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CUBES WITH KNOTTED HOLES
BY

R. H. BING AND J. M. MARTIN^)

Abstract. The statement that a knot K has Property P means that (1) if C is a cube
with a ^-knotted hole, and M3 is a simply connected 3-manifold obtained by sewing
a solid torus onto C, then M3^S3, and (2) any piecewise linear homeomorphism of
a cube with a Ä-knotted hole into S3 can be extended to a piecewise linear homeo-
morphism of S" onto S3. In this paper it is shown that many familiar classes of knots
have Property P.

1. Introduction. The 3-dimensional Poincaré conjecture is that a compact,
connected, simply connected 3-manifold without boundary is topologically a 3-
sphere S3. Despite efforts to prove the conjecture, it has withstood attack [4].

Since no solution has been found, some believe that the conjecture is false, and
that there is a counterexample.

In attempting to construct a counterexample to the Poincaré conjecture, the
first hurdle seems to be that of showing that the proposed example has a trivial
fundamental group. This is difficult in that the information about the fundamental
group usually appears as an exotic presentation of the group. Having somehow
verified that this group is indeed trivial, one encounters the second hurdle of
somehow showing that the example is topologically different from S3.

It is known that every orientable 3-manifold may be obtained by removing a
collection of disjoint solid tori from S3 and sewing them back differently [14], [22],
[12]. In this paper we examine some of the possibilities for constructing a counter-
example to the Poincaré conjecture by removing a single solid torus from S3 and
sewing it back differently. Actually, we examine not only this process but one
analogous to it which we call "attaching a pillbox to a cube with a knotted hole".

We find it useful to consider two sorts of surgery which are inverses of each
other. If Ma is a 3-manifold with boundary, A2 is an annulus on Bd M3 and P3 is
a 3-cell such that M3 n P3 = A2 = BdP3 r\ Bd M3, then we say that M3 u P3 was
obtained by sewing a pillbox P3 to M3 along A2. Suppose that H3 is a 3-cell in M3
such that H3 n Bd M3 is the union of two disjoint disks D\ and D\, and
N3 = C\ (M3 — H3) is a 3-manifold with boundary. We say that N3 was obtained
by boring a hole in M3.

Received by the editors September 29, 1969.
AMS 1970 subject classifications. Primary 55A05, 55A25, 55A40.
Key words and phrases. Knots, cubes with knotted holes, Poincaré conjecture, 3-manifolds,

Property P.
(x) The first author was partially supported by ONR grant NR 043-374, and the second by

NSF grant GP-3857.
Copyright © 1971, American Mathematical Society

217

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



218 P. H. BING AND J. M. MARTIN [March

If M3 is a 3-cell, the manifold N3 described in the preceding paragraph is called a
cube with a hole. We name the hole after a polygonal simple closed curve h(J) in
Euclidean 3-space, E3, where A is a homeomorphism of M3 into E3, and / is a
simple closed curve on Bd N3 which is the union of an arc from D\ to D\ on Bd H3
and an arc from D\ to D2 on Bd M3. Thus, we speak of a cube with a trefoil
(overhand) knotted hole, a cube with a figure eight knotted hole, etc. If K is a knot,
then a cube with this type of hole is called a cube with a K-knotted hole and is
denoted by C3(K). A cube with an unknotted hole is topologically a solid torus,
that is, the Cartesian product of a disk and a circle. We reserve the terminology
"cube with a knotted hole", for a manifold of this type different from a solid torus.
One obtains the fundamental group of N3 by computing the fundamental group of
E3-h(J) since n1(N3) = n1(E3-h(J)).

Let M3 be a compact, connected 3-manifold with boundary whose boundary is
a 2-sphere. Then M3 is a homology 3-cell if its 1st homology group is trivial and a
homotopy 3-cell if its fundamental group is trivial. The Poincaré conjecture is
equivalent to the conjecture that each homotopy 3-cell is homeomorphic with a
3-cell.

Poincaré's original conjecture was [19] that the homology of a compact com-
binatorial n-manifold determines its topology. This would have implied that each
homology 3-cell is a 3-cell, but Poincaré himself obtained [20] a counterexample to
this shortly after he made the original conjecture. Peculiar homology 3-cells can be
built by sewing pillboxes onto cubes with knotted holes so that the connecting
annuli run through the holes.

One way to try for a counterexample to the Poincaré conjecture is to seek a
homotopy 3-cell obtained by sewing a pillbox onto a cube with a knotted hole so
that the connecting annulus runs through the hole in the cube (perhaps several
times). It is known that no homotopy 3-cell results by using a trefoil knot [2] or
even a torus knot [11], [13]. We show in this paper that none results for many
other sorts of knots. We do not know the answer for all knots despite an assertion
made on p. 36 of [2]. See [3].

The preceding paragraph implies that if AT is a torus knot and C3(K) is a poly-
hedron in E3 which is a cube with a K knotted hole, then each piecewise linear
homeomorphism of C3(K) into E3 can be extended to a piecewise linear homeo-
morphism of E3 onto itself. We show in this paper that many other knots have this
property. A counterexample to the Poincaré conjecture would be at hand if one
could find a knot / with this property and such that C3(J) could be changed to a
homotopy cube by sewing on a pillbox along an annulus that runs through the hole.

We say that a knot K has Property P if (1) each homotopy 3-cell obtained by
sewing a pillbox onto C3(K) is a 3-cell, and (2) if C3(A0 is a polyhedral cube with
a AT-knotted hole in E3, then any homeomorphism of C3(K) into E3 can be extended
to a piecewise linear homeomorphism of E3 onto itself. The trivial knot satisfies the
first restriction but not the second. In §§2-5, we extend the class of knots known to
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1971] CUBES WITH KNOTTED HOLES 219

have Property P. We are advised by Ralph Fox that some of the results in this
paper have been obtained independently by F. Gonzales in his Princeton thesis.

2. Cube with a figure eight knotted hole. The figure eight knot, T2, shown in
Figure 1 is a special kind of a twist knot, Tn to be considered later. However, the
study of C3(T2) has an interesting history, and so is treated independently.

c —

-_  b

— d

Figure 1

If one reads the fundamental group of E3-T2 from Figure 1 as suggested in [5]
or [10], it is found to have a presentation

wl(Ea- Ja) = {a, b, c, d; aca-^'1 = aerlb~le = dc^d^b = dba-1^1 = 1}.

Since d=aca~1 and b = cac~1, the presentation simplifies to

n^E3 — T2) = {a, c : aca~1c~1ac~1a~1cac~1 = 1}.

This is also the fundamental group of C3(T2).
If one forms a 3-manifold C3(T2) u P3 by sewing a pillbox P3 to C3(T2) along

an annulus that runs through the hole «-times, one finds that the relation
(b~ 1ad " 1c)nai = 1 is added. The abelianization of the resulting group yields the
integers mod |i'|, so we find that in order to construct a homology cube we must
have i= ± 1. Hence

nx(C3(T2) u P3) = {a, c; aca-1c-1ac-1a~1cac-1
= (ca-^-Vr'a-1^*1 = 1}.

Letting n take on negative values as well as positive ones, we drop the ± sign from
the final exponent on a.
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220 R. H. BING AND J. M. MARTIN [March

The question was raised in [3] as to whether or not, for some «#0, C3(T2) u P3
might be a homotopy 3-cell. In the hopes of getting something started, Bing raised
the question in [4] as to whether or not it might be a homotopy 3-cell in the special
case where n= — 1. Independent answers were received in letters to Bing for the
question about the special case. In 1964 J. Mennicke wrote Bing that in the special
case no homotopy 3-cell results since for n= — l there is a homomorphism of
tti(C3(T2) u P3) onto the simple group of order 168. Later J. M. Martin reported a
similar result. In 1967 W. R. Alford and D. E. Penny also reported this result and
said that they felt they were on the verge of solving the general case. (However, at
last report, they had not succeeded.) In 1968, John McKay reported from the
Atlas Computer Laboratory in England that with the aid of two colleagues, J.
Leech and M. S. Patterson, and a computer that he had shown that Klein's 168
group is a factor group of the special group. The homomorphisms differed in detail,
but a typical one would send a to (12)(3456)(7) and c to (1736)(25)(4). In 1968
J. M. Van Buskirk reported that tt^C3^) u Ps) is nontrivial for all positive
values of n if and only if it is nontrivial for all negative values.

Theorem 2.1. For each integer «#0, no homotopy 3-cell results from sewing a
pillbox onto a cube with a figure eight knotted hole along an annulus that runs through
the hole n times.

Proof. For n i= 0, we show the nontriviality of the group

{a, c : aca~1c~1ac~1a~1cac~1 = (ca~1c~1a2c~1a~1c)na = 1}.

First we simplify the presentation. If we let w = ca~1 and eliminate c by replacing
it with wa, the first relation is shortened to awa~1w~2a~1waw~1=l. If we let
k = w~1a and replace a by wk, the relation becomes wk2w = kw3k. The presentation
of the group is changed to

{w, k : kw3k = wk2w, (wk~1w~1kw~1k~1wk)n(wk) = 1}.

Now we simplify the second relation. The first relation wk2w = kw3k implies that
the factors wk~1w~1kw~1k~1wk and wk commute. (This is also implied by the fact
that wk~1w~1kw~1k~1wk and wk are represented by curves on the boundary of a
tubular neighborhood of T2 and the fundamental group of a 2-dimensional torus
is abelian.) Hence the second relations becomes (k~2w~ xkw~1k~2w~ ^(wk)3"-+ * = 1.
The first relation simplifies this so we obtain

"i(C3(T2) u P3) = {w,k; kw3k = wk2w, (kw*k2y = (wk)3n + 1).

We complete the proof of Theorem 2.1 by considering two cases.
Case 1. n= — 1. In this case the presentation reduces to

{x, y : xy2x = yx3y, yx*y = xyx}.

The substitution z = xy '1 changes it to {x, z ; xiz ~ xx ~ xzx ~l = zxz ~1 = x ~ 1z}, which

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971] CUBES WITH KNOTTED HOLES 221

simplifies to {x, z; x"7 =z3 = (xz)2}. This group is nontrivial since there is a homo-
morphism of it onto the group G = {u,v;u7 = v3 = (uv)2 = 1}. It was noted on p. 35 of
[2] that G is nontrivial since there is a homomorphism of G onto the permutation
group generated by « = (1234567), i> = (721)(643)(5).

Case 2. «#0, — 1. In this case |3« + 1| >2. By adding the relations vA=\, k3 =1,
we find that there is a homomorphism of ir1(C3(T2) UP3) onto {x,y : xi=y3
= (yx~1)3 = (xy)3n + 1= 1}. We show in §4 that this group is nontrivial if |3«+1| >2.

Theorem 2.2. The figure eight knot has Property P.

Proof. Theorem 2.1 shows that T2 satisfies the first half of Property P. To see
that the second condition is satisfied, regard C3(T2) as standardly embedded in E3.
Let h: C3(T2) -> E3 be a piecewise linear homeomorphism. Let J1 be a polygonal
simple closed curve on Bd C3(T2) that goes around, but not through the hole.
Since the closure (in S3) of one complementary domain of «(Bd (C3(T2))) is a solid
torus, there is a polygonal simple closed curve J2 on Bd (C3(T2)) such that h(J2)
bounds a disk D2 in h(J2) u (E3-h(C3(T2))). Notice that n^D2 u h(C2(T2))) is
trivial.

Now if/i is isotopic to J2 on Bd (C3(7"2)) then there is a polyhedral 3-cell P3 in
Cl (E3 — C3(T2)) whose intersection with C3(T2) is an annulus having J2 for a
centerline. Then « can be extended to take P3 onto a regular neighborhood of D2
and then to take E3 onto E3.

If J2 is not isotopic to J1 on Bd (C3(T2)), it runs through the hole. Since
TTy(D2 u h(C3(T2))) is trivial, a homotopy 3-cell results from sewing a pillbox onto
CXT^) along an annulus whose centerline is J2. This violates Theorem 2.1.

3. Cubes with twist knotted holes. A twist knot is a simple closed curve in E3
which is doubled [23], with twists about an unknotted circle. See Figures 2 and 3.
Twist knots are alternating knots and are determined by the number of half twists.
This class includes the trefoil knot (1 half twist), the figure eight (2 half twists) and
the stevedore's knot (4 half twists). In this section we show that cubes with twist
knotted holes have Property P. We let 77, denote a twist knot withy half twists.

Figure 2 shows a twist knot T2m with an even number of half twists. In computing
ttx(E3 — T2m) we use au a2,..., am + 1, bu b2,..., bm + l as generators. Since all the
generators are functions of a1 and b± we drop their subscripts in writing the relation
as follows:

b2 = aï1b1a1 = a~1ba

a2 = b2a1b21 = (a~1b)a(a~1b)~1

b3 = a2-lMa = (a-Wb(a~lb)-2

bm+1 = a-1bmam = (a-1b)mb(a-1b)-m

am + i = bm + 1amb-\1 = (a-1b)ma(a-yb)-m

b1 = b = am + la1a~l1 = (a-1b)ma(a-1b)-ma(a-1b)ma-1(a-1b)-m.
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222 R. H. BING AND J. M. MARTIN [March

Figure 2

There is another relation given by the rightmost crossing but we ignore it since
any one relation is a consequence of the others.

Letting w = a~1b and replacing b with aw we find that
ir1(E3-Ta^) = {a,w : aw = wmaw-mawma-1w-m}.

Substituting k = aw~m and replacing a with kwm leads to the further simplification

w^E3-^) = {w,k;kw2m + 1k = wmk2wm}.

Figure 3 shows a twist knot r2m_i with an odd number of half twists. Again,
letting a, = a and ¿>, = ¿> we find that the crucial relation is

b = b~liabm + l = (a-1b)mb-1(a-1b)-ma(a-1byb(a-1b)-m.

I Figure 3

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971] CUBES WITH KNOTTED HOLES 223

By letting w = a~1b and eliminating a we obtain b = wmb~1w~mbw~1wmbw~m. Sub-
stituting k = bw~m and eliminating b we obtain

7T,(£3-r2m_0 = {w,k : kw2m~^k = wmk2wm}.

In the last section we converted a cube with a figure eight knotted hole into a
homology 3-cell by sewing on a pillbox along an annulus that runs through the
hole n times. If we do the same with C3(T2m) the added relation is

(a-\iaia2- ■ -amb^bm + 1-- -b2a2-2mya = 1

where a = ax, and a and the expression in the parentheses commute. Introducing
w = a~1b to eliminate b we obtain

(wma~1w-m(aw)mW1-ma-1wma2-m)na = 1.

Since aw=wmaw~ma~1w~m, then (aw)m = wmaw'mamwma~1w~m, and we get the
simplification (wma~1w~2m~1a~1wma2)na=l. By letting k = aw~m and using the
commuting relation, we find that

"i(C3(rju?3) = {w, k : kw2m + 1k = wmk2wm, (k2w3m + 1k)n = (kwm)3n + 1}.

For 7r,(C3r2m-i) u -P3), the extra relation is

(a,a2- • -oAMm-i- • ■b2bm+xbr1-2myb = 1.

A simplification after letting w = a_1¿> yields (w"mew2m~1OH>~m¿>~2)'l¿>=l> and the
substitution k=bw~m shows that

*-i(C3(r2m_0 UP3) = {w, k; kw2m~xk = wmk2wm, (k2w3m~lky = (/tw"1)3*-1}.

Theorem 3.1. The twist knots TjJ^O, have Property P.

Proof. In order to establish Theorem 3.1, it is sufficient to show that
tt^C^Tj) u P3) is noñtrivial unless n = 0.

We first consider the case wherey=2m. In this case we are interested in the group
with generators w,k and relations (1) kw2m + 1k = wmk2wm and (2) (Ä:2w3m + 1rc:)"
= (kwm)3n + 1. Now if we adjoin the relations (3) w3m + 1 = l and (4) k3=l, then (1)
becomes (1) (wmk~1)3=l and (2) becomes (2) (kwm)3n + 1 = l. Now since w3m + 1= 1
this group is generated by wm and k and hence is isomorphic with

{a, b : a3m + 1 = b3 = (ab-1)3 = (ab)3n + x = 1}.

In the next section we show that this group is nontrivial if |3n+ 1| >2.
We make a special argument for the case n= — 1. In this case we do not adjoin

the relations w3m + 1 = l=A:3 but instead consider the group generated by w and k
with relations (1) kw2m + 1k = wmk2wm and (2) (k2w3m + 1k)-1 = (kwm)-2, or (2)
kw3m + 1k = wmkwm. We may write out (1) as (wmkwm)w-2m(wmkwm) = kw2m + 1k and
then substitute (2) in (1) arriving at (1) k~1w2mk'1 = wim + 1. Making the substitution
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k = wmx~1 we have (1) xwmxwm = w6m + 1, and (2) wem + 1 = wmxwmx-1wmxwm. Sub-

stituting (1) in (2), we have
(1) wem + 1=(xwm)2and
(2) (xwm)2 = x3, and so our group is {x, w; w6m + 1 = x3 = (xwm)2}.

There is a homomorphism of this group onto {x, w; w6m+1=x3 = (xwm)2 = l} and
since this group is generated by x and wm it is isomorphic with {a, b; a6m + 1 = b3
= (ab)2 = l}. In [2], it is shown that this group is nontrivial, since there is a homo-
morphism of it onto the permutation group generated by a = (l, 2,..., 6m+ 1) and
b = (6m+\,2, 1)(6«j, 4, 3)- ■■(4m + 2,4m,4m-l)(4m+l).

We now turn our attention to the case where j=2m— 1. In this case we are
interested in the group with generators w, k, and relations (1) kw2m~1k = wmk2wm
and (2) (A;V3m-1A:)n = (Â:wm)3't-:1. If we adjoin the relations (3) w3"1-1^ and (4)
k3 = 1 then we have (1) (kw'm)3 = 1 and (2) (kwm)3n~1=l. Now since w3m~1 = 1 this
group is generated by wm and k and is isomorphic with {a, b; a3m~1 = b3 = (ab~1)3
= (ab)3n~1 = )}. In the next section we show that this group is nontrivial unless
3m— 1 =2 or 3«— 1 =2. In case m= 1, the knot under consideration is the trefoil,
which is known to have Property P [2]. We handle the case «=1 by a special
method. We do not add the relations w3m_1 = l=A:3 but consider the group
generated by w and k with relations (1) kw2m~1k = wmk2wm and (2) k2w3m~1k
= (kwm)2 or (2) kw3m-1k = wmkwm. We rewrite (1) as (wmkwm)w-2m(wmkwm)

= kw2m~1k and then substitute (2) in (1) to obtain
(1) Ä:w"2mA; = w1-4m and
(2) kw3m~1k = wmkwm.

We now make the substitution k = xwm and arrive at (1) xw~mxw~m = w1~Bm and
(2) w1~6m = w-mxw-mx'1w-mxw-m. Now substituting (1) in (2) we have (1)
wi~6m = (xw~m)2 and (2) x3 = (xw'm)2. This gives the group {x, w; w1~6m = x3
= (xw~m)2}. Now there is a homomorphism of this group onto {x, w; w1~Bm = x3
= (xw ~ m)2 = 1} which in turn is isomorphic with {a, b ; a6m ~1 = b3 = (ab)2 = 1}. In [2]

it is shown that this group is nontrivial, since there is a homomorphism of it onto
the permutation group generated by

a = (1, 2,..., 6m— 1),
and

b = (6m- 1,2, l)(6m-2,4,3)- ■  (4m+l,4m-l,4m-3)(4m)(4m-2).

This concludes the proof of Theorem 3.1.

4. The nontriviality of certain groups. The groups (/, p\q, r) = {a, b; a' = b"
= (ab)q = (a'1b)r=\} have been studied by Coxeter [8], [9] and others. In par-
ticular, in [9] H. Coxeter establishes finiteness theorems for (3,p\q, r) and shows
that (3,p\3, r) is nontrivial if p, rS3. For completeness we include a proof
of the nontriviality of the groups {a, b : a3 = bp = (ab)3 = (a~1b)r} if p,r^3.
We first notice that this group is isomorphic with {A, B : A3 = B3 = (AB)r = (A~1B)p
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= 1} by sending a to A and ab to B. This group in turn is isomorphic with
{C,D:C3 = D3 = (CD)p = (C-1D)r=l} and hence in {A, B : A3 = B3 = (AB)T
= (A~1By=l} we may assume that r^p'^3.

We now choose a complex number c such that cc = 4 cos2 (n/r) and c + c
= 4cos2 (n/p) — 4 cos2 (n/r) — 1. This choice is always possible if r^p^3. Let A
be the 3x3 matrix

and B be the matrix
0   0

1+c    1
-1    0

c+F
-1

0

1
1

-1

Then

AB
ce— 1

— c

1+c

c   0
-1    0

1    1
and   A~XB =

c + c + cc   c+l    c+1
-1 0      -1

1 0

1-x3,

Now computing characteristic polynomials we have

^(x)= 1-x3,       PB(x)

Pab(x) = l-(cc-l)x + (cc-l)x2-x3 = -(x-l)(x2-2cos(27r//-)x+l),

and

Pa~1b(x) = l-(c + c + cc)x + (c + c + cc)x2-x3 = -(x-l)(x2-2cos(27r//j)x+l).

Now PAB divides xr— 1 and Pa-íb divides xp— 1.
Since a matrix satisfies its characteristic polynomial [6, p. 299], this shows that A

and B satisfy the relations A3 = B3 = (AB)r = (A~1B)p = 1.

5. Other knots. In this section we will show that many other knots have
Property P. First, we need some additional definitions.

Let M be a homotopy 3-sphere and let S be a polyhedral subset of M which is
homeomorphic with S1 xS1. Then it follows from the loop theorem and Dehn's
lemma [17] that there is a disk D such that D n S = Bd D and Bd B is not homo-
topic to 0 on S. The closure of the complementary domain of S containing Int D
is then a homotopy solid torus, that is, homeomorphic with a homotopy 3-cell with
a pair of disks on its boundary identified.

If Kí and K2 are knots in S3, then the sum of Id and K2, denoted K1 + K2 is
described in [10]. For example, the square knot is a composite.
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Suppose that Ai is a 3-manifold, and T is a solid torus in Int M. If we remove
Int 7 from M and then sew back a solid torus 7" so that a meridianal curve of T'
is not isotopic on Bd T with a meridianal curve of T, then we obtain a 3-manifold
M'. In this case we will say that M' is obtained from M by removing T and sewing
it back differently.

Theorem 5.1. If K is a composite knot, then K has Property P.

Theorem 5.1 is only a slight extension of the result by D. Noga [16, Satz 1], that
one cannot recover S3 by removing a solid torus about K and sewing it back differ-
ently. Also Theorem 5.1 is a special case of a more general theorem of Conner [7]
in which he shows that "splittable" knots have Property P.

Before proceeding with the proof of Theorem 5.1, we first prove two lemmas.

Lemma 1. Suppose that T is a homotopy solid torus, and K is a cube with a knotted
hole in the interior of T. Then there is a homotopy 3-cell B in T such that Ä"<= B.

Proof. Let D be a disk in 7 such that DnBd 7=Bd D, and Bd D is not homo-
topic to 0 in Bd 7. Putting D in general position with respect to Bd K we find that
D n Bd K is a finite collection of mutually disjoint simple closed curves. We may
assume that each curve of intersection is not homotopic to 0 on Bd K, for these
may be removed by a simple disk replacement. Let J be an innermost curve of
intersection on D and let H be the subdisk of D bounded by /. It is impossible that
H^K, since A" is a cube with a knotted hole and /„: ^(Bd K) -> n^K) is one-to-
one. By adding a regular neighborhood of H to K we obtain a homotopy 3-cell
which contains K. If there are no curves of intersection then the removal of the
interior of a regular neighborhood of D from 7 results in a homotopy 3-cell which
contains K. This establishes Lemma 1.

Lemma 2. Let Tx be a solid torus and let T2 be a solid torus in the interior of Tx
such that (a) there is a meridianal disk ofTy whose intersection with T2 is a meridianal
disk ofT2, and (b) 72 is not parallel to 7\. See Figure 4. Then the result of removing
T2 from T1 and sewing it back differently is not a homotopy solid torus.

Proof. First, let F be a meridianal disk of T1 which intersects 72 in a meridianal
disk of T2. Let A7 be a regular neighborhood in 7j of F and let K1 be the closure of
7j — (N u 72). Then Ä"a is a cube with a knotted hole since 72 is not parallel to ïî.
Now Kx n Bd Tx is an annulus and we push this annulus slightly to the interior of
7j and continue to call the resulting cube with a knotted hole Kr. Suppose that we
remove 72 from T1 and sew it back differently. Call the resulting manifold T[, and
the replaced 72, 72. Suppose that T[ is a homotopy solid torus. Then there is a
disk D in T[ such that D n Bd7^ = Bd TJandBd D is not homotopic to 0 on Bd T¡.
Now since, by Lemma 1, Kx lies in a homo.topy 3-cell in T[, we may assume that
D n Kx = 0. We now put D and Bd 72 in general position so that D n Bd 72 is a
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finite collection of mutually disjoint simple closed curves. We may assume that
none of these simple closed curves is homotopic to 0 on Bd T2. Since D n Kx= 0,
it follows that each curve of intersection of D n Bd T2 is homotopic to the simple
closed curve J' = F n Bd T2 that was originally meridianal on T2. Let J be an inner-
most curve of intersection on D and let H be the subdisk of D bounded by J. Now
His not contained in T'2 for otherwise T2 would not have been sewn in differently.
But H is not contained in Cl (T[ - T2) since J' is not homotopic to 0 in Cl (T[ - T2).
Consequently there are no curves of intersection. But then Bd D is homotopic to 0
inCl (T[ — T2) smd hence in Bd T[. This contradicts the choice of D. Hence T[ is not
a homotopy solid torus. This establishes Lemma 2.

Proof of Theorem 5.1. Let K= A, + K2 be a composite knot in S3. We will show
that the result of removing a regular neighborhood of A and sewing it back differ-
ently is not a simply connected manifold. It is easy to see that this process is equiv-
alent to attaching a pillbox to a cube with a A-knotted hole in a nonstandard way.
Let S1 by a polyhedrally embedded S1 x S1 which envelopes the knot A, and follows
the knot K2. See Figure 5. Notice that (S3 — interior S) is a cube with a knotted
hole and hence is not a homotopy solid torus.
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Now let A7 be a regular neighborhood of A" in interior S and let M be a 3-manifold
which results from removing N from S3 and sewing it back differently. Now it
follows from Lemma 2 that the torus S in M does not bound a homotopy solid
torus in M. Hence M is not simply connected. This establishes Theorem 5.1.

Figure 5

Theorem 5.2. Suppose that K is a knot in S3 with Property P and that 7 is an
unknotted polyhedral solid torus in S3 which contains K in its interior. Let L be a
simple closed curve on Bd 7 which bounds a disk in S3 — Int 7 but not on Bd 7,
and let h: 7'-» S3 be a piecewise linear homeomorphism such that h(L) is homo-
logous to 0 in S3-Int [«(7)]. Then h(K) has a Property P.

Proof. Let A7 be a regular neighborhood of K in Int 7 and let M be a meridianal
simple closed curve on Bd 7 which is transverse to L.

Suppose that we remove N from 7 and sew it back differently, arriving at the
manifold 7'. Since K has Property P, there are two possibilities. First, 7' may not
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be a homotopy solid torus, or, secondly, T' is a homotopy solid torus whose
meridianal curve ispM+qL where/? and q are relatively prime integers and \p\ ^ 1.

Now, suppose that we remove h(N) from S3 and sew it back differently, obtaining
the manifold M3. If h(T) is unknotted, then h may be extended to a homeo-
morphism of S3 onto S3. Since A has Property P, it follows that in this case M3 is
not simply connected.

If h(T) is knotted and the result of sewing back h(N) in h(T) is not a homotopy
solid torus, then M3 is not simply connected since h(Bd T) does not bound a homo-
topy solid torus in M3.

Finally, suppose that h(T) is knotted and the result of sewing back h(N) in
h(T) is a homotopy solid torus. Then a meridianal curve for this homotopy solid
torus is ph(M)+qh(L), |/>|#1, and it follows that the first homology group of
M3 is either Z or Zp. In any case M3 is not simply connected. This establishes
Theorem 5.2.

Corollary 5.2. Doubled knots [21] with p twists p#0 have Property P.

Proof. This follows directly from the definition of doubled knots, Theorem 3.1
and Theorem 5.2. Actually, it is true that doubled knots with no twists also have
Property P if they are knotted. We will show this in a later paper.

6. Questions.   In this section we raise some questions related to Property P.
(1) In examining the knot table of Alexander and Briggs [1], one finds that the

first two knots which are not known to have Property P are 62 and 63. These knots
are shown in Figures 6 and 7, respectively. Do these knots have Property P?

Figure 6 Figure 7
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If one converts the cube with a knotted hole C3(62) to a homology cube by sewing
on a pillbox P3, along an annulus which runs through the hole |«| times, one
presentation of 7Ti(C3(62) u P3) has generators a, b, c, d, e and / and relations
b = dad'1, c = e~xbe, d=f~xcf, e = ada~1,f=c~1ec, and (b~1c~1af~1e~1da2)ha=l.

If one converts the cube with a knotted hole C3(63) to a homology cube by sewing
on a pillbox P3, along an annulus which runs through the hole |«| times, one
presentation of tt1(C3(63) u P3) has generators a, b, c, d, e and /, and relations
b=faf'1, c = e~1be, d=b~1cb, e = ada'1,f=c1ec, and (f~1eba~1cd~1)na=l.

(2) Do knots whose groups have finitely generated commutator subgroups [15]
have Property P?

(3) Do pretzel knots [21] have Property P?
(4) If the Poincaré conjecture is false, can a homotopy 3-cell which is not a

topological 3-cell be obtained by attaching a pillbox to a cube with a knotted hole?
(5) If k1 and k2 are polygonal knots in E3 with homeomorphic complements, is

there a homeomorphism of E3 onto itself which carries k1 onto k2l
(6) In showing that the figure eight knot (and other twist knots) have Property P,

we used the fact that certain matrix groups are nontrivial. In dealing with the trefoil
(and other torus knots), finite permutation groups sufficed for the same purpose.
Is there a collection of nontrivial finite permutation groups such that for each
positive integer «, each of the groups

{w, k : kw3k = wk2w, (kw'k2)» = (wk)3n±1}

maps homomorphically onto one of them? In Case 1 of the proof of Theorem 2.1,
we noted that, if 3« ±1=2, the group maps onto the permutation group generated
by (1, 2, 3, 4, 5, 6, 7) and (7, 2, 1)(6, 4, 3)(5). Such permutation groups can also be
found if 3« + 1 is divisible by 4, 5 or 7.

(7) Is there a geometric proof that the trefoil knot has Property P? Such
an argument might provide a clue for showing that all nontrivial knots have
Property P.
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