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ABSTRACT 
The lack of an appropriate conceptual model for data warehouses and OLAP systems has led to 
the tendency to deploy logical models (for example, star, snowflake, and constellation schemas) 
for them as conceptual models. ER model extensions, UML extensions, special graphical user 
interfaces, and dashboards have been proposed as conceptual approaches. However, they 
introduce their own problems, are somehow complex and difficult to understand, and are not 
always user-friendly. They also require a high learning curve, and most of them address only 
structural design, not considering associated operations. Therefore, they are not really an 
improvement and, in the end, only represent a reflection of the logical model. The essential 
drawback of offering this system-centric view as a user concept is that knowledge workers are 
confronted with the full and overwhelming complexity of these systems as well as complicated 
and user-unfriendly query languages such as SQL OLAP and MDX. In this article, we propose 
a user-centric conceptual model for data warehouses and OLAP systems, called the Cube 
Algebra. It takes the cube metaphor literally and provides the knowledge worker with high-
level cube objects and related concepts. A novel query language leverages well known high-
level operations such as roll-up, drill-down, slice, and drill-across. As a result, the logical and 
physical levels are hidden from the unskilled end user. 
Keywords: data warehouses, OLAP, cube, conceptual model, user-centric model, query 
language 
 
 

INTRODUCTION 

Nowadays, data warehouses are at the 
forefront of information technology 
applications as a way for organizations to 
effectively use and analyze information for 
business planning and decision making. 
Data warehouses are large repositories of 
analytical and subject-oriented data 
integrated from several heterogeneous 
sources over a large period of time. The 
technique of performing complex analysis 

over the information stored in the data 
warehouse is commonly called Online 
Analytical Processing (OLAP). A review of 
the evolution of data warehouse technology 
reveals that research and development has 
mainly focused on system aspects such as 
the construction of data warehouses, 
materialization, indexing, and the 
implementation of OLAP functionality. 
This system-centric view has led to well-
established and commercialized 
technologies such as relational OLAP 
(ROLAP), multidimensional OLAP 
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(MOLAP), and hybrid OLAP (HOLAP) at 
the logical and the physical levels.  

However, the unskilled user such as the 
manager in a consulting company or the 
analyst in a financial institution is 
confronted with the problem that the 
handling of data warehouses and OLAP 
systems requires expert knowledge due to 
complicated data warehouse structures and 
the complexity of OLAP systems and query 
languages. Two main reasons are 
responsible for this problem. First, due to 
the lack of a generic, user-friendly, and 
comprehensible conceptual data model, data 
warehouse design is usually performed at 
the logical level and leads to the exposure 
of the logical design schemas that are 
difficult to understand by the unskilled user. 
In a ROLAP environment, for example, the 
user is faced with the logical design of 
relational tables in terms of star, snowflake, 
or fact constellation schemas. The proposal 
to alleviate the problem by providing 
extensions to the Entity-Relationship Model 
and the Unified Modeling Language, or by 
offering specific graphical user interfaces or 
dashboards for data warehouse design is not 
really convincing since ultimately they 
represent a reflection and visualization of 
relational technology concepts and, in 
addition, reveal their own problems. 
Second, available OLAP query and analysis 
languages such as MDX and SQL OLAP 
operate at the logical level and require the 
user’s deep understanding of the data 
warehouse structure in order to be able to 
formulate queries. These languages are 
quite complex, overwhelm the unskilled 
user, and are therefore inappropriate as end-
user languages. 

We conclude that a generic, conceptual, 
and user-centric data warehouse model that 
focuses on user requirements is missing and 
needed. Such a model should fulfill several 
design criteria. First, it should be located 
above the logical level. Second, it should 
abstract from and be independent of the 
models and technologies (ROLAP, 

MOLAP, HOLAP) at the logical level. 
Third, it should be able to cooperate with 
any of these logical models and 
technologies. Fourth, it should enable the 
user to generically and abstractly represent 
and query hierarchical multidimensional 
data. Fifth, it should have an associated 
query language based exclusively on the 
conceptual level, thus providing high-level 
query operations for the user. The goal of 
this article is to propose and formally 
describe a conceptual and user-centric data 
warehouse model and query language that 
satisfies these design criteria. Surprisingly, 
the conceptual view this model adopts is not 
new; on the contrary, it is well known. 
However, the way and resoluteness in 
which we offer this concept is novel. Our 
proposed conceptual model leverages the 
cube view of data warehouses but takes the 
cube metaphor literally. This means that the 
user’s conceptual world is solely the cube 
that the user can create, manipulate, update, 
and query. The cube is used as the user 
concept that completely abstracts from any 
logical and physical implementation details. 
Technically, this implies that cubes can be 
regarded as an abstract data type that 
provides cubes as the only kind of values 
(objects), offers high-level operations on 
cubes or between cubes such as slice, dice, 
drill-down, roll-up, and drill-across as the 
only available access methods, and hides 
any data representation and algorithmic 
details from the user, who can concentrate 
on her main interest, namely to analyze 
large volumes of data. Another 
characterization is to say that we define a 
universal algebra with cubes as the only 
sort and a collection of unary and binary 
operations on cubes. We therefore name our 
approach Cube Algebra. We will show that 
this algebra develops its full power and 
expressiveness if it is used as a high-level 
query language. 

The paper is organized as follows. Next 
section discusses related work and 
compares available data warehouse models 
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with our Cube Algebra. Then, we describe 
an application scenario that we use 
throughout the paper to illustrate important 
aspects of the Cube Algebra. In the same 
section, we provide a three-level 
architecture of a data warehouse and OLAP 
system that includes our Cube Algebra. We 
further specify the formal data model 
supporting the Cube Algebra. The section 
concludes with a sketch of a data definition 
language to specify the structure of a cube. 
Then, we define high-level OLAP cube 
operations such as slice and drill-across, 
and illustrate their use in a number of 
queries that refer to our application 
scenario. Finally, the last section draws 
some conclusions and sketches future work. 

RELATED WORK 

Several data warehouse (DW) models 
have been proposed in the literature (see for 
example the survey in (Marcel, 1999)). 
Most of these models address the logical 
level (e.g., Li & Wang, 1996; Cabibbo & 
Torlone, 1997; Cabibbo & Torlone, 1998, 
Lehner, 1998). Therefore, they are 
dependent of specific technologies, for 
example ROLAP, MOLAP, and HOLAP, 
which lead to complex and non-user 
friendly query languages. In this section, we 
limit ourselves to conceptual models and 
discuss them with respect to our proposal, 
i.e., we focus on the user support provided 
by these models. We claim that most of the 
models aimed at addressing the conceptual 
level actually rely on structures that are 
close to the logical level, thus not 
addressing end-user needs. We call these 
system-centric models, opposite to the user-
centric approach we present in this paper. 
Similarly, we also claim that the user 
should be provided with a query and 
analysis language that is exclusively based 
on the conceptual level. Although several 
proposals in the literature define a set of 
operators to handle multidimensional data 
(see for example the survey and the 

reference algebra in (Romero and Abelló 
(2007)), these proposals do not abstract 
from the logical level and thus, do not 
provide high-level query operations for the 
user. Taking the aforementioned discussion 
into account, we next comment on related 
work, and present an analysis against our 
proposal. 

We first classify existing models into 
three classes: (a) conceptual models based 
on extensions to the Entity-Relationship 
(ER) Model (Chen, 1976); (b) conceptual 
models based on extensions to the Unified 
Modeling Language (UML); (c) models 
based on a view of data as a cube.  

We start with a discussion on models in 
class (a) (ER-based models).  

Rizzi (2007) proposed the Dimensional 
Fact Model (DFM), which uses the typical 
DW concepts of facts, dimensions, 
measures, hierarchies, descriptive and 
cross-dimension attributes; the model also 
supports shared, incomplete, recursive, and 
dynamic hierarchies, and notions such as 
additivity. To represent these concepts, 
DFM relies on a graphical notation that 
facilitates the understanding of the 
conceptual schema, and that is an 
abstraction of the star schema, in which 
there is a central fact entity and a graph per 
dimension to represent the attribute 
hierarchies. Golfarelli and Rizzi (1998) 
extend DFM by presenting a 
methodological framework for DW 
conceptual modeling, which starts gathering 
user requirements and carries out the data 
warehouse design semi-automatically from 
the operational database schema. In 
addition to providing an abstraction of the 
star schema in terms of a central fact entity 
and several graphs, they also formalize each 
concept of the DFM and define a language 
to denote queries according to the DFM to 
validate the generated schema.  

Ravat et al. (2008) study three related 
issues. First, they propose a conceptual 
multidimensional model, which is based on 
the concepts of constellations, dimensions, 
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dimension attributes, hierarchies, facts, 
measures, and multidimensional table 
structures (i.e., tabular representations of 
multidimensional data).  Second, they 
define a set of algebra operators to 
manipulate multidimensional data, which 
include: (i) a minimal core of operators to 
modify analysis precision (i.e., drill-down, 
roll-up, select), to change analysis criteria 
(i.e., rotate, add measure, delete measure, 
push and pull, nest), and to change the 
multidimensional table presentation (i.e., 
switch, aggregate); (ii) advanced operators 
(i.e., frotate, hrotate, order, plot, unselect) 
that are obtained from the combination of 
core operators aiming at simplifying 
complex queries; and (iii) binary operators 
(set operators), such as union, intersect, and 
minus, based on the (semi-)compatibility of 
input tables. Third, they develop a graphical 
interface based on the multidimensional 
table structures and the DFM commented 
above. This interface is supported by a 
graphic language that encompasses the core 
algebra operators. Although this work 
focuses on a user-oriented query language 
composed of a formalized algebra and a 
graphical query language, the 
multidimensional model over which this 
work is based is very close to the star 
schema and strongly based on the concept 
of multidimensional table, i.e., it remains as 
a system-centric model. 

Tryfona et al. (1999) propose the starER 
model, which combines the star structure 
with the constructs of the ER Model, in 
addition to proposing special types of 
relationships to support attribute hierarchies 
on dimensions. The starER model 
encompasses the following main 
constructors: facts, entities, relationships 
among entities, and attributes (i.e., 
properties of entities, relationships, or 
facts). Further, the starER model provides a 
graphical notation very close to the ER 
Model. Along similar lines (i.e., starting 
from an ER-based data model), Malinowski 
and Zimányi (2008) introduce a metamodel 

of hierarchy classification that encompasses 
from symmetric simple hierarchies until 
more complex ones, such as non-strict 
simple hierarchies, asymmetric and 
generalized simple hierarchies, multiple 
hierarchies, and parallel hierarchies. They 
also present a graphical notation for 
representing these hierarchies, close to a 
relational representation. 

We now move on to discuss models in 
class (b) (UML-based models).  

Nguyen et al. (2000) use UML to map 
their proposed conceptual multidimensional 
data model to an object-oriented data 
model. The data model is based on the 
concepts of dimensions, dimension 
members, dimension levels, dimension 
schemas, dimension paths and hierarchies, 
dimension operators, measures, and data 
cubes. This model aims at representing 
natural hierarchical relationships among 
members within a dimension as well as 
unbalanced and multiple hierarchies. The 
authors also define the following cube 
operators: groupBy, jumping, rollingUp, 
and drillingDown. However, this model is 
defined at a level very close to the logical 
one. Also, this proposal does not introduce 
a full set of high-level operations such as 
slice and drill-across. 

Abelló et al. (2001) investigate 
relationships between cubes in an object-
oriented framework with navigation 
operations. Here, the data cube is defined in 
terms of a set of concepts, such as measures 
and cells, dimensions and aggregation 
levels, and facts. An algebra is defined as a 
set of multidimensional operations, such as 
base changes, dice, slice, drill-across, roll-
up and drill-down. In sequels of this paper 
(Abelló, Samos & Saltor 2002; Abelló, 
Samos & Saltor 2006), the authors propose 
YAM 2, a multidimensional conceptual 
object-oriented model for data warehousing 
and OLAP tools extending the UML, which 
is defined in terms of its structures, integrity 
constraints, and query operations. However, 
in spite of being defined at the conceptual 
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level, YAM2 relies on star schema-like 
design, and therefore is not completely 
independent of logical modeling concepts.  

Pardillo et al. (2008) introduce platform-
independent conceptual OLAP queries that 
can be automatically traced to their logical 
implementation, together with an OLAP 
algebra at the conceptual level by using the 
Object Constraint Language (OCL), aimed 
at allowing end-users to query data 
warehouses without being aware of logical 
details. The authors introduce cube 
manipulation operators (e.g., dimension 
addition and removal), and operators such 
as slice, dice, drill-across, multidimensional 
projection, roll-up and drill-down. Cabot et 
al. (2009) extend the former work through a 
conceptual specification of statistical 
functions using OCL. Finally, Pardillo et al. 
(2010) further extends OCL for OLAP 
querying, introducing a code-generation 
architecture aligned with the model-driven 
architecture (MDA), to map an extension to 
the OCL as a set of predefined OLAP 
operators. The main drawback of this work 
is that they are based on OCL, which is not 
user-friendly for data cube manipulation. 

Let us now comment on models based on 
the data cube (i.e., the ones in class (c)). 

 Tsois et al. (2001) propose a 
multidimensional aggregation cube (MAC) 
using the concepts of dimension, dimension 
level, dimension member, drilling 
relationship, and dimension path. Although 
they address the DW modeling problem 
from the end-user point of view, and 
describe a set of requirements for the 
conceptual modeling of real-world OLAP 
scenarios, the authors do not present a 
language supporting the model.  

Along different lines, some authors 
formally define the notion of a cube and 
introduce operations for this. Agrawal et al. 
(1997) propose a data model whose core 
features are the symmetric treatment of 
dimensions and measures, the support of 
multiple hierarchies along each dimension 
and the possibility of performing ad-hoc 

aggregates. They also define a minimal set 
of algebraic operators that is composed of 
the following operators: push and pull (to 
allow symmetric treatment of dimensions 
and measures), destroy dimension, 
restriction (slice and dice), join, and 
associate. This minimal set of operators 
stays as close to relational algebra as 
possible and can be translated to SQL 
through an algebraic application 
programming interface.  

The conceptual multidimensional model 
proposed by Gyssens and Lakshmanan 
(1997) focuses on the separation between 
structural aspects and the content, allowing 
the definition of a data manipulation 
language that can express the cube operator. 
They define an algebra (and an equivalent 
calculus), which include set operators (like  
selection, projection, Cartesian product), 
operators for summarization, and re-
structuring operators (fold and unfold).   

Vassiliadis (1998) formally defines the 
concepts of dimensions, hierarchies, and 
cube to propose a model for 
multidimensional databases. He also 
introduces a set of cube operators based on 
the notion of the base cube, which is used 
for providing the calculation of the results 
of cube operations. These operations are: 
level climbing, packing, function 
application, projection, navigation, slicing, 
and dicing. He also provides a mapping of 
the proposed model to the relational model 
and to multidimensional arrays.  

Datta and Thomas (1999) also defined a 
data cube model and an associated algebra. 
The data cube model includes the concepts 
of data cube, dimensions, dimension 
attributes, measures and attribute 
hierarchies, and focuses on the symmetric 
treatment of dimensions and measures. As 
for the algebra, the purpose of the work is 
to provide comprehensive OLAP 
functionalities, including aggregation (to be 
applied several times to enable roll-up and 
drill-down operations and comparisons of 
aggregate values), transformations to 
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convert dimensions to measures and vice 
versa and partitioning (grouping of data for 
aggregating purposes). The algebra has the 
following operators: restriction, 
aggregation, Cartesian product, join, union, 
difference, pull, push and partition. 

The proposals in this class, although 
based on the concept of a cube, do not 

approach the problem from a conceptual 
modeling viewpoint, neither they consider 
users’ needs (i.e., the user-centric view). 
Further, the proposed operators are not the 
ones commonly needed by high-level users 
such as managers.  

 
Related Work Focus Cube 

Metaphor 
Cube as 

ADT 
Model Level Model 

Extension 
Algebra or 
Calculus 

Abelló et al. (2001) system-
centric 

� � conceptual object-
oriented 

� 

Abelló et al. (2002) 

Abelló et al. (2006) 

system-
centric 

� � higher than logical, 
lower than conceptual 

UML-based � 

Agrawal et al. (1997) system-
centric 

� � higher than logical, 
lower than conceptual 

not an 
extension 

� 

Cabibbo and Torlone 
(1997) 

system-
centric 

� � logical not an 
extension 

� 

Cabibbo and Torlone 
(1998) 

system-
centric 

� � logical not an 
extension 

� 

Cabot et al. (2009) system-
centric 

� � logical UML-based � 

Datta and Thomas 
(1999) 

system-
centric 

� � higher than logical, 
lower than conceptual 

not an 
extension 

� 

Golfarelli and Rizzi 
(1998) 

system-
centric 

� � logical not an 
extension 

� 

Gyssens and 
Laksshmanan (1997) 

system-
centric 

� � logical not an 
extension 

� 

Lehner (1998) system-
centric 

� � logical not an 
extension 

� 

Li and Wang (1996) system-
centric 

� � logical not an 
extension 

� 

Malinowski and 
Zimányi (2008) 

system-
centric 

� � logical not an 
extension 

� 

Nguyen et al. (2000) system-
centric 

� � higher than logical, 
lower than conceptual 

UML-based � 

Pardillo et al. (2008) 

 

system-
centric 

� � higher than logical, 
lower than conceptual 

UML-based � 

Pardillo et al. (2010) system-
centric 

� � higher than logical, 
lower than conceptual 

UML-based � 

Ravat et al. (2008) system-
centric 

� � higher than logical, 
lower than conceptual 

not an 
extension 

� 

Rizzi (2007) system-
centric 

� � logical not an 
extension 

� 

Tryfona et al. (1999) system-
centric 

� � conceptual ER-based � 

Tsois et al. (2001) user-
centric 

� � conceptual not an 
extension 

� 

Vassiliadis (1998) system-
centric 

� � higher than logical, 
lower than conceptual 

not an 
extension 

� 

Cube Algebra user-
centric 

� � conceptual not an 
extension 

� 

 
Table 1: Core properties of data warehouse models. 
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Table 1 refers to the following core 
characteristics of each studied DW model: 
(i) its focus (system-centric vs. user-
centric); (ii) if the model supports the data 
cube metaphor; (iii) if the model provides a 
cube as an abstract data type; (iv) the level 
at which the model is defined (conceptual 
level, logical level, or somewhere in-
between them); (v) the model that it is 
based on; and (vi) if it includes an OLAP 
algebra or calculus. We can see that almost 

all proposals defined at the conceptual level 
are actually system-centric rather than user-
centric. On the contrary, the Cube Algebra 
proposal applies to the conceptual level of a 
data warehouse architecture, independently 
from implementation issues. The only user-
centric model is the proposal of Tsois et al. 
(2001). However, this model does not 
provide a cube as an abstract data type and, 
more important, it does not propose an 
OLAP algebra or calculus to support it.  

 

Related Work Operations defined only 
over the cube metaphor 

Complexity of the 
query language 

Kind of query 
language 

Graphic tools or 
dashboards 

Abelló et al. (2001) � complex conceptual � 

Abelló et al. (2002) 

Abelló et al. (2006) 
� complex relational algebra � 

Agrawal et al. (1997) � complex relational algebra � 

Cabibbo and Torlone 
(1997) 

� complex calculus-based � 

Cabibbo and Torlone 
(1998) 

� complex relational algebra � 

Cabot et al. (2009) � complex OCL-based � 

Datta and Thomas 
(1999) 

� complex relational algebra � 

Golfarelli and Rizzi 
(1998) 

� not available not available � 

Gyssens and 
Laksshmanan (1997) 

� complex relational algebra/ 
calculus 

� 

Lehner (1998) � not available relational algebra � 

Li and Wang (1996) � complex relational algebra � 

Malinowski and 
Zimányi (2008) 

� not available not available � 

Nguyen et al. (2000) � complex relational calculus � 

Pardillo et al. (2008) � complex OCL-based � 

Pardillo et al. (2010) � complex relational algebra 
plus OCL 

� 

Ravat et al. (2008) � user-friendly relational algebra � 

Rizzi (2007) � not available not available � 

Tryfona et al. (1999)  � not available not available � 

Tsois et al. (2001) � not available not available � 

Vassiliadis (1998) � complex relational calculus � 

Cube Algebra � user-friendly relational algebra � 

 
Table 2: Query language and operations of data warehouse models. 

 
Table 2 compares existing proposals 

against Cube Algebra, with respect to query 
language functionalities, namely: (i) if the 
operations are defined over the cube or over 

other data objects, at lower levels of 
abstraction (for example, tables, star 
schemas); (ii) the complexity of the query 
language for unskilled end users; (iii) the 
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kind of query language, such as cube-based, 
relational algebra-based, relational calculus-
based, OCL-based and MDX-based, or no 
language provided at all; and (iv) if the 
work provides some graphical notation or 
dashboard to aid in the data warehouse 
modeling. As we can see in Table 2, no 
work besides the Cube Algebra that offers a 
user-friendly query language is the proposal 
of Abelló et al. (2001), who introduce a 
query language at the conceptual level. 
Nevertheless, the query language is 
complex for unskilled end users. Besides, 
the operations defined over the cube, such 
as base changes, generalization, 

specialization, and derivation, are far from 
the knowledge of managers and analysts in 
an OLAP scenario. 

Finally, Table 3 details and compares the 
set of operations that each proposal 
provides, that is, general functionalities to 
create, manipulate, and update the cube 
metaphor, and the set of high-level 
operations for querying the data cube (roll-
up, drill-down, slice, dice, drill-across, 
pivot). As we can see, only the Cube 
Algebra encompasses all the operations. We 
can also see that most of the proposals do 
not offer operations to create, manipulate, 
and update the cube. 

 

 

Related Work 

General Functionalities  Query Cube 

create 
cube 

manipulate 
cube 

update 
cube 

 roll-up  
(drill-down) 

slice  dice  drill- 
across 

pivot  
 

Abelló et al. (2001) � � �  � � � � �  

Abelló et al. (2002) 

Abelló et al. (2006) 
� � �  roll-up � � � �   

Agrawal et al. (1997) � � �  � � � � �  

Cabibbo and Torlone 
(1997) 

� � �  � � � � �  

Cabibbo and Torlone 
(1998) 

� � �  roll-up � � � �  

Cabot et al. (2009) � � �  � � � � �  

Datta and Thomas 
(1999) 

� � �  � � � � �  

Golfarelli and Rizzi 
(1998) 

� � �  � � � � �  

Gyssens and 
Lakshmanan (1997) 

� � �  roll-up � � � �  

Lehner (1998) � � �  � � � � �  

Li and Wang (1996) � � �  � � � � �  

Malinowski and 
Zimányi (2005) 

� � �  � � � � �  

Nguyen et al. (2000) � � �  � � � � �  

Pardillo et al. (2008) � � �  � � � � �  

Pardillo et al. (2010) � � �   � � � � �  

Ravat et al. (2008) � � �  � � � � �  

Rizzi (2007) � � �  � � � � �  

Tryfona et al (1999) � � �  � � � � �  

Tsois et al. (2001) � � �  � � � � �  

Vassiliadis (1998) � � �  drill-down � � � �  

Cube Algebra � � �  � � � � �  

 
Table 3: Types of operations of data warehouse manipulation languages. 

 



International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012  9 

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written 
permission of Idea Group Inc. is prohibited. 
 

 

Figure 1: (a) A three-dimensional cube for AirQuality data having dimensions Time, Pollution, and 
Station, and a measure concentration. (b) Dimension hierarchies. 

 

CUBE DATA MODEL AND 
THREE-LEVEL DATA 
ARCHITECTURE  

In this section, we present our user-
centric cube data model and show how it 
fits into the landscape of data warehouses. 
By selecting the application scenario of 
pollution control, next section informally 
introduces the main cube concepts that a 
user should be able to understand. Then, we 
present a three-level architecture of a data 
warehouse and OLAP system that integrates 
our Cube Algebra, and formally define the 
underlying user-centric data model 
supporting such algebra. Finally, we sketch 
a high-level data definition language for 
data cubes. 

Application Scenario: Cubes for 
Pollution Control 

We illustrate the needed user concepts 
by leveraging an application scenario of 
pollution control in Belgium. Monitoring 
stations located at different locations enable 
the measurement of certain pollutants (such 
as carbon monoxide, CO). Thus, three 
aspects or perspectives play a role here for 
the knowledge worker: (i) the monitoring 
station where a measurement is captured, 
(ii) the time when a measurement is taken, 
and (iii) the kind of pollution that is 

measured. These aspects form the three 
dimensions of a cube that are shown on the 
Figure 1a. In this example, we call the 
dimensions Station, Time, and 
Pollution. Dimensions are an essential 
and distinguishing first-class concept in 
cubes. They are visually or geometrically 
represented by the lateral faces of the 
(hyper) cube. A dimension is organized as a 
containment-like hierarchy. Each hierarchy 
level represents a different (aggregation) 
level of detail, as it is later required by the 
desired analyses. Figure 1b shows the three 
hierarchical structures of the Station, 
Time, and Pollution dimensions. Each 
hierarchical structure is called a dimension 
schema. For example, the dimension 
schema for Pollution models two 
hierarchies with Pollutant as their 
common lowest level, namely the hierarchy 
consisting of the levels Pollutant, Type, 
and Group, as well as the hierarchy 
consisting of the levels Pollutant and 
Category. The levels above Pollutant 
allow grouping and are therefore interesting 
for the knowledge worker. For example, 
similar pollutants can be grouped under the 
level Category. Note that there is a unique 
top level in the dimension schema, denoted 
All, to which all levels aggregate. Each 
dimension level includes a finite set of 
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values called members. A dimension 
instance comprises all members at all levels 
of a dimension hierarchy. Figure 3 gives an 
example of a dimension instance with 
respect to the dimension schema for 
Pollution shown in Figure 1b. The level 
Type, for example, contains the three 
members: T1, T2, and T3. 

A combination of members taken from 
each dimension uniquely defines a cell of a 
cube and implicitly specifies a fact if the 
cell is not empty. For example, in Figure 1a, 
at station S2 and quarter Q3, the pollutant 
P4 was measured since the cell is not 
empty. A value in a cell (such as 12 in our 
case) is called a measure value. A measure 
represents a numerical property of a fact. In 
our example, the measure is named 
concentration. A cube can have several 
different measures. Each measure comes 
with an aggregation function that can 
combine several measure values into one. 

Data Warehouse Architecture 
Figure 2 shows the three-level data 
warehouse architecture we devise (see 
Ullman (1988)). At the conceptual level 
(i.e., the highest abstraction level) of this 
architecture, there is the cube model 
described above (independent of how this 
cube is actually implemented), and the 
associated cube algebra we introduce later. 
At the logical level we have the 
implementation-dependent representation of 
the data cube. At this level we place the 
well-known star, snowflake, and 
constellation schemas (i.e., a ROLAP 
representation), as well as multidimensional 
(MOLAP), and hybrid representations 
(HOLAP). Query languages for these 
representations are relational query 
languages such as SQL dialects, and MDX. 
Note that although MDX works on cubes in 
the same way as SQL works on tables, it 
cannot be considered as a language 
operating at the conceptual level: not only 
its semantics has never been clearly 
defined, but the language is far from being 
user-friendly (as we will show later), a key 

issue in our approach.    Finally, at the 
physical level, we find the different ways of 
efficiently implementing the data 
warehouse. For example, for ROLAP 
implementations multidimensional indices 
such as variations of R-Trees can be used, 
as well as bitmap indices. For MOLAP 
implementations, efficient and proprietary 
algorithms for implementing sparse 
matrices are often used. 

 
Figure 2: The three-level architecture for 

multidimensional databases. 

Formal Cube Data Model 
Our cube-based, user-centric conceptual 

model is supported by the formal model we 
introduce next.  For simplicity, and without 
lost of generality, we assume that 
dimension level names are uniquei. 

Definition 1 (Dimension Schema) 
A dimension schema is a tuple 〈nameDS, L, 
→〉 where: (a) nameDS is the name of the 
dimension; (b) L is a non-empty finite set 
of pairs of the form 〈l, A〉 such that l is a 
level (there is a distinguished level name 
denoted All, such that 〈All, ∅〉 ∈ L), and A 
is a set of attributes describing a level). 
Each attribute has a domain Doma; without 
loss of generality, we consider that one 
attribute in A univocally identifies a 
member in level l; (c) → is a partial order 
on the levels l ∈ L. This partial order 
defines a graph, whose nodes are the levels 
l ∈ L, and are annotated by attributes in A; 
(e) The reflexive and transitive closure of 
→, denoted →*, has a unique bottom level 
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lb, and a unique top level. The top level is 
the distinguished level All. We denote by l i 
→* l j the fact that there is a path between l i 
and l j. Moreover, all levels l are such that lb 
→* l, and l →* All. � 

Intuitively, a dimension schema is a 
directed acyclic graph (DAG). Each node in 
this graph represents an aggregation level 
and is annotated with a list of attributes. 
There is a distinguished level denoted All 
without attributes, and a unique bottom 
level. All levels are (directly or transitively) 
reachable from the bottom, and all levels 
(directly or transitively) reach the level All. 

Definition 1 could be simplified if we 
ignore the level attributes, and consider 
each node in the graph as a single data 
element. However, we decided to state the 
formal model in this way to account for the 
way in which the user operates with the 
cube in real-world practice, where she 
defines a dimension level as an aggregation 
level, and attributes are displayed after 
aggregation has been performed.  

Definition 2 (Dimension Instance) 
An instance I of a dimension schema 
〈nameDS, L, →〉 consists of (a) a finite set 
of members Ml, for each level l in L, such 
that each member can be uniquely 
identified (the level All has a unique 
member all); (b) a set of partial functions, 
denoted as roll-up functions (following 
(Cabibbo & Torlone, 1997)) of the form 
Roll-upli

lj from the members of level l i to 
the members of level l j, for each pair of 
levels l i and lj in L, such that li → l j in →; 
(c) a collection of functions fl

1,…fl
k mapping 

members of l to values in the domain of 
each level attribute a1,…, ak ∈ A. � 

Intuitively, a dimension instance is also a 
DAG. Associated with an edge (l i,lj) in the 
schema graph such that l i → l j, there is a 
function from l i to l j. This function 
describes how members in the lower level 
aggregate to members in the upper level. 
Thus, a dimension instance is just a 
collection of such functions. Also note that 

our model supports multiple hierarchies, 
meaning that the same DAG models the 
different aggregation paths from bottom to 
top.    

Example 1 (Dimension Schema and 
Instance) 
In Figure 1b we can see three dimension 
schemas. Let us consider the one for 
dimension Pollution. The schema of this 
dimension is formally defined as follows.  

nameDS = Pollution,  
L= {〈 Pollutant,(name, loadLimit)〉, 
〈Type,(name)〉,…,〈Group,(name)〉},  
→ = {Pollutant → Type, Type → 
Group, Group → All, Pollutant → 
Category, Category → All } 

Note that in Figure 1b the attributes in the 
dimension levels that are underlined are the 
identifiers. 

The instances for dimension Pollution 
are depicted in Figure 3, and are of the 
form: 
MPollutant = {P1,…,P5}, MCategory = {C1, 
C2},  MType = {T1, T2, T3}, … 
Roll-upPollutant

Type ={(P1,T1), (P2,T2), …, 
(P5,T3)}… 
Roll-upPollutant

Category = {(P1,C1), (P2,C1), 
…, (P5,C2)} 
Roll-upCategory

All = {(C1,all),(C2,all)} 
fPollutant

name (P1) = CO,…,fPollutant
name (P5) = 

PM. 
fPollutant

loadLimit (P1) = 34,…, 
fPollutant

loadLimit(P5) = 44… 
fCategory

name(C1)= gas,…,fCategory
name (C2) = 

solid.  

 

Figure 3: Some instances (left) and roll-up functions 
(right) of dimension Pollution of Figure 1b. 
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Intuitively, the aggregation hierarchy is 
used as follows: let us suppose that the 
concentrations of pollutants P2 and P3 
measured at station S1 in a given day D1 
are 30 and 40 mg/m3, respectively. If we 
want to know the average concentration at 
S1, aggregated by type on that day, 
according to the instance depicted in 
Figure 3, P2 and P3 will contribute to the 
aggregation over type T2. Thus, for D1, S1, 
T2, we will have a value of 35. � 

Definition 3 (Cube Schema) 
A cube schema is a tuple 〈nameCS, D, M〉 
where nameCS is the name of the cube, D 
is a finite set of dimension levels, with |D| 
= d, corresponding to d bottom levels of d 
dimension schemas, different from each 
other, and M is a finite set of m attributes 
called measures. Each measure also has an 
associated domain. � 

Definition 4 (Cube Instance) 
Consider a cube schema 〈nameCS, D, M〉; 
each lbi ∈ D, i = 1,…,d, has a set of 
members. Let us call Points = {(c1,…,cd) | 
ci is a member of lbi, i=1,…,d }. A cube 
instance C is a partial function C: Points → 
dom(M1) ×…× dom(Mm) where Mi ∈ M, 
i=1,…,m. � 

Example 2 (Cube Schema and Instance) 
Let us now define a cube denoted 
AirQuality, composed by dimensions 
Pollution, Time, and Station, and a 
measure concentration, as introduced in 
our application scenario (Figure 1a). The 
cube has schema 〈AirQuality, 
{Pollutant, Day, Station}, 
{concentration}〉 with instances of the 
form C(P1,T1,S1) = 35,…, C(P5,T3,S4) = 
44,…. � 

Cube Algebra Definition 
Language 

We now sketch a language, which we 
denote CADL (standing for Cube Algebra 
Definition Language). The language aims at 
providing a description of the conceptual 

data cube model, and could be the basis of a 
Cube Definition Language at lower 
abstraction levels. 

In CADL, a cube schema is defined 
using the keyword CUBE followed by the 
cube name. Each cube is composed of a set 
of dimensions, identified with the keyword 
DIMENSION followed by the dimension 
name. After defining a dimension, we must 
list all dimension levels, along with their 
attributes. A dimension level is defined with 
the keyword LEVEL, followed by its name. 
In addition, each level contains a set of 
associated attributes, defined with the 
keyword ATTRIBUTES, followed by a list 
of attribute names and their types. In 
addition, the optional keyword UNIQUE 
indicates that the value of the attribute is 
unique among all the values of such 
attribute for all the level members. 

For our running example, we define the 
AirQuality data cube, along with its 
dimensions, levels, and attributes in CADL 
as follows.  

CUBE AirQuality { 

DIMENSION Time 

LEVEL Day ATTRIBUTES {date 

(date) UNIQUE, season (string)} 

LEVEL Month ATTRIBUTES {month 

(string) UNIQUE} 

LEVEL Quarter ATTRIBUTES 

{quarter (string) UNIQUE} 

LEVEL Semester ATTRIBUTES 

{semester (string) UNIQUE} 

LEVEL Year ATTRIBUTES {year 

(string) UNIQUE} 

Day ROLL-UP to Month 

Month ROLL-UP to Quarter 

Quarter ROLL-UP to Semester 

Semester ROLL-UP to Year  

DIMENSION Station 

LEVEL Station ATTRIBUTES {name 

(string) UNIQUE} 

DIMENSION Road 

LEVEL Road ATTRIBUTES {name 
(string) UNIQUE, length (real)} 
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DIMENSION Pollution 

LEVEL Pollutant ATTRIBUTES { 

name (string) UNIQUE,  

loadLimit (real)} 

LEVEL Category ATTRIBUTES { 

name (string) UNIQUE} 

LEVEL Type ATTRIBUTES { 

name (string) UNIQUE} 

LEVEL Group ATTRIBUTES { 

name (string) UNIQUE} 

Pollutant ROLL-UP to Category 

Pollutant ROLL-UP to Type 

Type ROLL-UP to Group  

DIMENSION Geography 

LEVEL District ATTRIBUTES {name 

(string) UNIQUE, area (real)} 

LEVEL Province ATTRIBUTES {name 

(string) UNIQUE} 

District ROLL-UP to Province  

MEASURE concentration (real)} 

CUBE ALGEBRA QUERY 
LANGUAGE 

In this section we sketch our proposal for 
a query language that implements the ideas 
discussed in the preceding sections. We 
define an algebra, which we denote Cube 
Algebra, such that the user could define her 
queries just by means of the typical OLAP 
operators. We first describe how the user 
would be able to operate in our application 
scenario, intuitively manipulating the cube 
using the traditional OLAP operations, e.g., 
slicing, dicing, rolling-up, drilling down, 
and pivoting. This basic set of operators can 
be extended with other ones, useful in real-
world OLAP practice. We illustrate this 
extensibility introducing the map operator, 
which allows changing the values of the 
measures in a cube, for example, to convert 
currency units, or perform what-if analysis. 
Then, we formally define each operator in 
our algebra. We conclude with some 
example queries that illustrate the query 
language. 

Application Scenario: OLAP 
Operations for Pollution 
Control 

We now discuss how the user-centric 
conceptual model we propose in this paper 
could be used to analyze data. Let us recall 
the cube in Figure 1a, containing quarterly 
values of pollutant concentration at each 
measuring station, for the year 2011. The 
end user can operate intuitively over this 
cube in order to analyze data in different 
ways. Figure 4 shows a sequence of such 
operations, which start from the initial cube 
of Figure 1a. We describe her operations on 
a step-by-step basis. 

The user first wants to compute the sum 
of concentrations per semester, station, and 
pollutant, to look for significant differences 
between these periods, if they exist. For 
this, the Cube Algebra offers her a roll-up 
operation, which she applies along the 
Time dimension. The result is shown in 
Figure 4a: the new cube contains two values 
over the Time dimension, each 
corresponding to one semester (the original 
cube contained four values, one for each 
quarter). The remaining dimensions are not 
affected. All values in cells corresponding 
to the same pollutant and station (for 
example, P1 and S1, respectively), and to 
quarters Q1 or Q2, contribute to the 
aggregation to the values in the first 
semester (S1). We can see in Figure 1a that 
the concentration of P1 measured at station 
S1 for the first and second quarters are, 
respectively, 21 and 27. In Figure 4a we 
also see that these values are aggregated to 
48 in the first semester. Computation of the 
cells corresponding to the second semester 
proceeds analogously. 

Our user then notices that in the second 
semester the concentration of pollutant P3 
at station S1 was unusually high. The Cube 
Algebra allows her to drill down along the 
Time dimension, to the month level, to find 
out if this high value is due to a particular 
month. In this way, she discovers that 
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December presented a much higher 
concentration of this pollutant than the 
other months (Figure 4b). Note that since 
she now starts from data aggregated by 

semester, station, and pollutant, the user 
needs first to take the cube back to the 
quarter aggregation level, and then 
continues drilling-down to the month level.  

 
 

(a) Roll-up to the Semester level 

 

(b) Drill-down to the Month level 
 

 

(c) Pivot 

 

 
 
 

(d) Slice on Station for StationId = 'S1' 

 
 

 

(e) Dice on Station = 'S1' or 'S2' and 
Time.Quarter = 'Q1' or 'Q2' 

 

 

 

(f) Map function for defining contamination levels 

Figure 4: OLAP operations 
 

Continuing her browsing of the cube, our 
user now wants to see the cube with the 
Time dimension on the x axis. Therefore, 
she rotates the axes of the cube without 
changing granularities. This restructuring 
operation is called pivoting (Figure 4c). 
(Note that she previously rolled-up the cube 
back to the one of Figure 1a). 

She then wants to visualize time series of 
average pollutant concentration by quarter, 
only for the station S1. For this, she first 
applies a dice operator that selects the sub-
cube containing only values for the station 
S1, and then eliminates the Station 
dimension, applying a slice operation. This 
is depicted in Figure 4d. Here, she obtained 
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a matrix, where each column represents the 
evolution of the concentration of a pollutant 
by quarter, i.e., a collection of time series. 

Our user also wants to compare, for each 
pollutant, the concentration values against 
similar records for 2010. For this, she has a 
two-dimensional “cube” similar to the one 
in Figure 4d, with the average 
concentrations by quarter and by pollutant, 
for 2010. She would like to have this 
information consolidated in a single cube. 
For this, she knows that the Cube Algebra 
offers the drill-across operator that, given 
two cubes, builds a new one with the 
measures of both, making the comparison 
very easy. In this way, if in 2010, for P4, 
the average concentration on Q1 was 32, the 
cell corresponding to (Q1,P4) resulting from 
a drill-across, will contain the pair (35,32).    

Next, she wants pollution information 
corresponding only to stations S1 and S2 in 
the first two quarters. For this, starting over 
from the original cube, she produces a sub-
cube, using the dice operator (Figure 4e). 

Finally, instead of a cube containing 
pollution values, she wants to produce a 
cube containing indicators of pollution 
classified in four categories: Low (L) for 
values greater or equal to 20; Moderate (M) 
for values greater than 20 and less or equal 
to 30; High (H) for values greater than 30 
and less or equal to 45; and Very High (VH), 
for values greater than 45. For this, she uses 
the map operation shown in Figure 4f. 

In what follows, to make the examples 
more interesting, we add a Geography 
dimension, composed of levels District and 
Province, with a roll-up relationship defined 
between them, and a Road dimension, 
indicating the roads where the stations are 
located. 

Cube Algebra Query Operators 
We now formally define the operators of 

our Cube Algebra in terms of our data 
model. Even though there are many works 
describing multidimensional operations 
(Agrawal, Gupta & Sarawagi, 1997; 

Gyssens & Lakshmanan, 1997; Vassiliadis, 
1998), curiously none of them describe a 
common whole set of them in terms of the 
well-known slice, dice, roll-up (and its 
inverse, drill-down) and drill-across, which 
are the ones that intuitively reflect how an 
OLAP user manipulates a cube, or 
combines two cubes. Existing efforts, such 
as the ones cited above, usually define a 
subset of these operators, combined with 
other ones that, although suited to the 
models proposed by the authors, are, in 
most of the cases, not intuitive to non-
expert users (e.g., push-pull, nest). The 
same occurs with the many commercial 
OLAP tools, as we show later taking MDX 
(the de facto standard for OLAP) as an 
example. We therefore chose to define a 
small set of the most intuitive and used 
operators for cube manipulation, which, in 
addition, can be shown to be orthogonal to 
each other. That means, no one of them can 
be expressed as a combination of the others. 
However, it should not be assumed that this 
set of operator is minimal in a formal 
mathematical sense. 

This basic set of operators can be 
extended with many other ones, in order 
add functionalities to the language. As an 
example of this, we introduce the map 
operator, which applies the same function to 
all the cells in a data cube, allowing, for 
example, currency conversion, or more 
complex operations such as the one 
illustrated in the example of previous 
section. 

Remark Although the pivot operator was 
introduced in Figure 4c, since it does not 
modify either the cube schema or the cube 
instances, and it is just used for (mainly) 
interactive visualization, we do not include 
it in the following discussion. � 

Dice This operator receives a cube and a 
Boolean condition ϕ, and returns another 
cube containing only the cells that satisfy ϕ. 
The syntax for this operation is  

DICE(cube_name, ϕ) 
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where ϕ is a Boolean condition over 
dimension levels and measures. 

The semantics is the following. Dice 
receives a cube with schema S=〈nameCS, 
D, M〉 and instances with the form 
C(c11,…,c1d) = m1,…, C(cm1,…,ckj) = mr (for 
simplicity let us assume only one measure), 
and returns a cube with the same schema, 
and the points (ci1,…,cid, mi) that make the 
condition ϕ true. We can consider dice 
analogous to a relational selection. 

Roll-up and Drill-down  The roll-up 
operator aggregates measures according to a 
dimension hierarchy (using an aggregate 
function), to obtain measures at a coarser 
granularity for a given dimension, based on 
the use of the dimension hierarchy. 

The syntax for the roll-up operation is: 

ROLL-UP(cube_name,  

Dimension->level, 

(measure,aggregate_function)*)  

The term Dimension->level indicates to 
which level in a dimension we want the 
roll-up to be performed. Note that since 
there can be more than one measure, we 
must specify an aggregate function for each 
one of them. In what follows, we assume 
that if there is only one measure in the cube, 
for conciseness we only specify the 
aggregate function.  

As for the semantics, roll-up receives a 
cube with schema S = 〈nameCS, D, M〉, a 

level l in a dimension D, such that ls ∈ D, ls 
→* l in D, and an aggregate function Fagg. 
Roll-up returns a cube whose cells are 
aggregated along D up to the level l. Thus, 
all values vi,…,vk in the original cube, such 
that C(c1,…,cli,…,cd) = vj, j=1,…,k 
(Definition 5) contribute to the aggregation 
over Roll-up(cli) ls

l. 

Example 4 (Roll-up) 
Suppose in Example 1 that we have the 
following coordinates for the cube 
AirQuality: (P1,T1,35), (P5,T3,44), 
(P4,T3,22). According to Figure 3:  

Roll-up(P1)Pollutant
Category = C1 

Roll-up(P4) Pollutant
Category = C2 

Roll-up(P5)Pollutant
Category=C2. 

Then rolling-up from the cube 
AirQuality to a new cube with schema 
〈AirQCateg, {Category, Time}, 
{concentration}〉 yields the instance 
(C1,T1,35), (C2,T3,66). � 

Drill-down de-aggregates previously 
summarized measures and can be 
considered the inverse of roll-up. Following 
Agrawal et al. (1997), we consider drill-
down a high-level operation that can be 
implemented by tracking the (stored) paths 
followed during user rolling-up. Therefore, 
we omit its definition. 

Slice Removes a dimension in a cube, i.e., a 
cube of n-1 dimensions is obtained from a 
cube of n dimensions. The dimension to 
remove must contain a unique value in its 
domain. If the dimension has more than one 
value, two approaches can be used: apply 
either a roll-up operator for summarizing 
into a singleton (i.e., all) (Agrawal, Gupta 
& Sarawagi, 1997), or (prior to slicing) a 
dice operator, to obtain a cube with only 
one value in the selected dimension. 

The syntax of this operator is:  

SLICE(cube_name, Dimension, 

[ROLL-UP{Aggregate_function}])  

According to what we explained above, 
ROLL-UP{Aggregate_function} stands 
for ROLL-UP(cube_name, Dimension 

{All,Aggregate_function)}. The 
former yields a more concise expression. If 
the roll-up is not included, slice will have 
two arguments, meaning that the dimension 
instance has already been reduced to a 
single value. If this is not the case, the 
operator fails. That is, the operator is 
analogous to a relational projection. 

The semantics is the following. Slice 
receives a cube with schema S = 〈nameCS, 
D, M〉, and instances of the form 
{( c11,…,cs,…,c1d, m1),…, (cm1,…,cs, …,ckd, 
mr)} (where cs is the unique value in ls), and 
a dimension name ds (assume that the level 
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ls ∈ D belongs to dimension ds). The 
operator returns a cube with schema 
S1=〈nameCS, (D \ ls), M〉, where the 
instances are of the form (c11,…, cs-1, 
cs+1,…,c1d, m1),…,(cm1,…, cs-1, cs+1,…,ckd, 
mr), that is, the same as in the original one, 
except the coordinate corresponding to ls.  

Drill-across Relates information contained 
in two data cubes having the same 
dimensions. Thus, measures from different 
cubes can be compared. According to 
Kimball and Ross (2002), drill-across can 
only be applied when both cubes have the 
same schema dimensions and the same 
instances. Other authors relax this 
restriction. This is the approach of Abelló et 
al. (2002), who define two concepts: (a) 
Dimension-Dimension Derivation: Used 
when two dimensions come from a 
common concept although their structures 
differ, for example, because their 
granularities are not the same. In this case, a 
roll-up can be applied to make both 
dimensions consistent. (b) Dimension-
Dimension Association: Corresponds to the 
case in which two cubes have different 
dimensions, but one of them could be 
defined as the association of several ones. 
For example in one cube we define latitude 
and longitude as separated dimensions; in 
another one we store only one dimension 
containing the ‘point’ geometry. A mapping 
function can solve this problem. Other 
authors also address this problem, all of 
them along the same lines (Cabibbo & 
Torlone, 2004; Riazati, Thom & Zhang, 
2008). We assume that the operator receives 
two compatible cubes (i.e., sharing 
dimensions and instances). The syntax of 
the operator is:  

DRILL-ACROSS(cube_name_1, 

cube_name_2). 

Let us now explain the semantics. Drill-
across receives two cubes with schemas 
S1 = 〈nameCS1, D, M1〉 and S2 = 〈nameCS2, 

D, M2〉, that means, the dimension levels 
are the same. The corresponding instances 

(except for the measures) are the same. The 
result is a cube with schema S = 〈nameCS, 
D, M1  ∪ M2〉, with the same instances of 
the input cubes. In other words, the operator 
is analogous to a relational natural join. 

We now formally define the map 
operator, which extends the basic set of 
operations defined above. We remark that 
this is only one of the many operators the 
Cube Algebra could be extended with. 

Map This operator receives a cube and a 
collection of pairs (mi,fi), where mi is a 
measure and fi is a function mapping values 
in Domm to values in the same of another 
domain (see the example above, where 
concentration values in the domain of the 
real numbers are mapped to the domain of 
strings, by a partitioned function). The 
operator returns another cube, with the 
same dimension schema and instances, and 
with the values in each cell that correspond 
to the mappings produced by each function 
fi. The syntax for the map operation is: 

MAP(cube_name, (measure, 

function)*) 

The semantics is the following. Map 
receives a cube with schema S = 〈nameCS, 
D, M〉 and instances with the form 
C(c11,…,c1d) = m1,…, C(cm1,…,ckj) = mr, 
(for simplicity we assume only one 
measure), and returns a cube with the same 
schema, and instances of the form 
C(c11,…,c1d) = f(m1),…, C(cm1,…,ckj) = 
f(mr). 

Cube Algebra QL by Example 
We now give the flavor of the language 

by means of examples, and show that Cube 
Algebra allows an OLAP user to express 
queries using just the operators she is 
acquainted to, instead, for example, of 
complex MDX expressions. We prove our 
point, showing, for each query, a possible 
MDX version. 
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Query 1 For each province and pollutant 
category, give the average concentration by 
quarter. 

c1 := SLICE (AirQuality, 

Station, ROLL-UP{Avg}) 

c2 := SLICE (c1, Road, ROLL-

UP{Avg}) 

c3 := ROLL-UP (c2,{Time-> 

Quarter, Pollution-> 

Category,Geography->Province}, 

Avg) 

Remark The roll-up operator can only be 
applied over one dimension at a time. For 
simplicity, in the query above, the 
expression for c3 is shorthand for:  

c3 := ROLL-UP(c2, Time->Quarter, 

Avg)}; 

c4 := ROLL-UP(c3,  

Geography->Province, Avg)}; 

c5 := ROLL-UP(c4,  

Pollution->Category, Avg)};  

This is the syntax we use in the sequel. � 

We next show how this query would look in 
MDX.  

Query 1 (MDX Version) 

We assume that measure concentration 
has been associated with the aggregate 
function Avg. In Cube Algebra, the levels 
of a dimension are organized as a lattice. 
On the contrary, in MDX the levels are 
organized into named linear hierarchies. 
Thus, when referring to a level we must 
qualify it with the name of a hierarchy it 
belongs to (note that there could be more 
than one).  This is the case of the dimension 
Pollution in the query below. 
In MDX, Query 1 reads: 

SELECT  

[Geography].[Hierarchy]. 

[Province].Members On Axis(0), 

[Pollution].[H0].[Category]. 

Members On Axis(1), 

[Time].[Hierarchy].[Quarter] 

Members On Axis(2), 

FROM AirQuality 

WHERE (Station.[All],Road.[All]) 

Compared to the simplicity of the Cube 
Algebra expression above, the MDX query 
looks cryptic and unintuitive. In part, this is 
due to the fact that, as shown in Figure 2, 
MDX is placed at the logical level, while 
the Cube Algebra is at the conceptual level. 
Besides, MDX has not a clearly defined 
semantics. On the contrary the semantics of 
each Cube Algebra operator is clear, 
intuitive, and well known for most OLAP 
practitioners. � 

Query 2 Number of districts where, for at 
least one pollutant, the average load of air 
pollution in 2011 was larger than the 
concentration limit. 

c1 := ROLL-UP (AirQuality,  

Time->Year,{Avg} ) 
c2 := DICE (c1, Time.Year.year = 

2011) 

c3 := SLICE (c2, Time, 

ROLL-UP{Avg}) 

c4 := SLICE (c3, Station, 

ROLL-UP{Avg}) 

c5 := SLICE (c4, Road, 

ROLL-UP{Avg}) 

We have obtained a cube with dimensions 
Geography and Pollution containing 
data only for 2011. Now: 

c6 := DICE (c5, concentration >= 

Pollution.Pollutant.loadLimit) 

c7 := SLICE (c6, Pollution,  

ROLL-UP{Avg}) 

c8 := ROLL-UP (c7,  

Geography->All, {Count}})  

The semantics of the expression  

DICE (c4, concentration >= 

Pollution.Pollutant.loadLimit)  

is the following: each cell in c4 is analyzed, 
and the values of the variables are 
instantiated with the values of the cell 
coordinates and measures (i.e., 
Pollution.Pollutant is instantiated 
with the identifier of the pollutant 
corresponding to the cell). Analogously, 
concentration is obviously instantiated 
with the value of the measure in the cell.    
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Query 2 (MDX Version) 

The query can be solved in three steps. 
First, a sub-cube is created for representing 
the underlying data filtered using the 
districts satisfying the condition. The use of 
the TYPED keyword in the Properties 
function is necessary in order to consider 
the type of the ‘loadLimit’ attribute, 
otherwise MDX would consider it a string, 
preventing performing the comparison with 
concentration. For counting elements, 
in our case the number of different districts, 
we must define a new measure using the 
WITH clause over the set of names of the 
districts. Finally, the sub-cube is dropped.  

CREATE SUBCUBE [AirQuality] AS 

SELECT  

Filter( 

([Pollution].[H0].[Pollutant]. 

members,[Geography].[Hierarchy].

[District].members,[Time]. 

[Hierarchy].[Year].[2011]), 

[Pollution].[H0]. 

CurrentMember.Properties("loadLi

mit",TYPED) <=[Measures]. 

[Concentration]) on Axis(0) 

FROM AirQuality 

WHERE  ([Station].[All], 

[Road].[All] ) 

WITH  

SET [DistNames] As   

([Geography].[Hierarchy]. 

[District].members,  

[Measures].[Concentration]) 

MEMBER [Measures].[Count 

Districts] As  

COUNT([DistNames]) 

SELECT  [Measures].[Count 

Districts] On Axis(0) 

FROM [AirQuality] 

DROP SUBCUBE [AirQuality] 

Note, as in Query 1, the difference between 
the Cube Algebra expression and the MDX 
one. The latter requires a deep 
understanding of the MDX syntax, while 
the former allows the user to focus just on 
the semantics of the OLAP operators.  

Query 3 Build a cube with the dimensions 
of the original cube, containing only 
concentrations corresponding to stations 
located in districts in the province of 
Limburg, and to polluting agents of 
‘organic’ type such that the station had at 
least once registered a concentration higher 
than the limit for the corresponding 
pollutant. 

This query is simply expressed as:  

c1 := DICE (AirQuality, 

concentration >= 

Pollution.Pollutant.loadLimit 

AND Geography.Province.name 

='Limburg' AND 

Pollution.Category.name =  

'organic'). 

Query 3 (MDX Version) 

SELECT[Pollution].[CategoryName.

[Organic] On Axis(0), 

[Time].[Hierarchy].[Day] On 

Axis(1), 

[Station].[Station].[Station] On 

Axis(2),  

[Road].[Road].[Road] On Axis(3),  
[Geography].[Hierarchy]. 

[District] on Axis(4) 

FROM AirQuality 

WHERE  

Filter(([Pollution].[H0]. 

[Pollutant].members,   

[Geography].[Province]. 

[Limburg]),[Pollution].[H0]. 

CurrentMember.Properties( 

"loadLimit",TYPED)<=[Measures]. 

[Concentration]) 

Even this simple query requires 
implementation knowledge at the logical 
level, e.g., the decomposition of the 
multiple hierarchy into many single ones   
(in this case, only [H0] is needed).   

Query 4 For stations, and pollutants 
belonging to the ‘organic’ category, give 
the maximum concentration by month. 
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c1 := DICE 

(AirQuality,Pollution. 

Category.name='organic') 

c2 := SLICE (c1, Road,  

ROLL-UP{Max}) 

c3 := SLICE (c2, Geography,  

ROLL-UP{Max}) 

c4 := ROLL-UP (c3, Time->Month, 

{Max}) 

Query 4 (MDX Version) 

WITH MEMBER 

[Measures].[Maximal] as  

Max([Time].[Hierarchy]. 

currentMember.children, 

[Measures].[Concentration]) 

SELECT[Time].[Hierarchy].[Month. 

members On Axis(0), 

[Station].[Station].[station].me

mbers On Axis(1), 

[Pollution].[H0].Pollutant. 

members On Axis(2), 

[Measures].[Maximal]  On Axis(3) 

FROM AirQuality 

WHERE 

([Pollution].[categoryName]. 

[Organic],[Road].[Road].[All],  

[Geography].[Hierarchy].[All]) 

Query 5 Stations located over the part of 
the E34 road within the Berchem district, 
with an average content of nitrates in the 
last quarter of 2011 above the load limit for 
that pollutant. 

c1 := DICE (AirQuality, 

Geography.District ='Berchem' 

AND Time.Quarter.quarter ='Q4-

2011' AND Time.Year.year= 2011 

AND Pollution.Category.name= 

'Nitrates' AND Road.Road.name = 

'E34') 

c2 := SLICE (c1, Road) 
c3 := SLICE (c2, Geography)  

Note that in the SLICE operation that 
generates cubes c2 and c3, we do not use 
the third argument, since the previous 
dicing selected unique values for roads and 
districts. Cube c3 has Station, Time, and 
Pollution dimensions.  

c4 := ROLL-UP (c5, Time-> 

Quarter, Avg) 

c6 := DICE (c5, concentration >= 

Pollution.Pollutant.loadLimit) 

The following query illustrates the use of 
the map operator. In our running example, 
assuming that pollutant concentrations are 
expressed in mg/m3 (milligrams per cubic 
meter), we want to express the results in 
µg/m3 (micrograms per cubic meter).  

Query 5 (MDX Version) 

SELECT  

Filter((([Pollution].[H0]. 

[Pollutant].members, 

[Station].[Station].[Station]. 

members), [Time].[Quarter]. 

[Q4-2011]), [Pollution].[H0]. 

CurrentMember.Properties 
("loadLimit", TYPED) < 

[Measures].[Concentration] ) on 

Axis(0) 

FROM AirQuality 

WHERE ([Road].[Road].[E34], 

[Geography].[District].[Berchem,   

[Pollution].[typeName]. 

[Nitrates]) 

Query 6 Average concentration by Station, 
Time, District, Road, and pollutant 
Category, expressed in µg/m3.  

c1 := MAP (AirQuality, 

concentration, Mult(1000)) 

c2 := ROLL-UP (c1, Pollution-> 

Category, Avg })  

In the expression that generates c1, Mult 
(1000) is a function that given a value, 
multiplies it by a constant (in this case, 
1000). 

Query 6 (MDX Version) 

WITH MEMBER 

[Measures].[NewValue] as 

[Measures].[Concentration]*1000 

SELECT  
[Pollution].[H0].[Category]. 

members On Axis(0),  

[Station].[Station].[Station]. 

members On Axis(1),  
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[Geography].[District]. 
[District].members On Axis(2), 

[Road].[Road].[Road].Members  

On Axis(3), 

[Time].[Hierarchy].[Day].members 

On Axis(4),  

[Measures].[NewValue] On Axis(5) 

FROM AirQuality 

The next query shows the use of the Drill-
across operator. Let us assume we have a 
cube denoted Demography with the 
dimensions Time and Geography 
described above, and measure 
population. The instances of the 
dimensions satisfy the operator’s 
preconditions. 

Query 7 Total population and average 
pollutant concentration by province and 
year.  

c1 := SLICE (AirQuality, Road, 
ROLL-UP{Sum}) 

c2 := SLICE (c1, Pollution, 
ROLL-UP{Max}) 

c3 := SLICE (c2, Station, ROLL-

UP{Max})  

Now, the cube c3 contains just the 
dimensions Time and Geography.  

c4 := DRILL-ACROSS (c3, 

Demography) 

c5 := ROLL-UP (c4, Time->Year, 

concentration, Avg, population, 

Sum)) 

c6 := ROLL-UP (c5, Geography-> 

Province, concentration, Avg, 

population, Sum) 

The drill-across operator is not directly 
supported in MDX, since the FROM clause 
only supports one cube, therefore the only 
way of adding a measure is to define it at 
design time. 

CONCLUSIONS AND FURTHER 
WORK 

In this article, we have identified the 
need for an appropriate conceptual model 
for data warehouses and OLAP systems. 

This need stems from the fact that logical 
models (for example, star, snowflake, and 
constellation schemas) have been deployed 
for these systems as conceptual models. But 
logical models represent a system-centric 
view of data warehouses and OLAP 
systems and are ultimately implementation 
concepts. In this article, we propose a user-
centric conceptual model for data 
warehouses and OLAP systems, called the 
Cube Algebra. It takes the cube metaphor 
literally and provides the knowledge worker 
with high-level cube objects and related 
high-level concepts. A novel query 
language leverages high-level operations 
such as roll-up, slice, and drill-across. An 
important design criterion is that all aspects 
of the logical level and the physical level 
are hidden from the user. 

We plan our future research in at least 
three directions. First, further data 
definition commands have to be added for 
updating cube schemas, dimension 
schemas, and measures. In addition, further 
data manipulation commands are needed for 
the insertion, deletion, and update of data 
into cubes. Second, transformation rules are 
needed that map the concepts of the Cube 
Algebra at the conceptual level to 
corresponding ROLAP, MOLAP, and 
HOLAP concepts at the logical level. Third, 
we are interested in adding other data 
categories such as spatial, spatiotemporal, 
image, and multimedia data into our Cube 
Algebra. Questions are here, for example, 
how the different data categories are 
integrated and stored, what kind of 
aggregation operations exist on the different 
data categories, how the different 
aggregation operations are defined, and 
how these operations are implemented. 
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i We use this simplification in the formal model to 
avoid the need of referring to a dimension level as 
dimension.level, which would make the formal 
definition too verbose. However, in the algebra defined in 
next section, we drop this restriction, and qualify level 
names with dimension names. 
 


