
International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 1

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cube Algebra: A Generic User-Centric
Model and Query Language

for OLAP Cubes

Cristina Ciferri, Ricardo Ciferri
 Universidade de São Paulo em São Carlos, Brazil

 Leticia Gómez
Instituto Tecnológico de Buenos Aires, Argentina

 Markus Schneider
University of Florida, USA

Alejandro Vaisman, Esteban Zimányi
Université Libre de Bruxelles, Belgium

ABSTRACT
The lack of an appropriate conceptual model for data warehouses and OLAP systems has led to
the tendency to deploy logical models (for example, star, snowflake, and constellation schemas)
for them as conceptual models. ER model extensions, UML extensions, special graphical user
interfaces, and dashboards have been proposed as conceptual approaches. However, they
introduce their own problems, are somehow complex and difficult to understand, and are not
always user-friendly. They also require a high learning curve, and most of them address only
structural design, not considering associated operations. Therefore, they are not really an
improvement and, in the end, only represent a reflection of the logical model. The essential
drawback of offering this system-centric view as a user concept is that knowledge workers are
confronted with the full and overwhelming complexity of these systems as well as complicated
and user-unfriendly query languages such as SQL OLAP and MDX. In this article, we propose
a user-centric conceptual model for data warehouses and OLAP systems, called the Cube
Algebra. It takes the cube metaphor literally and provides the knowledge worker with high-
level cube objects and related concepts. A novel query language leverages well known high-
level operations such as roll-up, drill-down, slice, and drill-across. As a result, the logical and
physical levels are hidden from the unskilled end user.
Keywords: data warehouses, OLAP, cube, conceptual model, user-centric model, query
language

INTRODUCTION

Nowadays, data warehouses are at the
forefront of information technology
applications as a way for organizations to
effectively use and analyze information for
business planning and decision making.
Data warehouses are large repositories of
analytical and subject-oriented data
integrated from several heterogeneous
sources over a large period of time. The
technique of performing complex analysis

over the information stored in the data
warehouse is commonly called Online
Analytical Processing (OLAP). A review of
the evolution of data warehouse technology
reveals that research and development has
mainly focused on system aspects such as
the construction of data warehouses,
materialization, indexing, and the
implementation of OLAP functionality.
This system-centric view has led to well-
established and commercialized
technologies such as relational OLAP
(ROLAP), multidimensional OLAP

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 2

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(MOLAP), and hybrid OLAP (HOLAP) at
the logical and the physical levels.

However, the unskilled user such as the
manager in a consulting company or the
analyst in a financial institution is
confronted with the problem that the
handling of data warehouses and OLAP
systems requires expert knowledge due to
complicated data warehouse structures and
the complexity of OLAP systems and query
languages. Two main reasons are
responsible for this problem. First, due to
the lack of a generic, user-friendly, and
comprehensible conceptual data model, data
warehouse design is usually performed at
the logical level and leads to the exposure
of the logical design schemas that are
difficult to understand by the unskilled user.
In a ROLAP environment, for example, the
user is faced with the logical design of
relational tables in terms of star, snowflake,
or fact constellation schemas. The proposal
to alleviate the problem by providing
extensions to the Entity-Relationship Model
and the Unified Modeling Language, or by
offering specific graphical user interfaces or
dashboards for data warehouse design is not
really convincing since ultimately they
represent a reflection and visualization of
relational technology concepts and, in
addition, reveal their own problems.
Second, available OLAP query and analysis
languages such as MDX and SQL OLAP
operate at the logical level and require the
user’s deep understanding of the data
warehouse structure in order to be able to
formulate queries. These languages are
quite complex, overwhelm the unskilled
user, and are therefore inappropriate as end-
user languages.

We conclude that a generic, conceptual,
and user-centric data warehouse model that
focuses on user requirements is missing and
needed. Such a model should fulfill several
design criteria. First, it should be located
above the logical level. Second, it should
abstract from and be independent of the
models and technologies (ROLAP,

MOLAP, HOLAP) at the logical level.
Third, it should be able to cooperate with
any of these logical models and
technologies. Fourth, it should enable the
user to generically and abstractly represent
and query hierarchical multidimensional
data. Fifth, it should have an associated
query language based exclusively on the
conceptual level, thus providing high-level
query operations for the user. The goal of
this article is to propose and formally
describe a conceptual and user-centric data
warehouse model and query language that
satisfies these design criteria. Surprisingly,
the conceptual view this model adopts is not
new; on the contrary, it is well known.
However, the way and resoluteness in
which we offer this concept is novel. Our
proposed conceptual model leverages the
cube view of data warehouses but takes the
cube metaphor literally. This means that the
user’s conceptual world is solely the cube
that the user can create, manipulate, update,
and query. The cube is used as the user
concept that completely abstracts from any
logical and physical implementation details.
Technically, this implies that cubes can be
regarded as an abstract data type that
provides cubes as the only kind of values
(objects), offers high-level operations on
cubes or between cubes such as slice, dice,
drill-down, roll-up, and drill-across as the
only available access methods, and hides
any data representation and algorithmic
details from the user, who can concentrate
on her main interest, namely to analyze
large volumes of data. Another
characterization is to say that we define a
universal algebra with cubes as the only
sort and a collection of unary and binary
operations on cubes. We therefore name our
approach Cube Algebra. We will show that
this algebra develops its full power and
expressiveness if it is used as a high-level
query language.

The paper is organized as follows. Next
section discusses related work and
compares available data warehouse models

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 3

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

with our Cube Algebra. Then, we describe
an application scenario that we use
throughout the paper to illustrate important
aspects of the Cube Algebra. In the same
section, we provide a three-level
architecture of a data warehouse and OLAP
system that includes our Cube Algebra. We
further specify the formal data model
supporting the Cube Algebra. The section
concludes with a sketch of a data definition
language to specify the structure of a cube.
Then, we define high-level OLAP cube
operations such as slice and drill-across,
and illustrate their use in a number of
queries that refer to our application
scenario. Finally, the last section draws
some conclusions and sketches future work.

RELATED WORK

Several data warehouse (DW) models
have been proposed in the literature (see for
example the survey in (Marcel, 1999)).
Most of these models address the logical
level (e.g., Li & Wang, 1996; Cabibbo &
Torlone, 1997; Cabibbo & Torlone, 1998,
Lehner, 1998). Therefore, they are
dependent of specific technologies, for
example ROLAP, MOLAP, and HOLAP,
which lead to complex and non-user
friendly query languages. In this section, we
limit ourselves to conceptual models and
discuss them with respect to our proposal,
i.e., we focus on the user support provided
by these models. We claim that most of the
models aimed at addressing the conceptual
level actually rely on structures that are
close to the logical level, thus not
addressing end-user needs. We call these
system-centric models, opposite to the user-
centric approach we present in this paper.
Similarly, we also claim that the user
should be provided with a query and
analysis language that is exclusively based
on the conceptual level. Although several
proposals in the literature define a set of
operators to handle multidimensional data
(see for example the survey and the

reference algebra in (Romero and Abelló
(2007)), these proposals do not abstract
from the logical level and thus, do not
provide high-level query operations for the
user. Taking the aforementioned discussion
into account, we next comment on related
work, and present an analysis against our
proposal.

We first classify existing models into
three classes: (a) conceptual models based
on extensions to the Entity-Relationship
(ER) Model (Chen, 1976); (b) conceptual
models based on extensions to the Unified
Modeling Language (UML); (c) models
based on a view of data as a cube.

We start with a discussion on models in
class (a) (ER-based models).

Rizzi (2007) proposed the Dimensional
Fact Model (DFM), which uses the typical
DW concepts of facts, dimensions,
measures, hierarchies, descriptive and
cross-dimension attributes; the model also
supports shared, incomplete, recursive, and
dynamic hierarchies, and notions such as
additivity. To represent these concepts,
DFM relies on a graphical notation that
facilitates the understanding of the
conceptual schema, and that is an
abstraction of the star schema, in which
there is a central fact entity and a graph per
dimension to represent the attribute
hierarchies. Golfarelli and Rizzi (1998)
extend DFM by presenting a
methodological framework for DW
conceptual modeling, which starts gathering
user requirements and carries out the data
warehouse design semi-automatically from
the operational database schema. In
addition to providing an abstraction of the
star schema in terms of a central fact entity
and several graphs, they also formalize each
concept of the DFM and define a language
to denote queries according to the DFM to
validate the generated schema.

Ravat et al. (2008) study three related
issues. First, they propose a conceptual
multidimensional model, which is based on
the concepts of constellations, dimensions,

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 4

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

dimension attributes, hierarchies, facts,
measures, and multidimensional table
structures (i.e., tabular representations of
multidimensional data). Second, they
define a set of algebra operators to
manipulate multidimensional data, which
include: (i) a minimal core of operators to
modify analysis precision (i.e., drill-down,
roll-up, select), to change analysis criteria
(i.e., rotate, add measure, delete measure,
push and pull, nest), and to change the
multidimensional table presentation (i.e.,
switch, aggregate); (ii) advanced operators
(i.e., frotate, hrotate, order, plot, unselect)
that are obtained from the combination of
core operators aiming at simplifying
complex queries; and (iii) binary operators
(set operators), such as union, intersect, and
minus, based on the (semi-)compatibility of
input tables. Third, they develop a graphical
interface based on the multidimensional
table structures and the DFM commented
above. This interface is supported by a
graphic language that encompasses the core
algebra operators. Although this work
focuses on a user-oriented query language
composed of a formalized algebra and a
graphical query language, the
multidimensional model over which this
work is based is very close to the star
schema and strongly based on the concept
of multidimensional table, i.e., it remains as
a system-centric model.

Tryfona et al. (1999) propose the starER
model, which combines the star structure
with the constructs of the ER Model, in
addition to proposing special types of
relationships to support attribute hierarchies
on dimensions. The starER model
encompasses the following main
constructors: facts, entities, relationships
among entities, and attributes (i.e.,
properties of entities, relationships, or
facts). Further, the starER model provides a
graphical notation very close to the ER
Model. Along similar lines (i.e., starting
from an ER-based data model), Malinowski
and Zimányi (2008) introduce a metamodel

of hierarchy classification that encompasses
from symmetric simple hierarchies until
more complex ones, such as non-strict
simple hierarchies, asymmetric and
generalized simple hierarchies, multiple
hierarchies, and parallel hierarchies. They
also present a graphical notation for
representing these hierarchies, close to a
relational representation.

We now move on to discuss models in
class (b) (UML-based models).

Nguyen et al. (2000) use UML to map
their proposed conceptual multidimensional
data model to an object-oriented data
model. The data model is based on the
concepts of dimensions, dimension
members, dimension levels, dimension
schemas, dimension paths and hierarchies,
dimension operators, measures, and data
cubes. This model aims at representing
natural hierarchical relationships among
members within a dimension as well as
unbalanced and multiple hierarchies. The
authors also define the following cube
operators: groupBy, jumping, rollingUp,
and drillingDown. However, this model is
defined at a level very close to the logical
one. Also, this proposal does not introduce
a full set of high-level operations such as
slice and drill-across.

Abelló et al. (2001) investigate
relationships between cubes in an object-
oriented framework with navigation
operations. Here, the data cube is defined in
terms of a set of concepts, such as measures
and cells, dimensions and aggregation
levels, and facts. An algebra is defined as a
set of multidimensional operations, such as
base changes, dice, slice, drill-across, roll-
up and drill-down. In sequels of this paper
(Abelló, Samos & Saltor 2002; Abelló,
Samos & Saltor 2006), the authors propose
YAM 2, a multidimensional conceptual
object-oriented model for data warehousing
and OLAP tools extending the UML, which
is defined in terms of its structures, integrity
constraints, and query operations. However,
in spite of being defined at the conceptual

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 5

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

level, YAM2 relies on star schema-like
design, and therefore is not completely
independent of logical modeling concepts.

Pardillo et al. (2008) introduce platform-
independent conceptual OLAP queries that
can be automatically traced to their logical
implementation, together with an OLAP
algebra at the conceptual level by using the
Object Constraint Language (OCL), aimed
at allowing end-users to query data
warehouses without being aware of logical
details. The authors introduce cube
manipulation operators (e.g., dimension
addition and removal), and operators such
as slice, dice, drill-across, multidimensional
projection, roll-up and drill-down. Cabot et
al. (2009) extend the former work through a
conceptual specification of statistical
functions using OCL. Finally, Pardillo et al.
(2010) further extends OCL for OLAP
querying, introducing a code-generation
architecture aligned with the model-driven
architecture (MDA), to map an extension to
the OCL as a set of predefined OLAP
operators. The main drawback of this work
is that they are based on OCL, which is not
user-friendly for data cube manipulation.

Let us now comment on models based on
the data cube (i.e., the ones in class (c)).

 Tsois et al. (2001) propose a
multidimensional aggregation cube (MAC)
using the concepts of dimension, dimension
level, dimension member, drilling
relationship, and dimension path. Although
they address the DW modeling problem
from the end-user point of view, and
describe a set of requirements for the
conceptual modeling of real-world OLAP
scenarios, the authors do not present a
language supporting the model.

Along different lines, some authors
formally define the notion of a cube and
introduce operations for this. Agrawal et al.
(1997) propose a data model whose core
features are the symmetric treatment of
dimensions and measures, the support of
multiple hierarchies along each dimension
and the possibility of performing ad-hoc

aggregates. They also define a minimal set
of algebraic operators that is composed of
the following operators: push and pull (to
allow symmetric treatment of dimensions
and measures), destroy dimension,
restriction (slice and dice), join, and
associate. This minimal set of operators
stays as close to relational algebra as
possible and can be translated to SQL
through an algebraic application
programming interface.

The conceptual multidimensional model
proposed by Gyssens and Lakshmanan
(1997) focuses on the separation between
structural aspects and the content, allowing
the definition of a data manipulation
language that can express the cube operator.
They define an algebra (and an equivalent
calculus), which include set operators (like
selection, projection, Cartesian product),
operators for summarization, and re-
structuring operators (fold and unfold).

Vassiliadis (1998) formally defines the
concepts of dimensions, hierarchies, and
cube to propose a model for
multidimensional databases. He also
introduces a set of cube operators based on
the notion of the base cube, which is used
for providing the calculation of the results
of cube operations. These operations are:
level climbing, packing, function
application, projection, navigation, slicing,
and dicing. He also provides a mapping of
the proposed model to the relational model
and to multidimensional arrays.

Datta and Thomas (1999) also defined a
data cube model and an associated algebra.
The data cube model includes the concepts
of data cube, dimensions, dimension
attributes, measures and attribute
hierarchies, and focuses on the symmetric
treatment of dimensions and measures. As
for the algebra, the purpose of the work is
to provide comprehensive OLAP
functionalities, including aggregation (to be
applied several times to enable roll-up and
drill-down operations and comparisons of
aggregate values), transformations to

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 6

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

convert dimensions to measures and vice
versa and partitioning (grouping of data for
aggregating purposes). The algebra has the
following operators: restriction,
aggregation, Cartesian product, join, union,
difference, pull, push and partition.

The proposals in this class, although
based on the concept of a cube, do not

approach the problem from a conceptual
modeling viewpoint, neither they consider
users’ needs (i.e., the user-centric view).
Further, the proposed operators are not the
ones commonly needed by high-level users
such as managers.

Related Work Focus Cube

Metaphor
Cube as

ADT
Model Level Model

Extension
Algebra or
Calculus

Abelló et al. (2001) system-
centric

� � conceptual object-
oriented

�

Abelló et al. (2002)

Abelló et al. (2006)

system-
centric

� � higher than logical,
lower than conceptual

UML-based �

Agrawal et al. (1997) system-
centric

� � higher than logical,
lower than conceptual

not an
extension

�

Cabibbo and Torlone
(1997)

system-
centric

� � logical not an
extension

�

Cabibbo and Torlone
(1998)

system-
centric

� � logical not an
extension

�

Cabot et al. (2009) system-
centric

� � logical UML-based �

Datta and Thomas
(1999)

system-
centric

� � higher than logical,
lower than conceptual

not an
extension

�

Golfarelli and Rizzi
(1998)

system-
centric

� � logical not an
extension

�

Gyssens and
Laksshmanan (1997)

system-
centric

� � logical not an
extension

�

Lehner (1998) system-
centric

� � logical not an
extension

�

Li and Wang (1996) system-
centric

� � logical not an
extension

�

Malinowski and
Zimányi (2008)

system-
centric

� � logical not an
extension

�

Nguyen et al. (2000) system-
centric

� � higher than logical,
lower than conceptual

UML-based �

Pardillo et al. (2008)

system-
centric

� � higher than logical,
lower than conceptual

UML-based �

Pardillo et al. (2010) system-
centric

� � higher than logical,
lower than conceptual

UML-based �

Ravat et al. (2008) system-
centric

� � higher than logical,
lower than conceptual

not an
extension

�

Rizzi (2007) system-
centric

� � logical not an
extension

�

Tryfona et al. (1999) system-
centric

� � conceptual ER-based �

Tsois et al. (2001) user-
centric

� � conceptual not an
extension

�

Vassiliadis (1998) system-
centric

� � higher than logical,
lower than conceptual

not an
extension

�

Cube Algebra user-
centric

� � conceptual not an
extension

�

Table 1: Core properties of data warehouse models.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 7

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 1 refers to the following core
characteristics of each studied DW model:
(i) its focus (system-centric vs. user-
centric); (ii) if the model supports the data
cube metaphor; (iii) if the model provides a
cube as an abstract data type; (iv) the level
at which the model is defined (conceptual
level, logical level, or somewhere in-
between them); (v) the model that it is
based on; and (vi) if it includes an OLAP
algebra or calculus. We can see that almost

all proposals defined at the conceptual level
are actually system-centric rather than user-
centric. On the contrary, the Cube Algebra
proposal applies to the conceptual level of a
data warehouse architecture, independently
from implementation issues. The only user-
centric model is the proposal of Tsois et al.
(2001). However, this model does not
provide a cube as an abstract data type and,
more important, it does not propose an
OLAP algebra or calculus to support it.

Related Work Operations defined only
over the cube metaphor

Complexity of the
query language

Kind of query
language

Graphic tools or
dashboards

Abelló et al. (2001) � complex conceptual �

Abelló et al. (2002)

Abelló et al. (2006)
� complex relational algebra �

Agrawal et al. (1997) � complex relational algebra �

Cabibbo and Torlone
(1997)

� complex calculus-based �

Cabibbo and Torlone
(1998)

� complex relational algebra �

Cabot et al. (2009) � complex OCL-based �

Datta and Thomas
(1999)

� complex relational algebra �

Golfarelli and Rizzi
(1998)

� not available not available �

Gyssens and
Laksshmanan (1997)

� complex relational algebra/
calculus

�

Lehner (1998) � not available relational algebra �

Li and Wang (1996) � complex relational algebra �

Malinowski and
Zimányi (2008)

� not available not available �

Nguyen et al. (2000) � complex relational calculus �

Pardillo et al. (2008) � complex OCL-based �

Pardillo et al. (2010) � complex relational algebra
plus OCL

�

Ravat et al. (2008) � user-friendly relational algebra �

Rizzi (2007) � not available not available �

Tryfona et al. (1999) � not available not available �

Tsois et al. (2001) � not available not available �

Vassiliadis (1998) � complex relational calculus �

Cube Algebra � user-friendly relational algebra �

Table 2: Query language and operations of data warehouse models.

Table 2 compares existing proposals

against Cube Algebra, with respect to query
language functionalities, namely: (i) if the
operations are defined over the cube or over

other data objects, at lower levels of
abstraction (for example, tables, star
schemas); (ii) the complexity of the query
language for unskilled end users; (iii) the

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 8

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

kind of query language, such as cube-based,
relational algebra-based, relational calculus-
based, OCL-based and MDX-based, or no
language provided at all; and (iv) if the
work provides some graphical notation or
dashboard to aid in the data warehouse
modeling. As we can see in Table 2, no
work besides the Cube Algebra that offers a
user-friendly query language is the proposal
of Abelló et al. (2001), who introduce a
query language at the conceptual level.
Nevertheless, the query language is
complex for unskilled end users. Besides,
the operations defined over the cube, such
as base changes, generalization,

specialization, and derivation, are far from
the knowledge of managers and analysts in
an OLAP scenario.

Finally, Table 3 details and compares the
set of operations that each proposal
provides, that is, general functionalities to
create, manipulate, and update the cube
metaphor, and the set of high-level
operations for querying the data cube (roll-
up, drill-down, slice, dice, drill-across,
pivot). As we can see, only the Cube
Algebra encompasses all the operations. We
can also see that most of the proposals do
not offer operations to create, manipulate,
and update the cube.

Related Work

General Functionalities Query Cube

create
cube

manipulate
cube

update
cube

 roll-up
(drill-down)

slice dice drill-
across

pivot

Abelló et al. (2001) � � � � � � � �

Abelló et al. (2002)

Abelló et al. (2006)
� � � roll-up � � � �

Agrawal et al. (1997) � � � � � � � �

Cabibbo and Torlone
(1997)

� � � � � � � �

Cabibbo and Torlone
(1998)

� � � roll-up � � � �

Cabot et al. (2009) � � � � � � � �

Datta and Thomas
(1999)

� � � � � � � �

Golfarelli and Rizzi
(1998)

� � � � � � � �

Gyssens and
Lakshmanan (1997)

� � � roll-up � � � �

Lehner (1998) � � � � � � � �

Li and Wang (1996) � � � � � � � �

Malinowski and
Zimányi (2005)

� � � � � � � �

Nguyen et al. (2000) � � � � � � � �

Pardillo et al. (2008) � � � � � � � �

Pardillo et al. (2010) � � � � � � � �

Ravat et al. (2008) � � � � � � � �

Rizzi (2007) � � � � � � � �

Tryfona et al (1999) � � � � � � � �

Tsois et al. (2001) � � � � � � � �

Vassiliadis (1998) � � � drill-down � � � �

Cube Algebra � � � � � � � �

Table 3: Types of operations of data warehouse manipulation languages.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 9

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 1: (a) A three-dimensional cube for AirQuality data having dimensions Time, Pollution, and
Station, and a measure concentration. (b) Dimension hierarchies.

CUBE DATA MODEL AND
THREE-LEVEL DATA
ARCHITECTURE

In this section, we present our user-
centric cube data model and show how it
fits into the landscape of data warehouses.
By selecting the application scenario of
pollution control, next section informally
introduces the main cube concepts that a
user should be able to understand. Then, we
present a three-level architecture of a data
warehouse and OLAP system that integrates
our Cube Algebra, and formally define the
underlying user-centric data model
supporting such algebra. Finally, we sketch
a high-level data definition language for
data cubes.

Application Scenario: Cubes for
Pollution Control

We illustrate the needed user concepts
by leveraging an application scenario of
pollution control in Belgium. Monitoring
stations located at different locations enable
the measurement of certain pollutants (such
as carbon monoxide, CO). Thus, three
aspects or perspectives play a role here for
the knowledge worker: (i) the monitoring
station where a measurement is captured,
(ii) the time when a measurement is taken,
and (iii) the kind of pollution that is

measured. These aspects form the three
dimensions of a cube that are shown on the
Figure 1a. In this example, we call the
dimensions Station, Time, and
Pollution. Dimensions are an essential
and distinguishing first-class concept in
cubes. They are visually or geometrically
represented by the lateral faces of the
(hyper) cube. A dimension is organized as a
containment-like hierarchy. Each hierarchy
level represents a different (aggregation)
level of detail, as it is later required by the
desired analyses. Figure 1b shows the three
hierarchical structures of the Station,
Time, and Pollution dimensions. Each
hierarchical structure is called a dimension
schema. For example, the dimension
schema for Pollution models two
hierarchies with Pollutant as their
common lowest level, namely the hierarchy
consisting of the levels Pollutant, Type,
and Group, as well as the hierarchy
consisting of the levels Pollutant and
Category. The levels above Pollutant
allow grouping and are therefore interesting
for the knowledge worker. For example,
similar pollutants can be grouped under the
level Category. Note that there is a unique
top level in the dimension schema, denoted
All, to which all levels aggregate. Each
dimension level includes a finite set of

21

12

11

35

Q4

S1
S2

S4

Pollution (Pollutant)

T
im

e
(Q

u
ar

te
r)

P1

47

Q3

Q2

Q1

S3

P3

P4P2

10 18

30

3226

14

2014 31

12 20 24 33

24 18 28 14
33 25 23 25

12
20

17

10
33

18

14
23

18

Sta
tio

n
(S

ta
tio

n)

measure
values

dimensions

35

27

Time

Day

Month

Semester

Pollution

Pollutant

Category Type

Group

Quarter

Year

Station

Station

All AllAll

date
season

name

name
loadLimit

name name

name

month

quarter

semester

year

(b)(a)

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 10

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

values called members. A dimension
instance comprises all members at all levels
of a dimension hierarchy. Figure 3 gives an
example of a dimension instance with
respect to the dimension schema for
Pollution shown in Figure 1b. The level
Type, for example, contains the three
members: T1, T2, and T3.

A combination of members taken from
each dimension uniquely defines a cell of a
cube and implicitly specifies a fact if the
cell is not empty. For example, in Figure 1a,
at station S2 and quarter Q3, the pollutant
P4 was measured since the cell is not
empty. A value in a cell (such as 12 in our
case) is called a measure value. A measure
represents a numerical property of a fact. In
our example, the measure is named
concentration. A cube can have several
different measures. Each measure comes
with an aggregation function that can
combine several measure values into one.

Data Warehouse Architecture
Figure 2 shows the three-level data
warehouse architecture we devise (see
Ullman (1988)). At the conceptual level
(i.e., the highest abstraction level) of this
architecture, there is the cube model
described above (independent of how this
cube is actually implemented), and the
associated cube algebra we introduce later.
At the logical level we have the
implementation-dependent representation of
the data cube. At this level we place the
well-known star, snowflake, and
constellation schemas (i.e., a ROLAP
representation), as well as multidimensional
(MOLAP), and hybrid representations
(HOLAP). Query languages for these
representations are relational query
languages such as SQL dialects, and MDX.
Note that although MDX works on cubes in
the same way as SQL works on tables, it
cannot be considered as a language
operating at the conceptual level: not only
its semantics has never been clearly
defined, but the language is far from being
user-friendly (as we will show later), a key

issue in our approach. Finally, at the
physical level, we find the different ways of
efficiently implementing the data
warehouse. For example, for ROLAP
implementations multidimensional indices
such as variations of R-Trees can be used,
as well as bitmap indices. For MOLAP
implementations, efficient and proprietary
algorithms for implementing sparse
matrices are often used.

Figure 2: The three-level architecture for

multidimensional databases.

Formal Cube Data Model
Our cube-based, user-centric conceptual

model is supported by the formal model we
introduce next. For simplicity, and without
lost of generality, we assume that
dimension level names are uniquei.

Definition 1 (Dimension Schema)
A dimension schema is a tuple 〈nameDS, L,
→〉 where: (a) nameDS is the name of the
dimension; (b) L is a non-empty finite set
of pairs of the form 〈l, A〉 such that l is a
level (there is a distinguished level name
denoted All, such that 〈All, ∅〉 ∈ L), and A
is a set of attributes describing a level).
Each attribute has a domain Doma; without
loss of generality, we consider that one
attribute in A univocally identifies a
member in level l; (c) → is a partial order
on the levels l ∈ L. This partial order
defines a graph, whose nodes are the levels
l ∈ L, and are annotated by attributes in A;
(e) The reflexive and transitive closure of
→, denoted →*, has a unique bottom level

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 11

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

lb, and a unique top level. The top level is
the distinguished level All. We denote by l i
→* l j the fact that there is a path between l i
and l j. Moreover, all levels l are such that lb
→* l, and l →* All. �

Intuitively, a dimension schema is a
directed acyclic graph (DAG). Each node in
this graph represents an aggregation level
and is annotated with a list of attributes.
There is a distinguished level denoted All
without attributes, and a unique bottom
level. All levels are (directly or transitively)
reachable from the bottom, and all levels
(directly or transitively) reach the level All.

Definition 1 could be simplified if we
ignore the level attributes, and consider
each node in the graph as a single data
element. However, we decided to state the
formal model in this way to account for the
way in which the user operates with the
cube in real-world practice, where she
defines a dimension level as an aggregation
level, and attributes are displayed after
aggregation has been performed.

Definition 2 (Dimension Instance)
An instance I of a dimension schema
〈nameDS, L, →〉 consists of (a) a finite set
of members Ml, for each level l in L, such
that each member can be uniquely
identified (the level All has a unique
member all); (b) a set of partial functions,
denoted as roll-up functions (following
(Cabibbo & Torlone, 1997)) of the form
Roll-upli

lj from the members of level l i to
the members of level l j, for each pair of
levels l i and lj in L, such that li → l j in →;
(c) a collection of functions fl

1,…fl
k mapping

members of l to values in the domain of
each level attribute a1,…, ak ∈ A. �

Intuitively, a dimension instance is also a
DAG. Associated with an edge (l i,lj) in the
schema graph such that l i → l j, there is a
function from l i to l j. This function
describes how members in the lower level
aggregate to members in the upper level.
Thus, a dimension instance is just a
collection of such functions. Also note that

our model supports multiple hierarchies,
meaning that the same DAG models the
different aggregation paths from bottom to
top.

Example 1 (Dimension Schema and
Instance)
In Figure 1b we can see three dimension
schemas. Let us consider the one for
dimension Pollution. The schema of this
dimension is formally defined as follows.

nameDS = Pollution,
L= {〈 Pollutant,(name, loadLimit)〉,
〈Type,(name)〉,…,〈Group,(name)〉},
→ = {Pollutant → Type, Type →
Group, Group → All, Pollutant →
Category, Category → All }

Note that in Figure 1b the attributes in the
dimension levels that are underlined are the
identifiers.

The instances for dimension Pollution
are depicted in Figure 3, and are of the
form:
MPollutant = {P1,…,P5}, MCategory = {C1,
C2}, MType = {T1, T2, T3}, …
Roll-upPollutant

Type ={(P1,T1), (P2,T2), …,
(P5,T3)}…
Roll-upPollutant

Category = {(P1,C1), (P2,C1),
…, (P5,C2)}
Roll-upCategory

All = {(C1,all),(C2,all)}
fPollutant

name (P1) = CO,…,fPollutant
name (P5) =

PM.
fPollutant

loadLimit (P1) = 34,…,
fPollutant

loadLimit(P5) = 44…
fCategory

name(C1)= gas,…,fCategory
name (C2) =

solid.

Figure 3: Some instances (left) and roll-up functions
(right) of dimension Pollution of Figure 1b.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 12

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Intuitively, the aggregation hierarchy is
used as follows: let us suppose that the
concentrations of pollutants P2 and P3
measured at station S1 in a given day D1
are 30 and 40 mg/m3, respectively. If we
want to know the average concentration at
S1, aggregated by type on that day,
according to the instance depicted in
Figure 3, P2 and P3 will contribute to the
aggregation over type T2. Thus, for D1, S1,
T2, we will have a value of 35. �

Definition 3 (Cube Schema)
A cube schema is a tuple 〈nameCS, D, M〉
where nameCS is the name of the cube, D
is a finite set of dimension levels, with |D|
= d, corresponding to d bottom levels of d
dimension schemas, different from each
other, and M is a finite set of m attributes
called measures. Each measure also has an
associated domain. �

Definition 4 (Cube Instance)
Consider a cube schema 〈nameCS, D, M〉;
each lbi ∈ D, i = 1,…,d, has a set of
members. Let us call Points = {(c1,…,cd) |
ci is a member of lbi, i=1,…,d }. A cube
instance C is a partial function C: Points →
dom(M1) ×…× dom(Mm) where Mi ∈ M,
i=1,…,m. �

Example 2 (Cube Schema and Instance)
Let us now define a cube denoted
AirQuality, composed by dimensions
Pollution, Time, and Station, and a
measure concentration, as introduced in
our application scenario (Figure 1a). The
cube has schema 〈AirQuality,
{Pollutant, Day, Station},
{concentration}〉 with instances of the
form C(P1,T1,S1) = 35,…, C(P5,T3,S4) =
44,…. �

Cube Algebra Definition
Language

We now sketch a language, which we
denote CADL (standing for Cube Algebra
Definition Language). The language aims at
providing a description of the conceptual

data cube model, and could be the basis of a
Cube Definition Language at lower
abstraction levels.

In CADL, a cube schema is defined
using the keyword CUBE followed by the
cube name. Each cube is composed of a set
of dimensions, identified with the keyword
DIMENSION followed by the dimension
name. After defining a dimension, we must
list all dimension levels, along with their
attributes. A dimension level is defined with
the keyword LEVEL, followed by its name.
In addition, each level contains a set of
associated attributes, defined with the
keyword ATTRIBUTES, followed by a list
of attribute names and their types. In
addition, the optional keyword UNIQUE
indicates that the value of the attribute is
unique among all the values of such
attribute for all the level members.

For our running example, we define the
AirQuality data cube, along with its
dimensions, levels, and attributes in CADL
as follows.

CUBE AirQuality {

DIMENSION Time

LEVEL Day ATTRIBUTES {date

(date) UNIQUE, season (string)}

LEVEL Month ATTRIBUTES {month

(string) UNIQUE}

LEVEL Quarter ATTRIBUTES

{quarter (string) UNIQUE}

LEVEL Semester ATTRIBUTES

{semester (string) UNIQUE}

LEVEL Year ATTRIBUTES {year

(string) UNIQUE}

Day ROLL-UP to Month

Month ROLL-UP to Quarter

Quarter ROLL-UP to Semester

Semester ROLL-UP to Year

DIMENSION Station

LEVEL Station ATTRIBUTES {name

(string) UNIQUE}

DIMENSION Road

LEVEL Road ATTRIBUTES {name
(string) UNIQUE, length (real)}

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 13

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

DIMENSION Pollution

LEVEL Pollutant ATTRIBUTES {

name (string) UNIQUE,

loadLimit (real)}

LEVEL Category ATTRIBUTES {

name (string) UNIQUE}

LEVEL Type ATTRIBUTES {

name (string) UNIQUE}

LEVEL Group ATTRIBUTES {

name (string) UNIQUE}

Pollutant ROLL-UP to Category

Pollutant ROLL-UP to Type

Type ROLL-UP to Group

DIMENSION Geography

LEVEL District ATTRIBUTES {name

(string) UNIQUE, area (real)}

LEVEL Province ATTRIBUTES {name

(string) UNIQUE}

District ROLL-UP to Province

MEASURE concentration (real)}

CUBE ALGEBRA QUERY
LANGUAGE

In this section we sketch our proposal for
a query language that implements the ideas
discussed in the preceding sections. We
define an algebra, which we denote Cube
Algebra, such that the user could define her
queries just by means of the typical OLAP
operators. We first describe how the user
would be able to operate in our application
scenario, intuitively manipulating the cube
using the traditional OLAP operations, e.g.,
slicing, dicing, rolling-up, drilling down,
and pivoting. This basic set of operators can
be extended with other ones, useful in real-
world OLAP practice. We illustrate this
extensibility introducing the map operator,
which allows changing the values of the
measures in a cube, for example, to convert
currency units, or perform what-if analysis.
Then, we formally define each operator in
our algebra. We conclude with some
example queries that illustrate the query
language.

Application Scenario: OLAP
Operations for Pollution
Control

We now discuss how the user-centric
conceptual model we propose in this paper
could be used to analyze data. Let us recall
the cube in Figure 1a, containing quarterly
values of pollutant concentration at each
measuring station, for the year 2011. The
end user can operate intuitively over this
cube in order to analyze data in different
ways. Figure 4 shows a sequence of such
operations, which start from the initial cube
of Figure 1a. We describe her operations on
a step-by-step basis.

The user first wants to compute the sum
of concentrations per semester, station, and
pollutant, to look for significant differences
between these periods, if they exist. For
this, the Cube Algebra offers her a roll-up
operation, which she applies along the
Time dimension. The result is shown in
Figure 4a: the new cube contains two values
over the Time dimension, each
corresponding to one semester (the original
cube contained four values, one for each
quarter). The remaining dimensions are not
affected. All values in cells corresponding
to the same pollutant and station (for
example, P1 and S1, respectively), and to
quarters Q1 or Q2, contribute to the
aggregation to the values in the first
semester (S1). We can see in Figure 1a that
the concentration of P1 measured at station
S1 for the first and second quarters are,
respectively, 21 and 27. In Figure 4a we
also see that these values are aggregated to
48 in the first semester. Computation of the
cells corresponding to the second semester
proceeds analogously.

Our user then notices that in the second
semester the concentration of pollutant P3
at station S1 was unusually high. The Cube
Algebra allows her to drill down along the
Time dimension, to the month level, to find
out if this high value is due to a particular
month. In this way, she discovers that

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 14

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

December presented a much higher
concentration of this pollutant than the
other months (Figure 4b). Note that since
she now starts from data aggregated by

semester, station, and pollutant, the user
needs first to take the cube back to the
quarter aggregation level, and then
continues drilling-down to the month level.

(a) Roll-up to the Semester level

(b) Drill-down to the Month level

(c) Pivot

(d) Slice on Station for StationId = 'S1'

(e) Dice on Station = 'S1' or 'S2' and
Time.Quarter = 'Q1' or 'Q2'

(f) Map function for defining contamination levels

Figure 4: OLAP operations

Continuing her browsing of the cube, our
user now wants to see the cube with the
Time dimension on the x axis. Therefore,
she rotates the axes of the cube without
changing granularities. This restructuring
operation is called pivoting (Figure 4c).
(Note that she previously rolled-up the cube
back to the one of Figure 1a).

She then wants to visualize time series of
average pollutant concentration by quarter,
only for the station S1. For this, she first
applies a dice operator that selects the sub-
cube containing only values for the station
S1, and then eliminates the Station
dimension, applying a slice operation. This
is depicted in Figure 4d. Here, she obtained

2
8
2
0
3
3

1
9
4
7
1
8

1
7
2
1
1
0

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 15

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a matrix, where each column represents the
evolution of the concentration of a pollutant
by quarter, i.e., a collection of time series.

Our user also wants to compare, for each
pollutant, the concentration values against
similar records for 2010. For this, she has a
two-dimensional “cube” similar to the one
in Figure 4d, with the average
concentrations by quarter and by pollutant,
for 2010. She would like to have this
information consolidated in a single cube.
For this, she knows that the Cube Algebra
offers the drill-across operator that, given
two cubes, builds a new one with the
measures of both, making the comparison
very easy. In this way, if in 2010, for P4,
the average concentration on Q1 was 32, the
cell corresponding to (Q1,P4) resulting from
a drill-across, will contain the pair (35,32).

Next, she wants pollution information
corresponding only to stations S1 and S2 in
the first two quarters. For this, starting over
from the original cube, she produces a sub-
cube, using the dice operator (Figure 4e).

Finally, instead of a cube containing
pollution values, she wants to produce a
cube containing indicators of pollution
classified in four categories: Low (L) for
values greater or equal to 20; Moderate (M)
for values greater than 20 and less or equal
to 30; High (H) for values greater than 30
and less or equal to 45; and Very High (VH),
for values greater than 45. For this, she uses
the map operation shown in Figure 4f.

In what follows, to make the examples
more interesting, we add a Geography
dimension, composed of levels District and
Province, with a roll-up relationship defined
between them, and a Road dimension,
indicating the roads where the stations are
located.

Cube Algebra Query Operators
We now formally define the operators of

our Cube Algebra in terms of our data
model. Even though there are many works
describing multidimensional operations
(Agrawal, Gupta & Sarawagi, 1997;

Gyssens & Lakshmanan, 1997; Vassiliadis,
1998), curiously none of them describe a
common whole set of them in terms of the
well-known slice, dice, roll-up (and its
inverse, drill-down) and drill-across, which
are the ones that intuitively reflect how an
OLAP user manipulates a cube, or
combines two cubes. Existing efforts, such
as the ones cited above, usually define a
subset of these operators, combined with
other ones that, although suited to the
models proposed by the authors, are, in
most of the cases, not intuitive to non-
expert users (e.g., push-pull, nest). The
same occurs with the many commercial
OLAP tools, as we show later taking MDX
(the de facto standard for OLAP) as an
example. We therefore chose to define a
small set of the most intuitive and used
operators for cube manipulation, which, in
addition, can be shown to be orthogonal to
each other. That means, no one of them can
be expressed as a combination of the others.
However, it should not be assumed that this
set of operator is minimal in a formal
mathematical sense.

This basic set of operators can be
extended with many other ones, in order
add functionalities to the language. As an
example of this, we introduce the map
operator, which applies the same function to
all the cells in a data cube, allowing, for
example, currency conversion, or more
complex operations such as the one
illustrated in the example of previous
section.

Remark Although the pivot operator was
introduced in Figure 4c, since it does not
modify either the cube schema or the cube
instances, and it is just used for (mainly)
interactive visualization, we do not include
it in the following discussion. �

Dice This operator receives a cube and a
Boolean condition ϕ, and returns another
cube containing only the cells that satisfy ϕ.
The syntax for this operation is

DICE(cube_name, ϕ)

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 16

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

where ϕ is a Boolean condition over
dimension levels and measures.

The semantics is the following. Dice
receives a cube with schema S=〈nameCS,
D, M〉 and instances with the form
C(c11,…,c1d) = m1,…, C(cm1,…,ckj) = mr (for
simplicity let us assume only one measure),
and returns a cube with the same schema,
and the points (ci1,…,cid, mi) that make the
condition ϕ true. We can consider dice
analogous to a relational selection.

Roll-up and Drill-down The roll-up
operator aggregates measures according to a
dimension hierarchy (using an aggregate
function), to obtain measures at a coarser
granularity for a given dimension, based on
the use of the dimension hierarchy.

The syntax for the roll-up operation is:

ROLL-UP(cube_name,

Dimension->level,

(measure,aggregate_function)*)

The term Dimension->level indicates to
which level in a dimension we want the
roll-up to be performed. Note that since
there can be more than one measure, we
must specify an aggregate function for each
one of them. In what follows, we assume
that if there is only one measure in the cube,
for conciseness we only specify the
aggregate function.

As for the semantics, roll-up receives a
cube with schema S = 〈nameCS, D, M〉, a

level l in a dimension D, such that ls ∈ D, ls
→* l in D, and an aggregate function Fagg.
Roll-up returns a cube whose cells are
aggregated along D up to the level l. Thus,
all values vi,…,vk in the original cube, such
that C(c1,…,cli,…,cd) = vj, j=1,…,k
(Definition 5) contribute to the aggregation
over Roll-up(cli) ls

l.

Example 4 (Roll-up)
Suppose in Example 1 that we have the
following coordinates for the cube
AirQuality: (P1,T1,35), (P5,T3,44),
(P4,T3,22). According to Figure 3:

Roll-up(P1)Pollutant
Category = C1

Roll-up(P4) Pollutant
Category = C2

Roll-up(P5)Pollutant
Category=C2.

Then rolling-up from the cube
AirQuality to a new cube with schema
〈AirQCateg, {Category, Time},
{concentration}〉 yields the instance
(C1,T1,35), (C2,T3,66). �

Drill-down de-aggregates previously
summarized measures and can be
considered the inverse of roll-up. Following
Agrawal et al. (1997), we consider drill-
down a high-level operation that can be
implemented by tracking the (stored) paths
followed during user rolling-up. Therefore,
we omit its definition.

Slice Removes a dimension in a cube, i.e., a
cube of n-1 dimensions is obtained from a
cube of n dimensions. The dimension to
remove must contain a unique value in its
domain. If the dimension has more than one
value, two approaches can be used: apply
either a roll-up operator for summarizing
into a singleton (i.e., all) (Agrawal, Gupta
& Sarawagi, 1997), or (prior to slicing) a
dice operator, to obtain a cube with only
one value in the selected dimension.

The syntax of this operator is:

SLICE(cube_name, Dimension,

[ROLL-UP{Aggregate_function}])

According to what we explained above,
ROLL-UP{Aggregate_function} stands
for ROLL-UP(cube_name, Dimension

{All,Aggregate_function)}. The
former yields a more concise expression. If
the roll-up is not included, slice will have
two arguments, meaning that the dimension
instance has already been reduced to a
single value. If this is not the case, the
operator fails. That is, the operator is
analogous to a relational projection.

The semantics is the following. Slice
receives a cube with schema S = 〈nameCS,
D, M〉, and instances of the form
{(c11,…,cs,…,c1d, m1),…, (cm1,…,cs, …,ckd,
mr)} (where cs is the unique value in ls), and
a dimension name ds (assume that the level

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 17

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ls ∈ D belongs to dimension ds). The
operator returns a cube with schema
S1=〈nameCS, (D \ ls), M〉, where the
instances are of the form (c11,…, cs-1,
cs+1,…,c1d, m1),…,(cm1,…, cs-1, cs+1,…,ckd,
mr), that is, the same as in the original one,
except the coordinate corresponding to ls.

Drill-across Relates information contained
in two data cubes having the same
dimensions. Thus, measures from different
cubes can be compared. According to
Kimball and Ross (2002), drill-across can
only be applied when both cubes have the
same schema dimensions and the same
instances. Other authors relax this
restriction. This is the approach of Abelló et
al. (2002), who define two concepts: (a)
Dimension-Dimension Derivation: Used
when two dimensions come from a
common concept although their structures
differ, for example, because their
granularities are not the same. In this case, a
roll-up can be applied to make both
dimensions consistent. (b) Dimension-
Dimension Association: Corresponds to the
case in which two cubes have different
dimensions, but one of them could be
defined as the association of several ones.
For example in one cube we define latitude
and longitude as separated dimensions; in
another one we store only one dimension
containing the ‘point’ geometry. A mapping
function can solve this problem. Other
authors also address this problem, all of
them along the same lines (Cabibbo &
Torlone, 2004; Riazati, Thom & Zhang,
2008). We assume that the operator receives
two compatible cubes (i.e., sharing
dimensions and instances). The syntax of
the operator is:

DRILL-ACROSS(cube_name_1,

cube_name_2).

Let us now explain the semantics. Drill-
across receives two cubes with schemas
S1 = 〈nameCS1, D, M1〉 and S2 = 〈nameCS2,

D, M2〉, that means, the dimension levels
are the same. The corresponding instances

(except for the measures) are the same. The
result is a cube with schema S = 〈nameCS,
D, M1 ∪ M2〉, with the same instances of
the input cubes. In other words, the operator
is analogous to a relational natural join.

We now formally define the map
operator, which extends the basic set of
operations defined above. We remark that
this is only one of the many operators the
Cube Algebra could be extended with.

Map This operator receives a cube and a
collection of pairs (mi,fi), where mi is a
measure and fi is a function mapping values
in Domm to values in the same of another
domain (see the example above, where
concentration values in the domain of the
real numbers are mapped to the domain of
strings, by a partitioned function). The
operator returns another cube, with the
same dimension schema and instances, and
with the values in each cell that correspond
to the mappings produced by each function
fi. The syntax for the map operation is:

MAP(cube_name, (measure,

function)*)

The semantics is the following. Map
receives a cube with schema S = 〈nameCS,
D, M〉 and instances with the form
C(c11,…,c1d) = m1,…, C(cm1,…,ckj) = mr,
(for simplicity we assume only one
measure), and returns a cube with the same
schema, and instances of the form
C(c11,…,c1d) = f(m1),…, C(cm1,…,ckj) =
f(mr).

Cube Algebra QL by Example
We now give the flavor of the language

by means of examples, and show that Cube
Algebra allows an OLAP user to express
queries using just the operators she is
acquainted to, instead, for example, of
complex MDX expressions. We prove our
point, showing, for each query, a possible
MDX version.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 18

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Query 1 For each province and pollutant
category, give the average concentration by
quarter.

c1 := SLICE (AirQuality,

Station, ROLL-UP{Avg})

c2 := SLICE (c1, Road, ROLL-

UP{Avg})

c3 := ROLL-UP (c2,{Time->

Quarter, Pollution->

Category,Geography->Province},

Avg)

Remark The roll-up operator can only be
applied over one dimension at a time. For
simplicity, in the query above, the
expression for c3 is shorthand for:

c3 := ROLL-UP(c2, Time->Quarter,

Avg)};

c4 := ROLL-UP(c3,

Geography->Province, Avg)};

c5 := ROLL-UP(c4,

Pollution->Category, Avg)};

This is the syntax we use in the sequel. �

We next show how this query would look in
MDX.

Query 1 (MDX Version)

We assume that measure concentration
has been associated with the aggregate
function Avg. In Cube Algebra, the levels
of a dimension are organized as a lattice.
On the contrary, in MDX the levels are
organized into named linear hierarchies.
Thus, when referring to a level we must
qualify it with the name of a hierarchy it
belongs to (note that there could be more
than one). This is the case of the dimension
Pollution in the query below.
In MDX, Query 1 reads:

SELECT

[Geography].[Hierarchy].

[Province].Members On Axis(0),

[Pollution].[H0].[Category].

Members On Axis(1),

[Time].[Hierarchy].[Quarter]

Members On Axis(2),

FROM AirQuality

WHERE (Station.[All],Road.[All])

Compared to the simplicity of the Cube
Algebra expression above, the MDX query
looks cryptic and unintuitive. In part, this is
due to the fact that, as shown in Figure 2,
MDX is placed at the logical level, while
the Cube Algebra is at the conceptual level.
Besides, MDX has not a clearly defined
semantics. On the contrary the semantics of
each Cube Algebra operator is clear,
intuitive, and well known for most OLAP
practitioners. �

Query 2 Number of districts where, for at
least one pollutant, the average load of air
pollution in 2011 was larger than the
concentration limit.

c1 := ROLL-UP (AirQuality,

Time->Year,{Avg})
c2 := DICE (c1, Time.Year.year =

2011)

c3 := SLICE (c2, Time,

ROLL-UP{Avg})

c4 := SLICE (c3, Station,

ROLL-UP{Avg})

c5 := SLICE (c4, Road,

ROLL-UP{Avg})

We have obtained a cube with dimensions
Geography and Pollution containing
data only for 2011. Now:

c6 := DICE (c5, concentration >=

Pollution.Pollutant.loadLimit)

c7 := SLICE (c6, Pollution,

ROLL-UP{Avg})

c8 := ROLL-UP (c7,

Geography->All, {Count}})

The semantics of the expression

DICE (c4, concentration >=

Pollution.Pollutant.loadLimit)

is the following: each cell in c4 is analyzed,
and the values of the variables are
instantiated with the values of the cell
coordinates and measures (i.e.,
Pollution.Pollutant is instantiated
with the identifier of the pollutant
corresponding to the cell). Analogously,
concentration is obviously instantiated
with the value of the measure in the cell.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 19

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Query 2 (MDX Version)

The query can be solved in three steps.
First, a sub-cube is created for representing
the underlying data filtered using the
districts satisfying the condition. The use of
the TYPED keyword in the Properties
function is necessary in order to consider
the type of the ‘loadLimit’ attribute,
otherwise MDX would consider it a string,
preventing performing the comparison with
concentration. For counting elements,
in our case the number of different districts,
we must define a new measure using the
WITH clause over the set of names of the
districts. Finally, the sub-cube is dropped.

CREATE SUBCUBE [AirQuality] AS

SELECT

Filter(

([Pollution].[H0].[Pollutant].

members,[Geography].[Hierarchy].

[District].members,[Time].

[Hierarchy].[Year].[2011]),

[Pollution].[H0].

CurrentMember.Properties("loadLi

mit",TYPED) <=[Measures].

[Concentration]) on Axis(0)

FROM AirQuality

WHERE ([Station].[All],

[Road].[All])

WITH

SET [DistNames] As

([Geography].[Hierarchy].

[District].members,

[Measures].[Concentration])

MEMBER [Measures].[Count

Districts] As

COUNT([DistNames])

SELECT [Measures].[Count

Districts] On Axis(0)

FROM [AirQuality]

DROP SUBCUBE [AirQuality]

Note, as in Query 1, the difference between
the Cube Algebra expression and the MDX
one. The latter requires a deep
understanding of the MDX syntax, while
the former allows the user to focus just on
the semantics of the OLAP operators.

Query 3 Build a cube with the dimensions
of the original cube, containing only
concentrations corresponding to stations
located in districts in the province of
Limburg, and to polluting agents of
‘organic’ type such that the station had at
least once registered a concentration higher
than the limit for the corresponding
pollutant.

This query is simply expressed as:

c1 := DICE (AirQuality,

concentration >=

Pollution.Pollutant.loadLimit

AND Geography.Province.name

='Limburg' AND

Pollution.Category.name =

'organic').

Query 3 (MDX Version)

SELECT[Pollution].[CategoryName.

[Organic] On Axis(0),

[Time].[Hierarchy].[Day] On

Axis(1),

[Station].[Station].[Station] On

Axis(2),

[Road].[Road].[Road] On Axis(3),
[Geography].[Hierarchy].

[District] on Axis(4)

FROM AirQuality

WHERE

Filter(([Pollution].[H0].

[Pollutant].members,

[Geography].[Province].

[Limburg]),[Pollution].[H0].

CurrentMember.Properties(

"loadLimit",TYPED)<=[Measures].

[Concentration])

Even this simple query requires
implementation knowledge at the logical
level, e.g., the decomposition of the
multiple hierarchy into many single ones
(in this case, only [H0] is needed).

Query 4 For stations, and pollutants
belonging to the ‘organic’ category, give
the maximum concentration by month.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 20

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

c1 := DICE

(AirQuality,Pollution.

Category.name='organic')

c2 := SLICE (c1, Road,

ROLL-UP{Max})

c3 := SLICE (c2, Geography,

ROLL-UP{Max})

c4 := ROLL-UP (c3, Time->Month,

{Max})

Query 4 (MDX Version)

WITH MEMBER

[Measures].[Maximal] as

Max([Time].[Hierarchy].

currentMember.children,

[Measures].[Concentration])

SELECT[Time].[Hierarchy].[Month.

members On Axis(0),

[Station].[Station].[station].me

mbers On Axis(1),

[Pollution].[H0].Pollutant.

members On Axis(2),

[Measures].[Maximal] On Axis(3)

FROM AirQuality

WHERE

([Pollution].[categoryName].

[Organic],[Road].[Road].[All],

[Geography].[Hierarchy].[All])

Query 5 Stations located over the part of
the E34 road within the Berchem district,
with an average content of nitrates in the
last quarter of 2011 above the load limit for
that pollutant.

c1 := DICE (AirQuality,

Geography.District ='Berchem'

AND Time.Quarter.quarter ='Q4-

2011' AND Time.Year.year= 2011

AND Pollution.Category.name=

'Nitrates' AND Road.Road.name =

'E34')

c2 := SLICE (c1, Road)
c3 := SLICE (c2, Geography)

Note that in the SLICE operation that
generates cubes c2 and c3, we do not use
the third argument, since the previous
dicing selected unique values for roads and
districts. Cube c3 has Station, Time, and
Pollution dimensions.

c4 := ROLL-UP (c5, Time->

Quarter, Avg)

c6 := DICE (c5, concentration >=

Pollution.Pollutant.loadLimit)

The following query illustrates the use of
the map operator. In our running example,
assuming that pollutant concentrations are
expressed in mg/m3 (milligrams per cubic
meter), we want to express the results in
µg/m3 (micrograms per cubic meter).

Query 5 (MDX Version)

SELECT

Filter((([Pollution].[H0].

[Pollutant].members,

[Station].[Station].[Station].

members), [Time].[Quarter].

[Q4-2011]), [Pollution].[H0].

CurrentMember.Properties
("loadLimit", TYPED) <

[Measures].[Concentration]) on

Axis(0)

FROM AirQuality

WHERE ([Road].[Road].[E34],

[Geography].[District].[Berchem,

[Pollution].[typeName].

[Nitrates])

Query 6 Average concentration by Station,
Time, District, Road, and pollutant
Category, expressed in µg/m3.

c1 := MAP (AirQuality,

concentration, Mult(1000))

c2 := ROLL-UP (c1, Pollution->

Category, Avg })

In the expression that generates c1, Mult
(1000) is a function that given a value,
multiplies it by a constant (in this case,
1000).

Query 6 (MDX Version)

WITH MEMBER

[Measures].[NewValue] as

[Measures].[Concentration]*1000

SELECT
[Pollution].[H0].[Category].

members On Axis(0),

[Station].[Station].[Station].

members On Axis(1),

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 21

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

[Geography].[District].
[District].members On Axis(2),

[Road].[Road].[Road].Members

On Axis(3),

[Time].[Hierarchy].[Day].members

On Axis(4),

[Measures].[NewValue] On Axis(5)

FROM AirQuality

The next query shows the use of the Drill-
across operator. Let us assume we have a
cube denoted Demography with the
dimensions Time and Geography
described above, and measure
population. The instances of the
dimensions satisfy the operator’s
preconditions.

Query 7 Total population and average
pollutant concentration by province and
year.

c1 := SLICE (AirQuality, Road,
ROLL-UP{Sum})

c2 := SLICE (c1, Pollution,
ROLL-UP{Max})

c3 := SLICE (c2, Station, ROLL-

UP{Max})

Now, the cube c3 contains just the
dimensions Time and Geography.

c4 := DRILL-ACROSS (c3,

Demography)

c5 := ROLL-UP (c4, Time->Year,

concentration, Avg, population,

Sum))

c6 := ROLL-UP (c5, Geography->

Province, concentration, Avg,

population, Sum)

The drill-across operator is not directly
supported in MDX, since the FROM clause
only supports one cube, therefore the only
way of adding a measure is to define it at
design time.

CONCLUSIONS AND FURTHER
WORK

In this article, we have identified the
need for an appropriate conceptual model
for data warehouses and OLAP systems.

This need stems from the fact that logical
models (for example, star, snowflake, and
constellation schemas) have been deployed
for these systems as conceptual models. But
logical models represent a system-centric
view of data warehouses and OLAP
systems and are ultimately implementation
concepts. In this article, we propose a user-
centric conceptual model for data
warehouses and OLAP systems, called the
Cube Algebra. It takes the cube metaphor
literally and provides the knowledge worker
with high-level cube objects and related
high-level concepts. A novel query
language leverages high-level operations
such as roll-up, slice, and drill-across. An
important design criterion is that all aspects
of the logical level and the physical level
are hidden from the user.

We plan our future research in at least
three directions. First, further data
definition commands have to be added for
updating cube schemas, dimension
schemas, and measures. In addition, further
data manipulation commands are needed for
the insertion, deletion, and update of data
into cubes. Second, transformation rules are
needed that map the concepts of the Cube
Algebra at the conceptual level to
corresponding ROLAP, MOLAP, and
HOLAP concepts at the logical level. Third,
we are interested in adding other data
categories such as spatial, spatiotemporal,
image, and multimedia data into our Cube
Algebra. Questions are here, for example,
how the different data categories are
integrated and stored, what kind of
aggregation operations exist on the different
data categories, how the different
aggregation operations are defined, and
how these operations are implemented.

ACKNOWLEGEMENTS

 Cristina and Ricardo Ciferri thank for
the support of the following Brazilian
research agencies: FAPESP, CNPq,
CAPES, and FINEP. Leticia Gómez and

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 22

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Alejandro Vaisman were partially
supported by the LACCIR project
“Monitoring Protected Areas using an
OLAP-enabled Spatiotemporal GIS”.
Markus Schneider was partially supported
by the U.S. National Aeronautics and Space
Administration (NASA) under the grant
number NASA-AIST-08-0081 and by the
U.S. National Science Foundation (NSF)
under the grant number NSF-IIS-0812194.
Alejandro Vaisman and Esteban Zimányi
were partially supported by the project
OSCB (Open Semantic cloud for Brussels)
funded by Innoviris.

REFERENCES

Abelló, A., Samos, J., & Saltor, F. (2001)
Understanding Facts in a Multidimensional
Object-Oriented Model. In Proceedings of
the 4th ACM International Workshop on
Data Warehousing and OLAP. ACM Press.

Abelló, A., Samos, J., & Saltor, F. (2002).
On Relationships Offering New Drill-
Across Possibilities. In D. Theodoratos
(Ed.), Proceedings of the 5th International
Workshop on Data Warehousing and OLAP
(pp. 7-13). ACM Press.

Abelló, A., Samos, J., & Saltor, F. (2006).
YAM 2: A Multidimensional Conceptual
Model Extending UML. Information
Systems, 31 (6), 541-567.

Agrawal, R., Gupta, A., & Sarawagi, S.
(1997). Modeling Multidimensional
Databases. In W.A. Gray and P. Larson
(Eds.), Proceedings of the 13th
International Conference on Data
Engineering (pp. 232-243). IEEE Computer
Society Press.

Cabibbo, L., & Torlone, R. (1997).
Querying Multidimensional Databases. In
S. Cluet and R. Hull (Eds.), Proceedings of
the 6th International Workshop on
Database Programming Languages, LCNS
1369 (pp. 319–335). Springer-Verlag.

Cabibbo, L., & Torlone, R. (1998). A
Logical Approach to Multidimensional

Databases. In H. Schek, F. Saltor, I. Ramos
and G. Alonso (Eds.), Proceedings of the
6th International Conference on Extending
Database Technology, LCNS 1377 (pp.
253-269) . Springer-Verlag.

Cabot, J., Mazón, J-N., Trujillo, J., &
Pardillo, J. (2009). Towards the Conceptual
Specification of Statistical Functions with
OCL. In Proceedings of CAiSE Forum (pp.
7-12).

Datta, A., & Thomas, H. (1999). The Cube
Data Model: A Conceptual Model and
Algebra for On-Line Analytical Processing
in Data Warehouses. Decision Support
Systems, 27(3), 289-301.

Golfarelli, M., & Rizzi, S. (1998). A
Methodological Framework for Data
Warehouse Design. In Proceedings of the
1st International Workshop on Data
Warehousing and OLAP (pp. 3-9). ACM
Press.

Gyssens, M., & Lakshmanan, L. (1997). A
Foundation for Multi-dimensional
Databases. In M. Jarke, M. Carey, K.
Dittrich, F. Lochovsky, P. Loucopoulos and
M. Jeusfeld (Eds.), Proceedings of the 23rd
International Conference on Very Large
Data Bases (pp. 106-115). Morgan
Kaufmann.

Lehner, W. (1998). Modelling Large Scale
OLAP Scenarios. In H. Schek, F. Saltor, I.
Ramos and G. Alonso (Eds.), Proceedings
of the 6th International Conference on
Extending Database Technology, LCNS
1377 (pp. 153-167). Springer-Verlag.

Li, C., & Wang, S. (1996). A Data Model
for Supporting On-Line Analytical
Processing. In Proceedings of the 5th
International Conference on Information
and Knowledge Management (pp. 81-88).
ACM Press.

Marcel, P. (1999). Modeling and Querying
Multidimensional Databases: An Overview.
Networking and Information Systems, 2 (5),
515-548.

Malinowski, E., & Zimányi, E. (2008).
Advanced Data Warehouse Design: From

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 23

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conventional to Spatial and Temporal
Applications. Springer-Verlag.

Nguyen, T.B., Tjoa, A.M., & Wagner, R.
(2000). An Object Oriented
Multidimensional Data Model for OLAP. In
H. Lu and A. Zhou (Eds.), Proceedings of
the 1st International Conference on Web-
Age Information Management, LNCS 1846
(pp. 69-82). Springer-Verlag.

Pardillo, J., Mazón, J-N., & Trujillo, J.
(2008). Bridging the Semantic Gap in
OLAP Models: Platform-Independent
Queries. In I.-Y. Song and A. Abelló (Eds.),
Proceedings of the 11th ACM International
Workshop on Data warehousing and OLAP
(pp. 89-96). ACM Press.

Pardillo, J., Mazón, J.-N., & Trujillo, J.
(2010). Extending OCL for OLAP
Querying on Conceptual Multidimensional
Models of Data Warehouses. Information
Sciences 180 (5), 584-601.

Ravat, F., Teste, O., Tournier, R., &
Zurfluh, G. (2008). Algebraic and Graphic
Languages for OLAP Manipulations.
International Journal of Data Warehousing
and Mining, 4 (1), 17-46.

Rizzi, S. (2007) Conceptual Modeling
Solutions for the Data Warehouse. In
Wrembel, R., Koncilia, R. (Eds.), Data
Warehouses and OLAP: Concepts,
Architectures and Solutions (pp. 1-26). Idea
Group (IGI).

Romero, O., & Abelló, A. On the Need of a
Reference Algebra for OLAP. In I.-Y.
Song, J. Eder and T.M. Nguyen (Eds.),
Proceedings of the 9th International
Conference on Data Warehousing and
Knowledge Discovery, LCNS 4654 (pp. 99-
110). Springer-Verlag.

Tryfona, N., Busborg, F., & Borch
Christiansen, J. (1999). starER: A
Conceptual Model for Data Warehouse
design. In Proceedings of the 2nd ACM
International Workshop on Data
Warehousing and OLAP (pp. 3-8). ACM
Press.

Tsois, A., Karayannidis, N. & Sellis, T.
(2001). MAC: Conceptual data modeling
for OLAP. In D. Theodoratos, J. Hammer,
M. Jeusfeld and M. Staudt (Eds.),
Proceedings of the 3rd International
Workshop on Design and Management of
Data Warehouses (pp. 5). CEUR-WS.org.

Ullman, J. (1988). Principles of Database
and Knowledge-Base Systems, Volume I.
Computer Science Press.

Vassiliadis, P. (1998). Modeling
Multidimensional Databases, Cubes and
Cube Operations. In M. Rafanelli and M.
Jarke (Eds.), Proceedings of the 10th
International Conference on Scientific and
Statistical Database Management, (pp. 53-
62). IEEE Computer Society.

i We use this simplification in the formal model to
avoid the need of referring to a dimension level as
dimension.level, which would make the formal
definition too verbose. However, in the algebra defined in
next section, we drop this restriction, and qualify level
names with dimension names.

