � �: THREE ARGUMENTS WITHIN EACH PARENTHESIS GOING FROM LEFT TO RIGHT DENOTE THE

NUMBER OF DIVERGENCES OUT OF 100 EXPERIMENTS FOR THE CD-EKF, CD-UKF, AND CD-CKF, RESPECTIVELY

3) Evaluate the propagated cubature point set

4) Estimate the predicted state

5) Estimate the predicted error covariance matrix

where the weighted-centered matrix

6) Increase by one and repeat the steps 1)–5) until reaches
(that is, until time ).

Measurement-Update

1) Factorize

2) Evaluate the cubature points

3) Evaluate the propagated cubature points

4) Estimate the predicted measurement

5) Estimate the innovations covariance matrix

where the weighted-centered matrix

6) Estimate the cross-covariance matrix

where the weighted-centered matrix

7) Estimate the continuous-discrete cubature gain

8) Estimate the updated state

9) Estimate the corresponding error covariance matrix

APPENDIX B
SQUARE-ROOT CD-CKF

Below, we summarize the square-root CD-CKF writing only
those steps when they differ from the CD-CKF.
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TABLE IV
DIVERGENCE TABLE FOR A FIXED � � � �: THREE ARGUMENTS WITHIN EACH PARENTHESIS GOING FROM LEFT TO RIGHT DENOTE THE

NUMBER OF DIVERGENCES OUT OF 100 EXPERIMENTS FOR THE CD-EKF, CD-UKF, AND CD-CKF, RESPECTIVELY

TABLE V

-step Time-Update

1) Skip the factorization step 1) because the square-root of the
error covariance matrix is available. Compute steps
2)-4).

2) Estimate the square-root factor of the predicted error co-
variance matrix

3) Increase by one and repeat the above steps 1)-2) until
reaches (that is, until time ).

Measurement-Update

1) Evaluate the cubature points

2) Evaluate the propagated cubature points

3) Estimate the predicted measurement

4) Compute the matrices , , and using the trian-
gularization algorithm

where the weighted-centered matrices present on the RHS
of the above equation are given in Steps 5) and 6) of the
measurement update of the CD-CKF algorithm.

5) Estimate the continuous-discrete cubature gain

6) Estimate the updated state
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7) The square-root factor of the corresponding error covari-
ance matrix is given by

APPENDIX C
COMPUTATIONAL COST OF THE SQUARE-ROOT

CD-CKF IN FLOPS

See Table V.
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