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Cubic couplings in D=6, N'=4b supergravity on AdS;XS®
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We determine the AdS exchange diagrams needed for the computation of 4-point functions of chiral primary
operators in the SCETdual to theD =6, A’'=4b supergravity on the Ad§ S* background and compute the
corresponding cubic couplings. We also address the issue of consistent truncation.
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I. INTRODUCTION AND SUMMARY In this paper we study the Ad8S® compactification of
the D=6, N=4b supergravity coupled ta tensor multip-

éets. In particular, the case=21 corresponds to the theory

The AdS—conformal field theory correspondence provide . ; ) : .
information about the strong coupling behavior of some con—Obt"’“m—:‘d by dimensional reduction of type IIB supergravity

. : : : : K3. Our final aim will be to find the 4-point correlation
formal field theories by studying their supergravistring on 1. ; . )
duals[1-4]. In particular, the AdS-CFT duality relates type functions of the scalar CPOs in the supergravity approxima-

lIB string theory on Ad§xS*xM*, where M is eitherK3 tion. This program was successfully performed for We
or T4 to a certain N'=(4,4) supersymmetric two- =4 four-dlmen3|ona5I super Ygrjg-Mllls theory which is re-
dimensional conformal field theoryCFT) living on the Iated_ to the AdSXS compact|f|ca}t|on of type IIB super-
boundary of AdS. A two-dimensional sigma model with the gravity and led to an un.der'.standln_g of the structure of the
target space being a deformation of the orbifold symmetri@Perator product expansion in the field theory at strong cou-
productSV (M%) =(M4N/S,, N—c, is believed to provide pIm_g [9,13-14. As a fwst_neces_sary step in this dlre_ctlon we
an effective description of this CFHB]. derive the effective gravity action on Ad&hat contains all

An important class of operators in the supersymmetriccubic couplings involving at least two gravity fields corre-
CFT are the chiral primary operatof€PO3 since they are sponding to CPOs in the boundary CFT.
annihilated by 1/2 of the supercharges and in two dimensions Since the supergravity we consider is a chiral theory it
their highest weight components of tliesymmetry group suffers from the absence of a simple Lagrangian formulation.
form a ring. On the gravity side the CPOs correspond tdn principle, one may approach the problem of computing
Kaluza-Klein(KK) modes of the type IIB supergravity com- correlation functions by using the Pasti-Sorokin-Tonin for-
pactification. Recently, using the orbifold technique devel-mulation of the six-dimensional supergravity action, where
oped in[6] the three-point functions of scalar CPOs werethe manifest Lorentz covariance is achieved by introducing
computed 7] in the CFT on the symmetric produst(M*)  an auxiliary scalar fielé[17]. However, to obtain the action
and, on the other hand, in Ad8S® supergravity[8], and  for physical fields one needs to fix the gauge symmetries, in
were found to disagreeOn the other hand, computations of particular the additional symmetry associated with the field
quantities that are stable under deformations of the orbifoldy This breaks the manifest Lorentz covariance and makes
CFT, like the spectrum of the CPOs and the elliptic genusihe problem of solving the noncovariant constraints imposed
were found to be in complete agreemgti]. Obviously this  p, 4auge fixing unfeasible. Thus, we prefer to start with the
supports the expectation that the AdS® background MaY  covariant equations of motion of chiral six-dimensional su-
correspond to some deformation of the target si&lt@1°) pergravity [18] and obtain the quadratic, cubic and so on
of the boundary CFT. However, even though one presentl orrections to the equations of motion for physical fields by

does not have an explicit sigma model formulation of thedecomposing the original equations near the AdS® back-
boundary CFT(see alsd11] for recent developmentsone ground and partially fixing the gaudeiffieomorphisr sym-

may proceed to study the CFT by using directly the gravity

dual description and the AdS-CFT corresponderics. metries. The' equgtlon_s obtalned n this way are in general
non-Lagrangian with higher derivative terms and we perform

the nonlinear field redefinitions to remove higher derivative
*On leave of absence from Steklov Mathematical Institute,terms[ls] and bring the equatlsons to thg .Lag-ranglan form.
Gubkin str.8, GSP-1, 117966 Moscow, Russia. Email address: The spectrum of the AdX S° compactification of thed

agleb@aei-potsdam.mpg.de =6, N=_ 4b supergra\_/ity_ coupled ta tensor multiplets was
TEmail address: apankie@aei-potsdam.mpg.de found in [19] and it is governed bY_ the supergroup
*Email address: theisen@aei-potsdam.mpg.de SU(1,1§2), xSU(1,12)g. Since we are interested in the

1Computing the 2- and 3-point functions of CPOs in the super-duadratic and ultimately in cubic corrections to the equations
gravity approximation by using the prescriptii8], which is known  Of motion for the gravity fields we reconsider the derivation
to be compatible with the Ward identiti¢§], one finds a result Of the linearized equations of motion and recover the spec-
different from[8]. This however does not remove the disagreementrum of [19]. According to[19] the scalar CPOs are divided
between CFT and gravity calculations. into two classes. The first class contains CROthat are
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singlets with respect to the internal symmetry gr&@(n).>  from the AdSXS® compactification, where the lowest
The corresponding gravity fields are mixtures of the trace ofveight CPOs occur in the stress tensor multiplet, which on
the graviton on $and the sphere components of the self-the gravity side corresponds to the massless graviton multip-
dual form. The second class comprise the CROs¢rans- let, allowing a consistent truncatidd5]. In the AdS case
forming in the fundamental representation®®(n) and the the gauge degrees of freedom encoded in the graviton mul-
corresponding gravity fields are mixturesfrom 5n sca- tiplet give rise to theV=(4,4) superconformal algebra of the
lars describing the coset spa8€X(5,n)/SO(5)x SO(n) and  boundary CFT[22].
the sphere components of theantiself-dual forms.

We find that the fields appearing in the exchange dia- Il. THE CUBIC EFFECTIVE ACTION IN AdS 3
grams involving at least two CPOs include in addition to the

CPOs themselves, also other scalars or vectors, either in ttgﬁ drati " o th ant i ¢
singlet or in the vector representation (n), and sym- € guadratic corrections to the covarnant equations ot-mo-
tion for D=6, N=4b supergravity coupled ta tensor mul-

metric 2nd rank(massive tensor fields. We determine the . N .
corresponding cubic couplings. By using the factorizationtlplets [18]. Al tlhe bosonic fields—the graviton, the two-

property of the Maxwell operator in odd dimensions we di- M potentialsBy,y, 1=1,...,5+n and the scalar sector—
agonalize the equations for the vector fields which originateprov'de relevant contnbyuons to _the guadratic corrections.
from components of the second order Einstein equation andin® Scalar sector constitutes a sigma model over the coset
the first order self-duality equation. This diagonalization isSPace SO(5,n)/SA(5)xXSO(n) with vielbein (V;,V)), i
helpful to identify the vector fields propagating in the AdS =1, ...,5,r=1,...n which is parametrized byrbscalar
exchange diagrams. fields. The index transforms under globa&O(5,n) trans-
The cubic couplings exhibit the same vanishing propertformations and is raised and lowered with B€(5,n) in-
in the extremal casée.g., for three scalar fields,, wherek ~ Vvariant metric »=diag(lsxs,~1nxn), Whereas the indices
denotes a Kaluza-Klein mode, the extremality condition is(i,r) transform under local composi®O(5) < SQ(n) trans-
k,+k,=ks and permutations thereadds the cubic couplings formations. We use the following indicelst, N for D=6, u,
found in the compactification of type IIB supergravity on » for AdS; anda,b for S* coordinates.

Cubic couplings of chiral primaries may be derived from

AdS;xS° [13]. Defining
In addition to the cubic couplings involving CPOs we also Qi vapis
compute certain cubic couplings of vector fields, which al- dVV—lz( _ ) 2.1)
H : rj rs | .
lows us to check the consistency of the KK truncation of the V2P Q

three-dimensional action to the massless graviton multiplet. ) o )

Recall that the bosonic part of this multiplet contains thethe covariant derlvatl_ve in the scalar sector is found by the
graviton and theSU(2), X SU(2)x gauge fields, all of them Cartan-Maurer equation to be

carrying nonpropagatingtopologica) degrees of freedom. D, P =V,,PIr — Qll Pl — pis Qsr 2.2
Since the other multiplets contain the propagating modes, the MENT TMENS MTN - TMN :
graviton multiplet should admit a consistent truncation and,,q the equations of motion for the bosonic sectobef6,
we show that this is indeed the case. The truncated aCtiOﬂ/: 4b supergravity are

coincides with the topological Chern-Simons action con-

structed in[20]. We also consider the problem of the KK Rov=H — H L H _ HIPQLopirpir 23
truncation to the sum of two multiplets, one of them the MNT T IMPQTIN MPQTN uPn. (23
massless graviton multiplet, whereas the second involves the Vv

fields corresponding to the lowest weight CPOs. Surpris- DMP'hﬂ,ng',\,lPQHrMP, (2.9

ingly, we have found indications that the sum of the massless
graviton multiplet and the special spin-1/2 multiplet contain-

ing the lowest mode scalar CPOs may admit a consistent
truncation? This situation is reminiscent of, but is different \yhere

*H'=H', *H'=—H", (2.5

H'=G'V,, H'=G'V| and G'=dB'. (2.6)

To ensure the wider applicability of our results we keepn-
specified. Exceph=21 another case of interest is=5. Dimen-
sional reduction of type 1IB supergravity off produces the non-
chiral D=6, N'=8 theory, for which the equations of motion for 1
the metric, the scalar fields and the two-forms are the same as for dszz—z(dngr nijdxidxj) +dQ2, (2.7
D=6, N=4b with n=5. Xo

3Certainly the situation where the consistent KK truncation to the . . . . . .
sum of the graviton and a certain lowest multiplet may exist is notvhere 7;; is the 2-dimensional Minkowski metric. One of
limited to the example we consider. Recently strong indicationdhe self-dual field strengths is singled out and set equal to the
were found[21] that N'=3 M-theory compactifications on AdS Levi-Cevita tensor, while all others vanish:
x X7 can be consistently truncated to the sum of the graviton and a i 5 i 5 ;
long gravitino multiplet(a shadow of the graviton multiplet H;va: o Euvps abc= 0 €abe: mnp=0. (2.8

In units where the radius of 3Sis set to unity, the
AdS;x S® background solution is
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Heree,,, ande,pc are the volume forms on Adsand S,  where we have represented
respectively, so that ,, e,y is the volume form in six di-
mensions. The&sO(5,n) background vielbein is taken to be

1
— 5 KhC ab —
constant and by a glob&Q(5,n) rotation it can be set to hap=Nan)+ 3 GapNc, 9" Nian) =0; 214

unl% construct the Lagrangian equations of motion we rep- The various spherical harmonics transform in the follow-
resent the fields as ing irreducible representations ofSO(4)=SU(2),
IMN=IunT Nun,s 2.9 *SU2)r:
G'=€'+g', g'=db, (2.10 Scalar spherical harmonic¥':  (k/2k/2), k=0,
and Vector spherical harmonic¥,=Y."+ Y.
+ o)+ %¢”¢”5f , (213 Gk+1),5(k—1)@(k—1),5(k+1)), k=1,

T
:5{+¢"5'|+§¢”¢'55\|S- (2.12) Tensor spherical harmonlc‘s{(ab) Y(ab)+Y(ab)

The gauge symmetry of the equations of motion allows (3(k+2),3(k—=2)) (3(k—2),1/2(k+2)), k=2.

one to impose the de Donder—Lorentz gafige: ) o ) ) )
The upper index enumerates a basis in a given irreducible

Vah,2= V2 a5 = Vb}y,=0. (2.13  representation of SO(4):1,=1, (I<+1)2 k=0; I,

Here and below the subscri(#b) denotes symmetrization of _ 1, '_’(k+ 1)?-1, k>1 '5_ L k+1)°-4, k=2.
indicesa and b with the trace removed. The action of the Laplacian 3

This gauge choice does not fix all the gauge symmetry of
the theory, for a detailed discussion of the residual symme-
try, cf. [19]. The gauge conditiorf2.13 implies that the plat Iy ayla®
phys3ica|§fluctuations are decomposed in spherical harmonics VY =(1-4)Y, VA =0,
onS° a

V2Yli=—AY',

VAV = (2= MY VAV, =0, TV =0,

| (ab) (ab)’ (ab) (ab)
hu(6y)=20 hL)Y'x(y), (2.19
| | whereA=Kk(k+2). The vector spherical harmonilt’%?i are
ha(x,y)=> h2m ()Y (y), also eigenfunctions of the operatorY)S=¢,"°V,,:
cvlz® I3+
hioay) =3 w100 Y'(y), (-V)aYeh ==k Y™ (210

We also need to make a number of field redefinitions, the
simplest ones, required to diagonalize the linearized equa-

|
Nian)(X,y) = 2 e=" (X)Y )(y) tions of motion, are

blM (X,y):z SMVPXIPII(X)Yll(y), Fr:2kS|r+2(k+2)tr, U|r=S|r—t|r, (2.17)
m=—6ko+6(k+2)7, UP=0+7,
bhp(X,Y) =2 £apU"1(X)VEY'1(y), (2.18
h 14 = 14 +V VV + 14 1) (2'19)
bla(x.y) =2 ZL2 (Y25 (y), ot = Bt EX UV G
4
_ _ §|=m(ﬂ—m). (2.20
P (xy)=2 M) Y'1(y),
— =g k=1 = (k+2)(k+3)7),

“From now on all the covariant derivatives are understood to be in (2.21
the background geometry.

5 1
Here and in what follows we use normalized spherlcal harmon- + + + 5+ + +
ics, i.e., [Y'1YIi= 5%, [GROYIITYET = 5%, [RagPiv e, Vis, =2 (Cum A, Zur =27 (Cut A
— 5|5J5 (222
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Heres| and o, are scalar chiral primarigd9]. Note also
that we use an off-shell shift fan,, that first appeared in
[24]. It differs from the on-shell shift used i19] by higher
order terms.

A. Cubic couplings of chiral primaries

PHYSICAL REVIEW D63 044024

and cubic couplings involving at least two chiral primaries,
which contribute to the AdS exchange diagrams. Here we
confine ourselves to the problem of determining the corre-
sponding cubic couplings.

Obviously, fields likeg', i=1, ... ,4that transform as
vectors under th&&O(4) R-symmetry cannot contribute to
these couplings. Therefore, we can set all these fields to zero

To compute four-point functions involving only chiral and, to simplify the notation, we denote, e.¢> as¢', etc.
primary operators in the boundary conformal field theory one Then the action for the chiral primarie$ and o may be
needs the quartic couplings giving rise to contact diagramsvritten in the form

N + + +
S(s',0) = WJ d3x\/_gAdss(ﬁz(Sr)+£2(tr)+£2(0')+£2(7)+£2(Qi)+£2(25[)+£2(A; .C.)

+ Lo )+ L3(0)+ L3(7)+ L3(0 ) + LE(0) + LI(7)+ L3(0 )+ L () + LA ,CE)
+LYAL CEV+ LT (Z05) + L3(0,0) + L(0,)). (2.23

The quadratic terms for the various scalar fields are

Lo(s)=>, 16k(k+1)

1 1
— 5 VusiViSi - —mﬁ(S{)z) ,

2
(2.24
Ly(o)=2 16k(k—1 e T
2(0-) - ( ) 2 ,u.0-| g 2 m()’( Ul) ’
(2.25
1
Lo(t) =2, 16(k+1)(k+2) A
1
—sz(tbz), (2.26
1
Lo(7)= 2, 16(k+2)(k+3) =5 VumVin
—%miw.ﬂ), (2:27
+ 1 * * 1 20 ,+\2
Ly(e%) =2 | = zVuei V¥er - zmser)
(2.28
with masses
mi=m2=k(k—2), m{=mZ=(k+2)(k+4), mj=A.
(2.29

The quadratic Lagrangians for the vector fields can be writ-

ten as

Ly(Z)7)=2 16(k+1)

1 . 1 +or
X :stzﬁavz;,—+ Zmzz;,;z,'—ﬂ (2.30

|
for the fieldsz),~ with massm,=k+1 and
Lo(A, ,C)=Lo(A;)+Lo(C,)+ LFOTA, ,C;) (23D
for the fieldsA; andC;, , where
+ 1 + =
Lo(A) =2 | = gFun(ADFI(AT)
1 + + _l v + +
- Z(k+ 1)(k— 1)A;,Ar"+§s“ PALIOA,
_

k 4+ 4+ +
Epkl(A)fLAm)’ (2.32

1
£,(C;)=3 (—gF,w.m*)F.“”(cw

1 + + 1 v + +
— 7 (Kt D (k+3)CC 25 8#C10,C

1 +
Ii(k+2)Pf+3(Ci)f’“C;|), (2.33

+ + 1 + v +
LYAL C= (ZFW(A)F{‘ (C*)

1 L1
— 5 (k=1)(k+3)ALCIHF 5

X (k+ 1)8MVP(A;| aycpi, + le aVA,f,) )

(2.39

Here F,,(V)=4d,V,—d,V, and we have introduced
the first order operators
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(P;)i‘LEgMV}‘V]}i m5Z:(*V)Zi maz. (2.35  the discussion in19]. The ori.ginall equatiqns being compo-
nents of the second order Einstein equation and the first or-

Some comments are in order. Since the quadratic actioder self-duality equation are related to E(&36 and(2.37)

for the vector fields ;f is of the Chern-Simons form it by simple linear transformations of the fielégfI and Ci,

vanishes on-shell, but however, in the boundary CFT wdcf. Eqg. (2.22]. Note that the conformal dimensions of the

have to add certain boundary terms which give rise to noneperators in the boundary CFT dual Aq;] and Ci, arek,

vanishing two-point function§25]. It is also worthwhile to  k+2 andk+4.

note that the equations of motion for the vector fiek;;%, Finally, the quadratic Lagrangian for the symmetric sec-

Ci are not the Proca equations, rather they are Proca-Cherond rank tensor fieldg= 1)) is

Simons equations containing both the usual and the topologi-

cal mass terms. Indeed, the equationsﬁfgrandcj follow-

ing directly from Eq.(2.31) are nondiagonal and both are of

the second order. Adding them produces an equation of the

1 1 )
Lol@un) =2 | = 7V, V" + 5V 0 Vo0,

. . . 4 T 1 1 1
first order(a constraintthat relates the fielda,, andC;, : o VueiVoe " 2 Ve Vit 5 (2-4)
Pic 1(A%) 1+ P 5(C7) 4 =0. (2.3 L
2, = 2
This constraint is then used to obtain the closed Proca- X(@uu)™+ 78>0 ) (2.38

Chern-Simons equations for the vector fields, e.g.,
The cubic couplings of scalar fields are

S __\/SS¢Y ror a __\/o0Y
—P{.1PE 1(A),,=0. (2.3 L) =Vi 8 S, L3(P) =V 01,00,

V'Fu(AT) = (k= 1) (k+ 1A F 28,73, A

Thus, intrinsically one has a second order equation for one of LTAN=VET ) sl b0, (2.39
the vector fields and a constraint on the second one. The
number of physical degrees of freedom described by a masvith e {o,7,0*} and the verticethe notation is explained

sive pairA,;, C, is then three and this is in agreement with in Egs.(2.61) and(2.62]

~ 243 -2)3(2+2)ajarag

Sso  _

Vi~ kot 1 A1yl g (2.40

2°(2+2)(ar+1)(a+ D ag(ag—1)(az—2)

SsT

Vi, = kot 1 I (2.41
. 23(2—2)2(2+2)a1a2a3 2 2 2

VI1I2I3_ - 3(k1+ 1)(k2+ 1)(k3+ 1) (kl + k2+ k3_ 2)aI1I2I3v (2.42
vor 22 +2)(art D (aztDag(az—1(az—=2) , )

N (Kt 1)(Kot 1) (kg + 1) [kitka+(ks+2)"=2]ay 1,1, (2.43

2/(3+2) (a1t 1) ap(az—1)(ap—2)(az+1)

st _

Vi1, = kot 1 a i,y (2.49

Vit =222 (as= )Py, (2.4

* 22(“3_ 1)
ooe T _ 2 2_ 2_ +
|1|2|3_(k1+l)(k2+l)[k1+k2 (k3+1) 1]p|1I2I3' (246)
In our notation, the vertice.40 and(2.42 are precisely the ones found [i].
Cubic terms involving two chiral primaries and the vector fiekfls, Cj can be represented as
LY(A; ,C) =V st VEs AL VS5 s) VEs) Coy =W (Pic (S VS )AL — Pic (S VS )#Cryp ),
(2.47
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S(AL C =V, 0, Vi A

I1l2l3

V(r(r O'|1V’u0'|

123

W (Pig 100 Vo )AL,

1'2'3

2

Cu,
—Pig+3(01, Va1 ) CLy), (2.48

whereas the interaction & and o with the fieIdsZLi is
found to be

LENZ) =2 V755 01, VHs] Z)0 (2.49

These expressions describe the minimal interactions of vec-
tor fields with two scalars in three dimensions. Here the cou-

plings are
VAL = -2+ D(E -1t (2.50
VG, =22a3= 1) (2as=3)ti, 1., (2.50
W|51i|2|3=2(k3+1)ti|2|3, (2.52
B E+DH(E-1)
ooAT _ _ 2 L2 L2 q\+*
i2ls ™ (kg r D (kg 1) K2~ Kem Dl
(2.53
cooe (2a3—1)(2a53—3)
'1'53: (kj+1)(k2-ﬁ1) (K + k53— (kg+2)?
1)t|1|2|3 (2.59
(ki—=1)(kp—1) .
W' 1=~ 2(Kgt 1)mt g (2.55
vert  2'E+1)(2a3—-1)(kgt+1)
V1§'3 ky+1 Il (2.56

Finally the interaction of chiral primaries with symmetric

tensors of the 2nd rank are

o) =Vi%,

1
(V“s, V'S @, (V”s[lvﬂs,rz

(2.57)

1
+ E(mi‘F m3— A3)S|r13|r2> <P|3),

1
Eg((PMV):VUU(P (V'u0'| v ag) QDMV|3 (VMO'|1VM(T|2

I1l2l3

1
+§(mi+m§_A3)U|1(T|2)(P|3), (2.58

where

Vit,= 2%(3+2)aza ),

1'2'3’

(2.59

PHYSICAL REVIEW D63 044024

e 2(2+2)C¥3 2 2
Vida ™ g e (ater (ke
+1)? —Day,i, (2.60

Above the summation ovdr;, |,, I3 andr is assumed and
we have defined

N| =

EEk1+k2+k3, ai= (k|+km_ki), I;ém7&|?&|,
(2.6

and
aIIIZIBEJ Yi,Y1,Yig t'i-l'z'azf VaY|1Y|2Yai|3,

(2.62

To summarize, we have the types of cubic vertices seen in
Fig. 1. In particular we see that all possible cubic invariants
underSQO(n) X SOx(4) containing at least two supergravity
fields dual to CPOs are present.

PiL

123

fVY,VY,

B. Cubic couplings at extremality

With the cubic couplings at hand the problem of comput-
ing the 3-point correlation functions of two CPOs with an
operator associated to another gravity field entering the cubic
vertex becomes straightforward. One needs to determine the
on-shell value of the corresponding cubic action, which
amounts to computing certain integrals over the AdS space,
where for the latter problem a well-developed technique is
available[9]. Generally the AdS integrals diverge for some
“extremal” values of conformal dimensionsnassegof the
fields involved and this is an indication that the correspond-
ing supergravity coupling should vanish, otherwise the cor-
relation function would be ill-defined9,13]. For example,
the AdS integral corresponding to the 3-point correlation
function of scalar fields with conformal dimensioAs, A,
and A5 is ill-defined if A;+A,=A3 (or any relation ob-
tained from this by permutation of indice$nspection shows
that the cubic couplings we found do indeed vanish at extre-
mality, i.e., when the accompanying AdS integrals diverge.
The only case where this property cannot be seen straight-
forwardly is for the couplings of scalar fields with vector
fields A;, and C;, . Below we present the analysis making
the property of vanishing at extremality manifest.

Recall that due to Eq2.36) the fieldsA,, andC,, do not
describe independent degrees of freedom. Regarding, e.g.,
A™ as independent variables we first consider the solution of
Eq. (2.37) satisfying

Pi_1(AY)

M|_

Then the constrainf2.36 gives Pkis(ci)ﬂ.zo. Clearly,

the last two equations imply the Maxwell equations
V'F i (AT) = (k=1)%A},

vul

V'F,u(CH) = (k+3)°CE = (2.63
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e el

FIG. 1. Cubic vertices containing two supergravity fields dual to CPOs.

Therefore, the masses of the vector fie¢q§ andCiI aremy=Kk—1 andmc=k+ 3. Recalling the formula for the conformal
weight A, of an operator dual to a vector field, with massmin AdS; ., (see, e.g.[4]) we findA,=k andAc=k+4. Itis
worthwhile to note that\ , has the same conformal dimension as the scalar CPOs. The corresponding CFT operators are the
vector CPOs in the spin 2 tower of supermultiplgt8].

The evaluation of the 3-point functions of CPOs with vector fields requires the knowledge of the following AdS integral:

dSC!) “ R123 Zi
w_gKAl(w,Xl)V Ka(@,X2)Gia,(@,X3) = [Xgg 317 82 B[ 817 8V Bgx, Bz Ay A1 7 (2.64

where the coordinate dependence on the right-handRiH&) is completely fixed by the conformal symmetry. Herare the
positions of the operators in the correlation function of the boundary &FFx;—x;,

X13)i  (X23)i
Zi:( 13)|_ ( 23)|’ ZZZZiZi
X13 X23

and K, (w,X), gwAs(w,x) are the scalar and vector bulk-to-boundary propagators, respectively. Applying the inversion
method[9] one finds forR;,5 the following answer:

PG (A1 +A—=Ay+1)IG (A + A=A+ 1)I(5 (Ap+Ay—A;+1))

1
[ 1 _
R123_7T2 F(Al_l)F(Az_l)r(Av) F(Z (A1+A2+AV 1))

(2.69

R1,sis ill-defined in several cases. First we consider the casganish.7+Computing the correlation functions involving the
wherf fields A, a divergence arises when

A1+A2_Av+120. (26@ k1+k2—AA+1:kl+k2_k3+1:0,

For CPOs withA=k this equation becomek;+k,—A,,
+1=0 and, therefore, foCi it reads as

SSA”
l1lal3
V{’l‘,’zﬁ; contain the tensorrﬁtllz,3 that are nonvanishing only

if k;+k,=ks+1 (and relations obtained by permutation of
the indices. Hence, the divergence is irrelevant since the

couplings are zero due to the vanishingtéf2,3.

i.e., whenaz=—1/2. However, the coupling¥/ and

k1+ kz_Ac+ 1:k1+ kz_k3_3:0,

i.e., a3=23/2. But the couplingirs/,sf'f;,t3 andV{’l‘l’j: [see Egs.

(2.47 and (2.48] contain the factor 2;—3 and, therefore,

"The terms in Eqs(2.47) and(2.48 proportional ’[oWlsliI2|3 and to
8R,,3is also divergent foA; +A,—Ay+ 1 a negative integer, but Wfrl@s vanish after integrating by parts and taking into account the

in that casej| , =0. equations of motion foA,; andC;, .

044024-7
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Moreover,R;,3 also diverges when . 2 .
Piis(C' )+ ——= Py (A7) =P 5(C' ), =0.
A+ Ay—A,+1=0. (2.67 " Mook e g

+

For C— this givesk,+ks=k,—5, i.e., a,=—5/2. On the Thus, C’i decouple fromA, . The fieIdsAi then corre-
other hand, nonvanishing af,;, requires the inequality spond {0 operators with ,=k+ 2. The divergence2.66

k,+ks=k,+1, so that for the case under considerationOW giveski+ko=ks+1, ie. +a3=1/2. The coupling of two
tril|2|3 again vanish. ForA,f Eq. (2.67) gives k;+kz=k, scalars with the vector fleld@M corrected by the shif2.689

. _ . _ [we again integrate the terms in EqR.47) and(2.48 pro-
r_e;'sgr?.éngt;c_illz and the couplings vanish by the Sameportlonal to\/\/lsI s and tow;"; Ll by parts and use the equa-
u-

_Equation (2.37 has another solution obeying tions of motion forA# and CL ] reads
PQH(Ai)m =0, which we now consider. Perform the shift

V";.’QB—VF;‘.’Q v;",fﬁ kW, (2,69
Ct :C/t_ —— AT 26
pe e k2 (269 and analogously fos". The explicit results are given by
where A~ L1 1S not arbitrary, rather it solveB,, (A~ ) =0. esA YT
Then the linear constrain2.36) turns into Vit =~ 8k T D(2as = 1)t .79

(kit 1)(kp+ 1) byl

Vigh = —4(ky+1)(2a3— 1) 2.71)

and vanish at extremality. The AdS integral is also divergeniThen the quadratic corrections to the linear constredr6)
for Eq. (2.67), i.e., for a;=—3/2. However, in this case can be written as
ti1,1, iS zero. . . . .

Thus we have shown that all the cubic couplings we de- P~ 1(A7) w1, T P +3(C7) i,
termined vanish in the extremal cases.

1 + + + + +
= iEsMV"A;,ZA;,sf sabW;,lYgleaS. (2.74
C. Truncation to the graviton multiplet
Since both vector fields on the RHS transform in thg®) of

The bosonic part of the Lagrangian density for the threeSU(Z)LXSU(Z)R [or (0,1) respectively, Ybl cI transform
as

dimensional supergravity based on th8U(1,12)
X SU(1,12)g supergroup i$20]

L2 (1,0©(1,0=(0,0®(1,0®(2,0);
L=R+2- spr( Alg Al + §A',1A'VKA,'§')
(0,D)®(0,1)=(0,0®(0,)®(0,2), (2.79

+8MVP(A;L”07VA;)“ + §A,'L”ALJkA,')k'), (2.72  and therefore th&® integral is nonzero only ik,=1. In this
case we have

whereA = —All A’ = —A'l! are theSO(3) gauge fields Po(A™) i, P4 (CT)
and according to our conventions we have set the cosmologi-

cal constant to-1. B } A AL aboy* v
We now demonstrate that the lowest modes of the vector - 2° al, Yoi, Y 0'3
fields A, obey the first order Chern-Simons equations, al- (2.76

though generically the equations of motion are of second
order. Thus, we consider the self-interaction of the vectoOn the other hand, itis easy to show that there is no coupling
fields A;; and restrict ourselves to the case where two of thedf C,, with two massless vector fields and therefore it is

three fields, say,,; Ay, come from the massless graviton cor;srstenthtosget the f'Ie|CG 1 10 Izer(lj n,
. . ince theS® integral is completely antisymmetric i
multiplet, i.e., their equations of motion are I andl; (and thel; run from 1 to 3 it is proportional to

g'1'2'3 and can be represented agci,lc C+I , where
PO(Ai)MISﬂ”p&VAIj=O©VMA;=VVA; . (273) C'il = _Cjiiq . Defining

044024-8
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Al=Cl A", Al=Ccl A" (2.77  graviton multiplet-special spin-1/2 multiplet” does exist.
Of course, only on the basis of the cubic vertices considered
here, this issue cannot be decided. It is worthwhile to note

i i ij . .
the equation of motion foA,, reads that s” with k=1 correspond in the boundary CFT to the
scalar CPOs with the lowest conformal dimension.
SMVPﬁVAij =— sMVPA”(Aki (2.79 Another natural example to consider is the lowest level of
P v i :

the spin 1SQ(n) singlet multiplet, containingr with k= 2.

-~ Here, however, the consistent truncation is not possible. In-
and analogously foA, . These are precisely the equations deed, the cubic coupling of two CPOs and one symmetric
of motion following from Eq.(2.72. second ranKmassive tensor

Now we address the issue of the consistency of the KK
truncation to the sum of two multiplets, one of them natu- ,coe _ 2. 1,2 2_
rally the massless graviton multiplet and a second one con-"1lzls (EF2)aglkitio= (ke 1)7=1]a,
taining lowest mode scalar CPOs. Surprisingly, all the cubic
couplings we computed involving two fields from the sum of does not vanish ik;=k,=k;=2. Note also that the CFT
the massless graviton multiplet and the special spin-1/Znultiplet dual to theSQO(n) singlet discussed above contains
multiple® and one field belonging to any other multiplet irrelevant operators.
vanish® Recall that the spin-1/2 multiplet contains the scalar
modess’ with k=1 and¢'" with k=0, and spin-1/2 stateg
[19]. All the operators in the boundary CFT dual to the grav- ACKNOWLEDGMENTS
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