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ABSTRACT: 

Seagrasses are one of the most productive and widespread yet threatened coastal ecosystems on Earth. Despite their importance, 

they are declining due to various threats, which are mainly anthropogenic. Lack of data on their distribution hinders any effort to 

rectify this decline through effective detection, mapping and monitoring. Remote sensing can mitigate this data gap by allowing 

retrospective quantitative assessment of seagrass beds over large and remote areas. In this paper, we evaluate the quantitative 

application of Planet high resolution imagery for the detection of seagrasses in the Thermaikos Gulf, NW Aegean Sea, Greece. The 

low Signal-to-noise Ratio (SNR), which characterizes spectral bands at shorter wavelengths, prompts the application of the 

Unmixing-based denoising (UBD) as a pre-processing step for seagrass detection. A total of 15 spectral-temporal patterns is 

extracted from a Planet image time series to restore the corrupted blue and green band in the processed Planet image. Subsequently, 

we implement Lyzenga’s empirical water column correction and Support Vector Machines (SVM) to evaluate quantitative benefits 

of denoising. Denoising aids detection of Posidonia oceanica seagrass species by increasing its producer and user accuracy by 

31.7% and 10.4%, correspondingly, with a respective increase in its Kappa value from 0.3 to 0.48. In the near future, our objective 

is to improve accuracies in seagrass detection by applying more sophisticated, analytical water column correction algorithms to 

Planet imagery, developing time- and cost-effective monitoring of seagrass distribution that will enable in turn the effective 

management and conservation of these highly valuable and productive ecosystems. 

* Corresponding author

1. INTRODUCTION

Seagrasses are one of the most productive and widespread yet 

threatened coastal ecosystems on the planet. They are marine 

flowering plants that form extensive, submerged meadows at 

less than 50m of depth as they rely on light to grow through 

photosynthesis. Seagrass ecosystems provide a plethora of 

ecosystem services of high economic value (Costanza et al., 

1997)  including sequestration of carbon (Fourqurean et al., 

2012), nursery grounds for marine species (Boström and 

Bonsdorff, 1997), buffering from coastal erosion (Ward et al., 

1984) and amelioration of seawater pollution (Lamb et al., 

2017). Despite their importance, these valuable habitats face a 

decline of their extent due to various threats, which are mainly 

anthropogenic (Telesca et al., 2015). Lack of data on their 

distribution hinders any effort to rectify this decline through 

effective detection, mapping and monitoring. 

Remote sensing can mitigate this data gap by allowing 

retrospective quantitative assessment of seagrass beds over 

large areas and in remote locations in a time- and cost-effective 

fashion. Recent advances in remote sensing technology are 

expected to increase the spatial, temporal and spectral 

resolution of Earth observation. Part of this increasing trend in 

the development of spaceborne sensors is CubeSats (National 

Academies of Sciences, Engineering and Medicine, 2016). 

CubeSats are small satellites whose size is expressed in 

increments of 10 cm cubes, such that 1 cube is 1U or “unit”, 2 

cubes are 2U (two 10 cm cubes together) etc. Earth observation 

scientists have barely assessed the potential of these shoebox-

sized satellites in terms of lower-cost, but faster science return 

(National Academies of Sciences, Engineering and Medicine, 

2016). Having launched 88 CubeSats on 14.02.2017 (the so-

called ‘Doves’), Planet has reached an unprecedented 

milestone of operating approximately 120 satellites in parallel 

in low Earth orbit. Planet’s satellite constellation of CubeSats 

3U will allow daily imaging revisit of the entire Earth once it 

enters normal imaging operation. 

Here we evaluate the quantitative application of Planet high 

spatial resolution imagery (Planet Team, 2017) for the 

detection of seagrass and coastal habitats more broadly. The 

application is evaluated in Thermaikos Gulf, NW Aegean Sea, 

Greece (Eastern Mediterranean Sea). The eastern shelf waters 

of the gulf offer an ideal natural laboratory for the application 

of coastal remote sensing approaches due to the low cloud 

cover, high water transparency, gentle depth slope, and 

presence of seagrass meadows of sparse to extensive coverage. 

2. DATA AND METHODS

1.1 Field data 

In this study, we employ field data that we collected during a 

boat-, snorkelling- and free-diving-based survey in between 10 

– 13.07.2016. The temporal difference of four months between
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the field survey and satellite data acquisition, as noted in 1.2, is 

acceptable due to the nature of Mediterranean seagrass 

meadows which undergo changes in greater time scales. Field 

data consist of points related to specific habitat and coordinates. 

Four different substrates were observed: a) Posidonia oceanica 

seagrass, b) Cymodocea nodosa seagrass, c) Sand, d) Algae and 

Rocks.  

 

1.2 Satellite data 

 

The satellite data used in our study are acquired by Planet’s 

PlanetScope (PS) Earth-Imaging multispectral CubeSat 

constellation (Planet Team, 2017). Here, we process the Ortho 

Scene products which are one of the three product lines for 

PlanetScope imagery1. PS Ortho Scenes are orthorectified, 

scaled Top of Atmosphere Radiance image products (Level 3B) 

and are delivered as analytical (4-band) and visual (RGB) 

products. PS CubeSats captures imagery at a ground sampling 

distance of 3.7 m at a reference altitude of 475 km and the 

imagery is then orthorectified to a pixel size of 3 m. The 

analytical Ortho Scene imagery used in processing and analysis 

steps herein was acquired on 17/11/2016 and information about 

its specific attributes is shown in Table 1. The signal-to-noise 

ratio (SNR) of the selected image is 68.8. 

 

1.3 Unmixing-based Denoising 

 

A schematic workflow of our adapted methodology is presented 

in Fig. 1. The low Signal-to-noise Ratio of (SNR) of the 

selected PS image prompts the application of the Unmixing-

based denoising (UBD) as a Pre-processing step. UBD has been 

recently proposed to selectively retrieve spectral bands 

characterised by a low SNR by exploiting their correlation with 

non-corrupted pixels across the whole spectral dimension in 

hyperspectral images (Cerra et al., 2014). Spectral unmixing is 

the process which decomposes a hyperspectral image element 

into a linear combination of signals representing the 

backscattered solar radiation in each spectral band. Considering 

the physical properties of a mixed spectrum, UBD assumes the 

residual vector derived from the unmixing process to be mostly 

composed of noise and more relevant in spectral bands where 

atmospheric absorption effects are stronger, and therefore 

ignored in the reconstruction. In spite of adopting a linear 

unmixing model, which in theory does not adapt well to water, 

UBD achieved satisfactory results when applied to spectral 

bands in the blue range for scenes acquired over coastal waters 

in previous works (Cerra et al., 2013). Recently, it has been 

successfully applied to multitemporal stacks of multispectral 

images (Cerra et al., 2016a, 2016b).  

 

Here, a total of 15 spectral-temporal patterns is extracted from a 

multitemporal Planet image time series, selected among the 

purest image elements in the stack. In addition to the PS image 

of the 17/11/2016, two other PS images from 30/09/2016 and 

03/12/2016 with SNRs of 90.1 and 71.8, respectively, comprise 

this multispectral image time series. Subsequently, UBD is 

applied to restore the corrupted blue and green band in the 

PlanetScope image of the 17/11/2016. 

 

 

 

                                                                 
1https://www.planet.com/products/satellite-

imagery/files/Planet_Imagery_Product_Specs.pdf. 

 

1.4 Empirical water column correction 

 

To display the quantitative benefits of UBD on the Planet high 

spatial resolution image, we implement Lyzenga’s empirical 

water column correction (Lyzenga, 1981, 1978)  on the initial 

‘noisy’ and denoised (restored) blue and green bands. These 

bands are selected on the basis of their great water penetration 

in contrast with the red and NIR bands. The two main 

assumptions behind Lyzenga’s algorithm are that: a) radiance 

differences between pixels of the same bottom are due to 

different depth and b) water column attenuation coefficient is 

constant for each band. We select sandy bottoms in the use of 

the empirical water column correction as they are the easiest to 

identify and cover large areas over different depths. The 

empirical algorithm derives one depth-invariant bottom index 

before and one after the denoising. These indices are not bottom 

reflectances, but rather represent a relation between radiances in 

the blue and green spectrum without a depth effect. 

 

We choose Lyzenga’s empirical algorithm due to its practicality 

(it does not require field or bathymetry data) and efficiency in 

improving mapping accuracies in waters that feature horizontal 

and vertical homogeneity of their optical properties of up to 15 

m which are the case in the Thermaikos survey site. 

Furthermore, this survey site features same substrates (sand and 

seagrass) over a wide depth range (0 – 16 m), inducing the 

implementation of Lyzenga’s algorithm. 

 

1.5 Support Vector Machines 

 

The Support Vector Machines (SVM) comprise a group of 

theoretically superior, supervised classifiers based on the 

statistical learning theory of Vapnik (1995). These essentially 

machine learning algorithms solve classification problems by 

fitting an optimal hyperplane, which comprises the decision 

boundary, to the training samples. The samples that fall 

closer to this hyperplane are the so-called support vectors which 

 

Product Attribute Description 

Instrument PS2 (2nd generation) 

Acquisition date 17/11/2016 

Acquisition time 9:27:08 AM GMT+1 

Pixel Size 3 m 

Spectral bands Blue: 455 - 515 nm 

Green: 500 - 590 nm 

Red: 590 – 670 nm 

NIR: 780 – 860 nm 

Pixel depth Analytic (DN): 12-bit 

Analytic (Radiance): 16-bit 

Orbit altitude 475 km 

 

Table 1. PlanetScope Analytic Ortho Scene Product Attributes. 
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Figure 1. Workflow of the herein processed methodology. The 

Planet Image Time Series consists of three different 

PlanetScope Analytic Ortho Scenes. Lyzenga’s empirical water 

column correction is adapted from Lyzenga (1978, 1981).  

 

 

are the only data used by SVM in the classification step. We 

apply SVM utilising the universal Gaussian radial basis 

function kernel (RBF): 

 

                             K (x, xi) = exp (-g|x - xi|
2)                                (1) 

 

where g is the parameter that defines the width of the RBF. In 

addition, we set a regularisation parameter, C which controls 

the degree of acceptable misclassification through limiting the 

influence of individual training samples. Furthermore, we select 

a Cross validation parameter which monitors the accuracy of 

results during the grid search for the selection of the best pair of 

values for g and C. Specific model parameters to run both SVM 

experiments are shown in Table 2. The RBF kernel is employed 

on the acquired field data to classify both depth-invariant 

indices before and after the application of UBD. The SVM 

experiments are run using the open-source LIBSVM library 

(Chang and Lin, 2013).  

 

The quantitative evaluation of the potential benefits of UBD on 

Planet data for detection of Mediterranean seagrasses and other 

shallow submerged habitats is performed through the accuracy 

assessment of the SVM-derived results. The accuracy 

assessment employs field data from Thermaikos survey site 

using the error matrix and Kappa value (Congalton, 1991). 

 

 

3. RESULTS 

Our experimental results are displayed in methodological 

succession in Fig. 2 and 3. Visual inspection of Fig. 2A and 2B, 

which show the initial ‘noisy’ blue and green bands of 

PlanetScope image over our test site, reveals several artefacts, 

generated and enhanced in the acquisition and pre-processing of 

the acquired images. While we have not been able to determine 

to which extent these artefacts are introduced for each 

processing step, they appear to be significantly decreased 

following application of the Unmixing-based denoising (Fig.  

3A, 3B). The depth-invariant index of ‘noisy’ blue and green 

bands (Fig. 2C) indicates that Lyzenga’s empirical water 

 

 

 

Table 2. Model parameters used to run Support Vector 

Machines utilising the universal Gaussian radial basis function 

kernel (RBF) for both experiments; before and after the 

application of Unmixing-based Denoising (UBD). Min and Max 

report the minimum and maximum values which define the grid 

range (g and C dimension). A multiplier of 10 is set for grid 

range for both experiments. 

 

 

column correction fails to eliminate the effect of water column 

attenuation on bottom reflectances. In contrast, applying 

Lyzenga’s algorithm on the denoised depth-invariant index 

(Fig. 3C) yields a seemingly more realistic representation of the 

bottom. The SVM-derived classification results comprise 

submerged habitat distribution maps of our survey site in the 

Thermaikos Gulf (Fig. 2D, 3D). Accuracy assessment (Table 3, 

4) of the classifications of the resulting ‘noisy’ and denoised 

depth-invariant indices following application of UBD and 

empirical water column correction reflects the visual 

inspections. The denoised depth-invariant index of blue and 

green Planet reflectances improves overall accuracy and Kappa 

value from 53.2% and 0.26 to 68.1% and 0.5, respectively. 

Denoising aids detection of Posidonia oceanica seagrass 

species by increasing its producer and user accuracy by 31.7% 

and 10.4%, correspondingly, with a respective increase in its 

Kappa value from 0.3 to 0.48. On the other hand, both 

classified depth-invariant indices, before and after denoising, 

fail to detect Cymodocea nodosa seagrass species. Moreover, 

the error matrix indicates that P. oceanica seagrass class is 

mainly confused with sand class. Generally, denoising unveils 

fine, smaller patches of sand within the homogeneous P. 

oceanica meadows, an essential feature of the high spatial 

resolution Planet imagery towards finer scale seagrass detection. 

Both classification results lack clear delineation of the seaward 

limit of P. oceanica seagrass. 

 

 

4. DISCUSSION AND CONCLUSIONS 

Using high spatial resolution CubeSat-derived Planet imagery, 

we detect Posidonia oceanica, the dominant Mediterranean 

seagrass species, with acceptable accuracies following 

application of UBD, empirical water column correction and 

SVM. On one hand, we expect Planet’s high spatio-temporal 

resolution imagery to cover gaps in finer scale seagrass 

detection of temporal cover of remote sensing data provided by 

Model 

parameters  

Before UBD After UBD 

Support vectors 43 31 

RBF width, g 100 1000 

Regularisation 

parameter, C 

0.01 10 

Min (g), Max (g) 0.01 1000 

Min (C), Max (C)  0.01 1000 

Cross validation  3 3 

Termination 

criterion for grid 

search 

0.1 0.001 

Termination 

criterion for final 

training 

0.1 0.001 
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Figure 2. Experimental steps without the application of 

Unmixing-based denoising. A and B display the initial, ‘noisy’ 

blue and green Planet reflectance, respectively. C is the depth-

invariant index (Lyzenga’s empirical water column correction) 

of A and B before applying the Unmixing-based denoising 

(UBD). D shows Support Vector Machine classification result 

of C. All rasters are draped over a PlanetScope analytic Ortho 

RGB Scene of 17/11/2016 over our test site in Thermaikos 

Gulf, NW Aegean Sea, Greece, projected in UTM (zone 34) 

system/WGS84. 

 

 

 

Table 3. Error matrix of Fig. 2D before the application of UBD 

on Planet imagery. CN: Cymodocea nodosa seagrass, PO: 

Posidonia oceanica seagrass, A/R: Algae and Rocks, S: Sand  

 

bigger multispectral satellites like Sentinel-2 and Landsat-8. On 

the other hand, remote sensing of coastal ecosystems like 

           

 
 

Figure 3. Experimental steps with the application of Unmixing-

based denoising. A and B display the denoised blue and green 

Planet reflectance following the UBD application on the A and 

B of Fig. 2., respectively. Differences in overall brightness from 

A and B of Fig. 3 are due to their different histogram stretch. C 

is the depth-invariant index of A and B after the UBD 

application. D shows Support Vector Machine classification 

result of C. All rasters are draped over a PlanetScope analytic 

Ortho RGB Scene of 17/11/2016 over our test site in 

Thermaikos Gulf, NW Aegean Sea, Greece, projected in UTM 

(zone 34) system/WGS84. 

 

 

Table 4. Error matrix of Fig. 3D after the application of UBD 

on Planet imagery. CN: Cymodocea nodosa seagrass, PO: 

Posidonia oceanica seagrass, A/R: Algae and Rocks, S: Sand  

 

seagrasses requires sensors with higher SNR than the ones 

applied in terrestrial ecosystems. Planet’s low SNR for 

 

Before UBD 

Class CN PO A/R S Total User 

accuracy 

CN 0 0 0 0 0 0 

PO 3 26 0 14 43 60.5 

A/R 0 1 6 1 8 75 

S 6 14 5 18 43 41.9 

Total 9 41 11 33 94  

Producer 

accuracy 

0 63.4 54.6 54.6   

Kappa 

value 

0 0.3 0.72 0.1   

Overall accuracy: 53.2; Kappa value: 0.26 

After UBD 

Class CN PO A/R S Total User 

accuracy 

CN 0 0 0 0 0 0 

PO 2 39 2 12 55 70.9 

A/R 3 1 7 3 14 50 

S 4 1 2 18 25 72 

Total 9 41 11 33 94  

Producer 

accuracy 

0 95.1 60.1 81.1   

Kappa 

value 

0 0.48 0.43 0.57   

Overall accuracy: 68.1; Kappa value: 0.5 
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pixel-based coastal and aquatic, generally, applications may 

bring degradations in the image quality. In our study, these are 

shown to hinder the production of informative habitat maps 

following Lyzenga’s empirical water column correction. We 

attribute this problem to the selection of pixels that represent 

sandy bottoms in different depths but suffer from notable 

degradations. 

As we show here, the low SNR drawback can be balanced, first, 

by the application of UBD which significantly improves 

seagrass detection amongst other submerged habitats including 

sand and algae/rocks. A second solution for the SNR deficit for 

water applications can be possibly provided by applying data 

fusion between Planet high spatio-temporal resolution images 

and Sentinel-2 and/or Landsat-8 lower spatial, but higher 

spectral resolution. A third and last, possible solution for the 

noise issue can be provided through the use of Object-based 

Image Analysis (OBIA) which in contrast to pixel-based 

approaches, first analyse image scenes to relatively 

homogeneous areas by decomposition and then produce object-

based instead of pixel-based classifications (Blaschke, 2010). In 

contrast to its increasing popularity and efficiency to terrestrial 

approaches, however, applications of OBIA to coastal areas are 

scarce. 

In the near future, our objective is to improve accuracies in 

seagrass detection by applying more sophisticated, analytical 

water column correction algorithms to Planet imagery, 

developing time- and cost-effective mapping and monitoring of 

seagrass distribution. Effective exploitation of this new kind of 

high spatio-temporal resolution multispectral dataset can meet 

the scale and aim of the majority of future seagrass mapping and 

monitoring projects, from a small meadow to a whole coastline, 

allowing for improved management and conservation of these 

significant coastal ecosystems. 
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