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Cubic couplings in DÄ6,NÄ4b supergravity on AdS3ÃS3
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We determine the AdS exchange diagrams needed for the computation of 4-point functions of chiral primary
operators in the SCFT2 dual to theD56, N54b supergravity on the AdS33S3 background and compute the
corresponding cubic couplings. We also address the issue of consistent truncation.
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I. INTRODUCTION AND SUMMARY

The AdS–conformal field theory correspondence provi
information about the strong coupling behavior of some c
formal field theories by studying their supergravity~string!
duals@1–4#. In particular, the AdS-CFT duality relates typ
IIB string theory on AdS33S33M4, where M4 is eitherK3
or T4, to a certain N5(4,4) supersymmetric two
dimensional conformal field theory~CFT! living on the
boundary of AdS3. A two-dimensional sigma model with th
target space being a deformation of the orbifold symme
productSN(M4)5(M4)N/SN , N→`, is believed to provide
an effective description of this CFT@5#.

An important class of operators in the supersymme
CFT are the chiral primary operators~CPOs! since they are
annihilated by 1/2 of the supercharges and in two dimens
their highest weight components of theR-symmetry group
form a ring. On the gravity side the CPOs correspond
Kaluza-Klein~KK ! modes of the type IIB supergravity com
pactification. Recently, using the orbifold technique dev
oped in @6# the three-point functions of scalar CPOs we
computed@7# in the CFT on the symmetric productSN(M4)
and, on the other hand, in AdS33S3 supergravity@8#, and
were found to disagree.1 On the other hand, computations
quantities that are stable under deformations of the orbi
CFT, like the spectrum of the CPOs and the elliptic gen
were found to be in complete agreement@10#. Obviously this
supports the expectation that the AdS33S3 background may
correspond to some deformation of the target spaceSN(M4)
of the boundary CFT. However, even though one prese
does not have an explicit sigma model formulation of t
boundary CFT~see also@11# for recent developments!, one
may proceed to study the CFT by using directly the grav
dual description and the AdS-CFT correspondence@12#.

*On leave of absence from Steklov Mathematical Institu
Gubkin str.8, GSP-1, 117966 Moscow, Russia. Email addr
agleb@aei-potsdam.mpg.de

†Email address: apankie@aei-potsdam.mpg.de
‡Email address: theisen@aei-potsdam.mpg.de
1Computing the 2- and 3-point functions of CPOs in the sup

gravity approximation by using the prescription@3#, which is known
to be compatible with the Ward identities@9#, one finds a result
different from@8#. This however does not remove the disagreem
between CFT and gravity calculations.
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In this paper we study the AdS33S3 compactification of
the D56, N54b supergravity coupled ton tensor multip-
lets. In particular, the casen521 corresponds to the theor
obtained by dimensional reduction of type IIB supergrav
on K3. Our final aim will be to find the 4-point correlatio
functions of the scalar CPOs in the supergravity approxim
tion. This program was successfully performed for theN
54 four-dimensional super Yang-Mills theory which is r
lated to the AdS53S5 compactification of type IIB super
gravity and led to an understanding of the structure of
operator product expansion in the field theory at strong c
pling @9,13–16#. As a first necessary step in this direction w
derive the effective gravity action on AdS3 that contains all
cubic couplings involving at least two gravity fields corr
sponding to CPOs in the boundary CFT.

Since the supergravity we consider is a chiral theory
suffers from the absence of a simple Lagrangian formulati
In principle, one may approach the problem of computi
correlation functions by using the Pasti-Sorokin-Tonin fo
mulation of the six-dimensional supergravity action, whe
the manifest Lorentz covariance is achieved by introduc
an auxiliary scalar fielda @17#. However, to obtain the action
for physical fields one needs to fix the gauge symmetries
particular the additional symmetry associated with the fi
a. This breaks the manifest Lorentz covariance and ma
the problem of solving the noncovariant constraints impo
by gauge fixing unfeasible. Thus, we prefer to start with
covariant equations of motion of chiral six-dimensional s
pergravity @18# and obtain the quadratic, cubic and so
corrections to the equations of motion for physical fields
decomposing the original equations near the AdS33S3 back-
ground and partially fixing the gauge~diffeomorphism! sym-
metries. The equations obtained in this way are in gen
non-Lagrangian with higher derivative terms and we perfo
the nonlinear field redefinitions to remove higher derivat
terms@13# and bring the equations to the Lagrangian form

The spectrum of the AdS33S3 compactification of theD
56, N54b supergravity coupled ton tensor multiplets was
found in @19# and it is governed by the supergrou
SU(1,1u2)L3SU(1,1u2)R . Since we are interested in th
quadratic and ultimately in cubic corrections to the equatio
of motion for the gravity fields we reconsider the derivati
of the linearized equations of motion and recover the sp
trum of @19#. According to@19# the scalar CPOs are divide
into two classes. The first class contains CPOss that are

,
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singlets with respect to the internal symmetry groupSO(n).2

The corresponding gravity fields are mixtures of the trace
the graviton on S3 and the sphere components of the se
dual form. The second class comprise the CPOssr trans-
forming in the fundamental representation ofSO(n) and the
corresponding gravity fields are mixtures ofn from 5n sca-
lars describing the coset spaceSO(5,n)/SO(5)3SO(n) and
the sphere components of then antiself-dual forms.

We find that the fields appearing in the exchange d
grams involving at least two CPOs include in addition to t
CPOs themselves, also other scalars or vectors, either in
singlet or in the vector representation ofSO(n), and sym-
metric 2nd rank~massive! tensor fields. We determine th
corresponding cubic couplings. By using the factorizat
property of the Maxwell operator in odd dimensions we
agonalize the equations for the vector fields which origin
from components of the second order Einstein equation
the first order self-duality equation. This diagonalization
helpful to identify the vector fields propagating in the Ad
exchange diagrams.

The cubic couplings exhibit the same vanishing prope
in the extremal case~e.g., for three scalar fieldssk , wherek
denotes a Kaluza-Klein mode, the extremality condition
k11k25k3 and permutations thereof! as the cubic couplings
found in the compactification of type IIB supergravity o
AdS53S5 @13#.

In addition to the cubic couplings involving CPOs we al
compute certain cubic couplings of vector fields, which
lows us to check the consistency of the KK truncation of
three-dimensional action to the massless graviton multip
Recall that the bosonic part of this multiplet contains t
graviton and theSU(2)L3SU(2)R gauge fields, all of them
carrying nonpropagating~topological! degrees of freedom
Since the other multiplets contain the propagating modes
graviton multiplet should admit a consistent truncation a
we show that this is indeed the case. The truncated ac
coincides with the topological Chern-Simons action co
structed in@20#. We also consider the problem of the K
truncation to the sum of two multiplets, one of them t
massless graviton multiplet, whereas the second involves
fields corresponding to the lowest weight CPOs. Surp
ingly, we have found indications that the sum of the mass
graviton multiplet and the special spin-1/2 multiplet conta
ing the lowest mode scalar CPOs may admit a consis
truncation.3 This situation is reminiscent of, but is differen

2To ensure the wider applicability of our results we keepn un-
specified. Exceptn521 another case of interest isn55. Dimen-
sional reduction of type IIB supergravity onT4 produces the non-
chiral D56, N58 theory, for which the equations of motion fo
the metric, the scalar fields and the two-forms are the same a
D56, N54b with n55.

3Certainly the situation where the consistent KK truncation to
sum of the graviton and a certain lowest multiplet may exist is
limited to the example we consider. Recently strong indicatio
were found@21# that N53 M-theory compactifications on AdS4

3X7 can be consistently truncated to the sum of the graviton an
long gravitino multiplet~a shadow of the graviton multiplet!.
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from the AdS53S5 compactification, where the lowes
weight CPOs occur in the stress tensor multiplet, which
the gravity side corresponds to the massless graviton mu
let, allowing a consistent truncation@15#. In the AdS3 case
the gauge degrees of freedom encoded in the graviton m
tiplet give rise to theN5(4,4) superconformal algebra of th
boundary CFT@22#.

II. THE CUBIC EFFECTIVE ACTION IN AdS 3

Cubic couplings of chiral primaries may be derived fro
the quadratic corrections to the covariant equations of m
tion for D56, N54b supergravity coupled ton tensor mul-
tiplets @18#. All the bosonic fields—the graviton, the two
form potentialsBMN

I , I 51, . . . ,51n and the scalar sector—
provide relevant contributions to the quadratic correctio
The scalar sector constitutes a sigma model over the c
space SO(5,n)/SO(5)3SO(n) with vielbein (VI

i ,VI
r), i

51, . . . ,5,r 51, . . . ,n which is parametrized by 5n scalar
fields. The indexI transforms under globalSO(5,n) trans-
formations and is raised and lowered with theSO(5,n) in-
variant metric h5diag(1535,21n3n), whereas the indices
~i,r! transform under local compositeSO(5)3SO(n) trans-
formations. We use the following indices:M, N for D56, m,
n for AdS3 anda,b for S3 coordinates.

Defining

dVV215S Qi j &Pis

&Pr j Qrs D , ~2.1!

the covariant derivative in the scalar sector is found by
Cartan-Maurer equation to be

DMPN
ir 5¹MPN

ir 2QM
i j PN

jr 2PM
isQN

sr ~2.2!

and the equations of motion for the bosonic sector ofD56,
N54b supergravity are

RMN5HM PQ
i HN

i PQ
1HM PQ

r HN
r PQ12PM

ir PN
ir , ~2.3!

DMPM
ir 5
&

3
HM PQ

i HrM P, ~2.4!

* Hi5Hi , * Hr52Hr , ~2.5!

where

Hi5GIVI
i , Hr5GIVI

r and GI5dBI . ~2.6!

In units where the radius of S3 is set to unity, the
AdS33S3 background solution is

ds25
1

x0
2 ~dx0

21h i j dxidxj !1dV3
2, ~2.7!

where h i j is the 2-dimensional Minkowski metric. One o
the self-dual field strengths is singled out and set equal to
Levi-Cevita tensor, while all others vanish:

Hmnr
i 5d i5«mnr , Habc

i 5d i5«abc , HMNP
r 50. ~2.8!
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Here«mnr and«abc are the volume forms on AdS3 and S3,
respectively, so that«mnr«abc is the volume form in six di-
mensions. TheSO(5,n) background vielbein is taken to b
constant and by a globalSO(5,n) rotation it can be set to
unity.

To construct the Lagrangian equations of motion we r
resent the fields as

gMN5ḡMN1hMN , ~2.9!

GI5ḠI1gI , gI5dbI , ~2.10!

and

VI
i 5d I

i 1f ir d I
r1

1

2
f ir f j r d I

j , ~2.11!

VI
r5d I

r1f ir d I
i 1

1

2
f ir f isd I

s . ~2.12!

The gauge symmetry of the equations of motion allo
one to impose the de Donder–Lorentz gauge:4

¹ahma5¹ah~ab!5¹abMa
I 50. ~2.13!

Here and below the subscript~ab! denotes symmetrization o
indicesa andb with the trace removed.

This gauge choice does not fix all the gauge symmetry
the theory, for a detailed discussion of the residual symm
try, cf. @19#. The gauge condition~2.13! implies that the
physical fluctuations are decomposed in spherical harmo
on S3 as5

hmn~x,y!5( hmn
I 1 ~x!YI 1~y!,

hma~x,y!5( hm
I 36

~x!Ya
I 36

~y!,

ha
a~x,y!5( p I 1~x!YI 1~y!,

h~ab!~x,y!5( % I 56~x!Y
~ab!

I 56
~y!,

bmn
I ~x,y!5( «mn

rXr
II 1~x!YI 1~y!,

bab
I ~x,y!5( «abcU

II 1~x!¹cYI 1~y!,

bma
I ~x,y!5( Zm

II 36
~x!Ya

I 36
~y!,

f ir ~x,y!5( f irI 1~x!YI 1~y!,

4From now on all the covariant derivatives are understood to b
the background geometry.

5Here and in what follows we use normalized spherical harm
ics, i.e.,*YI 1YJ15d I 1J1, * ḡabYa

I 36Yb
J36

5d I 3J3, * ḡacḡbdY(ab)
I 56

Y(cd)
J56

5d I 5J5.
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where we have represented

hab5h~ab!1
1

3
ḡabhc

c , ḡabh~ab!50. ~2.14!

The various spherical harmonics transform in the follo
ing irreducible representations ofSO(4).SU(2)L
3SU(2)R :

Scalar spherical harmonicsYI : ~k/2,k/2!, k>0,

Vector spherical harmonicsYa
I 5Ya

I 11Ya
I 2 :

„

1
2~k11!, 1

2 ~k21!…% „

1
2~k21!, 1

2 ~k11!…, k>1,

Tensor spherical harmonicsY~ab!
I 5Y~ab!

I 1 1Y~ab!
I 2 :

„

1
2~k12!, 1

2 ~k22!…% „

1
2~k22!,1/2~k12!…, k>2.

The upper index enumerates a basis in a given irreduc
representation of SO(4):I 151, . . . ,(k11)2, k>0; I 3
51, . . . ,(k11)221, k>1; I 551, . . . ,(k11)224, k>2.
The action of the Laplacian is@23#

¹2YI 152DYI 1,

¹2Ya
I 36

5~12D!Ya
I 36 , ¹aYa

I 36
50,

¹2Y
~ab!

I 56
5~22D!Y

~ab!

I 56 , ¹aY
~ab!

I 56
50, ḡabY

~ab!

I 56
50,
~2.15!

whereD[k(k12). The vector spherical harmonicsYa
I 36 are

also eigenfunctions of the operator (* ¹)a
c[«a

bc¹b :

~* ¹!a
cYc

I 36
56~k11!Ya

I 36 . ~2.16!

We also need to make a number of field redefinitions,
simplest ones, required to diagonalize the linearized eq
tions of motion, are

f I
5r52ksI

r12~k12!t I
r , UI

r5sI
r2t I

r , ~2.17!

p I526ks I16~k12!t I , UI
55s I1t I ,

~2.18!

hmnI5wmnI1¹m¹nz I1gmnh I , ~2.19!

z I5
4

k11
~t I2s I !, ~2.20!

h I5
2

k11
„k~k21!s I2~k12!~k13!t I…,

~2.21!

hmI
6 5

1

2
~CmI

6 2AmI
6 !, ZmI

5656
1

4
~CmI

6 1AmI
6 !.

~2.22!

in
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HeresI
r ands I are scalar chiral primaries@19#. Note also

that we use an off-shell shift forhmn that first appeared in
@24#. It differs from the on-shell shift used in@19# by higher
order terms.

A. Cubic couplings of chiral primaries

To compute four-point functions involving only chira
primary operators in the boundary conformal field theory o
needs the quartic couplings giving rise to contact diagra
ri

04402
e
s

and cubic couplings involving at least two chiral primarie
which contribute to the AdS exchange diagrams. Here
confine ourselves to the problem of determining the cor
sponding cubic couplings.

Obviously, fields likef ir , i 51, . . . ,4 that transform as
vectors under theSO(4) R-symmetry cannot contribute to
these couplings. Therefore, we can set all these fields to
and, to simplify the notation, we denote, e.g.,f5r asf r , etc.

Then the action for the chiral primariessr ands may be
written in the form
S~sr ,s!5
N

~2p!3 E d3xA2gAdS3
„L2~sr !1L2~ t r !1L2~s!1L2~t!1L2~%6!1L2~Zm

r 6!1L2~Am
6 ,Cm

6!

1L2~wmn!1L3
s~s!1L3

s~t!1L3
s~%6!1L3

s~s!1L3
s~t!1L3

s~%6!1L3
ss~ t r !1L3

s~Am
6 ,Cm

6!

1L3
s~Am

6 ,Cm
6!1L3

ss~Zm
r 6!1L3

s~wmn!1L3
s~wmn!…. ~2.23!
The quadratic terms for the various scalar fields are

L2~sr !5( 16k~k11!S 2
1

2
¹msI

r¹msI
r2

1

2
ms

2~sI
r !2D ,

~2.24!

L2~s!5( 16k~k21!S 2
1

2
¹ms I¹

ms I2
1

2
ms

2~s I !
2D ,

~2.25!

L2~ t r !5( 16~k11!~k12!S 2
1

2
¹mt I

r¹mt I
r

2
1

2
mt

2~ t I
r !2D , ~2.26!

L2~t!5( 16~k12!~k13!S 2
1

2
¹mt I¹

mt I

2
1

2
mt

2~t I !
2D , ~2.27!

L2~%6!5( S 2
1

4
¹m% I

6¹m% I
62

1

4
m%

2~% I
6!2D

~2.28!

with masses

ms
25ms

25k~k22!, mt
25mt

25~k12!~k14!, m%
25D.

~2.29!

The quadratic Lagrangians for the vector fields can be w
ten as

L2~Zm
r 6!5( 16~k11!

3S 7
1

4
«mnrZmI

r 6]nZrI
r 61

1

4
mZZmI

r 6ZI
r 6mD ~2.30!
t-

for the fieldsZm
r 6 with massmZ5k11 and

L2~Am
6 ,Cm

6!5L2~Am
6!1L2~Cm

6!1L2
cross~Am

6 ,Cm
6! ~2.31!

for the fieldsAm
6 andCm

6 , where

L2~Am
6!5( S 2

1

8
FmnI~A6!FI

mn~A6!

2
1

4
~k11!~k21!AmI

6 AI
6m7

1

2
«mnrAmI

6 ]nArI
6

7
k

2
Pk21

6 ~A6! I
mAmI

6 D , ~2.32!

L2~Cm
6!5( S 2

1

8
FmnI~C6!FI

mn~C6!

2
1

4
~k11!~k13!CmI

6 CI
6m6

1

2
«mnrCmI

6 ]nCrI
6

7
1

2
~k12!Pk13

6 ~C6! I
mCmI

6 D , ~2.33!

L2
cross~Am

6 ,Cm
6!5( S 1

4
FmnI~A6!FI

mn~C6!

2
1

2
~k21!~k13!AmI

6 CI
6m7

1

2

3~k11!«mnr~AmI
6 ]nCrI

6 1CmI
6 ]nArI

6 ! D .

~2.34!

Here FmnI(V)5]mVnI2]nVmI and we have introduced
the first order operators
4-4
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~Pm
6!m

l [«m
nl¹n6mdm

l 5~* ¹!m
l 6mdm

l . ~2.35!

Some comments are in order. Since the quadratic ac
for the vector fieldsZm

r 6 is of the Chern-Simons form i
vanishes on-shell, but however, in the boundary CFT
have to add certain boundary terms which give rise to n
vanishing two-point functions@25#. It is also worthwhile to
note that the equations of motion for the vector fieldsAm

6 ,
Cm

6 are not the Proca equations, rather they are Proca-Ch
Simons equations containing both the usual and the topol
cal mass terms. Indeed, the equations forAm

6 andCm
6 follow-

ing directly from Eq.~2.31! are nondiagonal and both are
the second order. Adding them produces an equation of
first order~a constraint! that relates the fieldsAm

6 andCm
6 :

Pk21
6 ~A6!mI1Pk13

6 ~C6!mI50. ~2.36!

This constraint is then used to obtain the closed Pro
Chern-Simons equations for the vector fields, e.g.,

¹nFnmI~A6!2~k21!~k11!AmI
6 72«m

nr]nArI
6

5Pk11
7 Pk21

6 ~A6!mI50. ~2.37!

Thus, intrinsically one has a second order equation for on
the vector fields and a constraint on the second one.
number of physical degrees of freedom described by a m
sive pairAmI , CmI is then three and this is in agreement w
04402
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the discussion in@19#. The original equations being compo
nents of the second order Einstein equation and the first
der self-duality equation are related to Eqs.~2.36! and~2.37!
by simple linear transformations of the fieldsAmI

6 and CmI
6

@cf. Eq. ~2.22!#. Note that the conformal dimensions of th
operators in the boundary CFT dual toAmI

6 and CmI
6 are k,

k12 andk14.
Finally, the quadratic Lagrangian for the symmetric se

ond rank tensor field (w[wm
m) is

L2~wmn!5( S 2
1

4
¹mwnrI¹

mw I
nr1

1

2
¹mw I

mn¹rwrnI

2
1

2
¹mw I¹nw I

nm1
1

4
¹mw I¹

mw I1
1

4
~22D!

3~wmnI !
21

1

4
D~w I !

2D . ~2.38!

The cubic couplings of scalar fields are

L3
s~c!5VI 1I 2I 3

ssc sI 1

r sI 2

r c I 3
, L3

s~c!5VI 1I 2I 3

ssc s I 1
s I 2

c I 3
,

L3
ss~ t r !5VI 1I 2I 3

sts sI 1

r t I 2

r s I 3
, ~2.39!

with cP$s,t,%6% and the vertices@the notation is explained
in Eqs.~2.61! and ~2.62!#
VI 1I 2I 3

sss 52
24~S22!S~S12!a1a2a3

k311
aI 1I 2I 3

, ~2.40!

VI 1I 2I 3

sst 5
26~S12!~a111!~a211!a3~a321!~a322!

k311
aI 1I 2I 3

, ~2.41!

VI 1I 2I 3

sss 52
23~S22!S~S12!a1a2a3

3~k111!~k211!~k311!
~kI

21k2
21k3

222!aI 1I 2I 3
, ~2.42!

VI 1I 2I 3

sst 5
25~S12!~a111!~a211!a3~a321!~a322!

~k111!~k211!~k311!
@k1

21k2
21~k312!222#aI 1I 2I 3

, ~2.43!

VI 1I 2I 3

sts 5
27~S12!~a111!a2~a221!~a222!~a311!

k311
aI 1I 2I 3

, ~2.44!

VI 1I 2I 3

ss%6
522S~a321!pI 1I 2I 3

6 , ~2.45!

VI 1I 2I 3

ss%6
5

2S~a321!

~k111!~k211!
@k1

21k2
22~k311!221#pI 1I 2I 3

6 . ~2.46!

In our notation, the vertices~2.40! and ~2.42! are precisely the ones found in@8#.
Cubic terms involving two chiral primaries and the vector fieldsAm

6 , Cm
6 can be represented as

L3
s~Am

6 ,Cm
6!5VI 1I 2I 3

ssA6
sI 1

r ¹msI 2

r AmI 3

6 1VI 1I 2I 3

ssC6
sI 1

r ¹msI 2

r CmI 3

6 6WI 1I 2I 3

s6
„Pk321

6 ~sI 1

r ¹sI 2

r !mAmI 3

6 2Pk313
6 ~sI 1

r ¹sI 2

r !mCmI 3

6
…,

~2.47!
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L3
s~Am

6 ,Cm
6!5VI 1I 2I 3

ssA6
s I 1

¹ms I 2
AmI 3

6

1VI 1I 2I 3

ssC6
s I 1

¹ms I 2
CmI 3

6

6WI 1I 2I 3

s6
„Pk321

6 ~s I 1
¹s I 2

!mAmI 3

6

2Pk313
6 ~s I 1

¹s I 2
!mCmI 3

6
…, ~2.48!

whereas the interaction ofsr and s with the fieldsZm
r 6 is

found to be

L3
ss~Zm

r 6!56VI 1I 2I 3

ssZ6
s I 1

¹msI 2

r ZmI 3

r 6 . ~2.49!

These expressions describe the minimal interactions of
tor fields with two scalars in three dimensions. Here the c
plings are

VI 1I 2I 3

ssA6
522~S11!~S21!t I 1I 2I 3

6 , ~2.50!

VI 1I 2I 3

ssC6
52~2a321!~2a323!t I 1I 2I 3

6 , ~2.51!

WI 1I 2I 3

s6 52~k311!t I 1I 2I 3

6 , ~2.52!

VI 1I 2I 3

ssA6
52

~S11!~S21!

~k111!~k211!
~k1

22k2
22k3

221!t I 1I 2I 3

6 ,

~2.53!

VI 1I 2I 3

ssC6
5

~2a321!~2a323!

~k111!~k211!
„k1

21k2
22~k312!2

21…t I 1I 2I 3

6 , ~2.54!

WI 1I 2I 3

s6 522~k311!
~k121!~k221!

~k111!~k211!
t I 1I 2I 3

6 , ~2.55!

VI 1I 2I 3

ssZ6
5

24~S11!~2a321!~k311!

k111
t I 1I 2I 3

6 . ~2.56!

Finally the interaction of chiral primaries with symmetr
tensors of the 2nd rank are

L3
s~wmn!5VI 1I 2I 3

ssw X¹msI 1

r ¹nsI 2

r wmnI 3
2

1

2 S ¹msI 1

r ¹msI 2

r

1
1

2
~m1

21m2
22D3!sI 1

r sI 2

r Dw I 3
C, ~2.57!

L3
s~wmn!5VI 1I 2I 3

ssw X¹ms I 1
¹ns I 2

wmnI 3
2

1

2 S ¹ms I 1
¹ms I 2

1
1

2
~m1

21m2
22D3!s I 1

s I 2Dw I 3
C, ~2.58!

where

VI 1I 2I 3

ssw 522~S12!a3aI 1I 2I 3
, ~2.59!
04402
c-
-

VI 1I 2I 3

ssw 5
2~S12!a3

~k111!~k211!
„k1

21k2
22~k3

11!221…aI 1I 2I 3
. ~2.60!

Above the summation overI 1 , I 2 , I 3 and r is assumed and
we have defined

S[k11k21k3 , a i[
1

2
~kl1km2ki !, lÞmÞ iÞ l ,

~2.61!

and

aI 1I 2I 3
[E YI 1

YI 2
YI 3

, t I 1I 2I 3

6 [E ¹aYI 1
YI 2

YaI3
6 ,

pI 1I 2I 3

6 [E ¹aYI 1
¹bYI 2

Y~ab!I 3

6 . ~2.62!

To summarize, we have the types of cubic vertices see
Fig. 1. In particular we see that all possible cubic invaria
underSO(n)3SOR(4) containing at least two supergravit
fields dual to CPOs are present.

B. Cubic couplings at extremality

With the cubic couplings at hand the problem of comp
ing the 3-point correlation functions of two CPOs with a
operator associated to another gravity field entering the cu
vertex becomes straightforward. One needs to determine
on-shell value of the corresponding cubic action, whi
amounts to computing certain integrals over the AdS spa
where for the latter problem a well-developed technique
available@9#. Generally the AdS integrals diverge for som
‘‘extremal’’ values of conformal dimensions~masses! of the
fields involved and this is an indication that the correspo
ing supergravity coupling should vanish, otherwise the c
relation function would be ill-defined@9,13#. For example,
the AdS integral corresponding to the 3-point correlati
function of scalar fields with conformal dimensionsD1 , D2
and D3 is ill-defined if D11D25D3 ~or any relation ob-
tained from this by permutation of indices!. Inspection shows
that the cubic couplings we found do indeed vanish at ex
mality, i.e., when the accompanying AdS integrals diver
The only case where this property cannot be seen strai
forwardly is for the couplings of scalar fields with vecto
fields Am

6 and Cm
6 . Below we present the analysis makin

the property of vanishing at extremality manifest.
Recall that due to Eq.~2.36! the fieldsAm

6 andCm
6 do not

describe independent degrees of freedom. Regarding,
Am

6 as independent variables we first consider the solution
Eq. ~2.37! satisfying

Pk21
6 ~A6!mI50.

Then the constraint~2.36! gives Pk13
6 (C6)mI50. Clearly,

the last two equations imply the Maxwell equations

¹nFnmI~A6!2~k21!2AmI
6 50,

¹nFnmI~C6!2~k13!2CmI
6 50. ~2.63!
4-6



l

are the

tegral:

ersion

CUBIC COUPLINGS IND56, N54b SUPERGRAVITY ON . . . PHYSICAL REVIEW D63 044024
Therefore, the masses of the vector fieldsAmI
6 andCmI

6 aremA5k21 andmC5k13. Recalling the formula for the conforma
weightDV of an operator dual to a vector fieldVm with massm in AdSd11 ~see, e.g.,@4#! we findDA5k andDC5k14. It is
worthwhile to note thatDA has the same conformal dimension as the scalar CPOs. The corresponding CFT operators
vector CPOs in the spin 2 tower of supermultiplets@19#.

The evaluation of the 3-point functions of CPOs with vector fields requires the knowledge of the following AdS in

E d3v

v0
3 KD1

~v,x1!¹mKD2
~v,x2!Gm iD3

~v,x3!5
R123

ux12uD11D22DVux13uD11DV2D2ux23uD21DV2D1

Zi

Z
, ~2.64!

where the coordinate dependence on the right-hand side~RHS! is completely fixed by the conformal symmetry. Herexi are the
positions of the operators in the correlation function of the boundary CFT,xi j 5xi2xj ,

Zi5
~x13! i

x13
2 2

~x23! i

x23
2 , Z25ZiZi

and KD(v,x), GmnD3
(v,x) are the scalar and vector bulk-to-boundary propagators, respectively. Applying the inv

method@9# one finds forR123 the following answer:

R1235
1

p2

G„1
2 ~D11D22DV11!…G„1

2 ~D11DV2D211!…G( 1
2 ~D21DV2D111!…

G~D121!G~D221!G~DV!
G„1

2 ~D11D21DV21!….

~2.65!

FIG. 1. Cubic vertices containing two supergravity fields dual to CPOs.
as e

of
he

t the
R123 is ill-defined in several cases. First we consider the c
when6

D11D22DV1150. ~2.66!

For CPOs withD5k this equation becomesk11k22DV

1150 and, therefore, forCm
6 it reads as

k11k22DC115k11k22k32350,

i.e., a353/2. But the couplingsVI 1I 2I 3

ssC6
andVI 1I 2I 3

ssC6
@see Eqs.

~2.47! and ~2.48!# contain the factor 2a323 and, therefore,

6R123 is also divergent forD11D22DV11 a negative integer, bu
in that caset I 1I 2I 3

6 50.
04402
evanish.7 Computing the correlation functions involving th
fields Am

6 a divergence arises when

k11k22DA115k11k22k31150,

i.e., whena3521/2. However, the couplingsVI 1I 2I 3

ssA6
and

VI 1I 2I 3

ssA6
contain the tensorst I 1I 2I 3

6 that are nonvanishing only

if k11k2>k311 ~and relations obtained by permutation
the indices!. Hence, the divergence is irrelevant since t
couplings are zero due to the vanishing oft I 1I 2I 3

6 .

7The terms in Eqs.~2.47! and~2.48! proportional toWI 1I 2I 3

s6 and to

WI 1I 2I 3

s6 vanish after integrating by parts and taking into account

equations of motion forAm
6 andCm

6 .
4-7
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Moreover,R123 also diverges when

D11DV2D21150. ~2.67!

For Cm
6 this givesk11k35k225, i.e., a2525/2. On the

other hand, nonvanishing oft I 1I 2I 3

6 requires the inequality

k11k3>k211, so that for the case under considerati
t I 1I 2I 3

6 again vanish. ForAm
6 Eq. ~2.67! gives k11k35k2

21, i.e., a2521/2, and the couplings vanish by the sam
reason as forCm

6 .
Equation ~2.37! has another solution obeyin

Pk11
7 (A6)mI50, which we now consider. Perform the shi

CmI
6 5CmI862

k

k12
AmI

6 , ~2.68!

whereAmI
6 is not arbitrary, rather it solvesPk11

7 (A6)mI50.
Then the linear constraint~2.36! turns into
en

de

ee

log

ct
a
n
to
th
n

04402
Pk13
6 ~C86!mI1

2

k12
Pk11

7 ~A6!mI5Pk13
6 ~C86!mI50.

Thus, Cm8
6 decouple fromAm

6 . The fieldsAm
6 then corre-

spond to operators withDA5k12. The divergence~2.66!
now givesk11k25k311, i.e.,a351/2. The coupling of two
scalars with the vector fieldsAm

6 corrected by the shift~2.68!
@we again integrate the terms in Eqs.~2.47! and ~2.48! pro-
portional toWI 1I 2I 3

s6 and toWI 1I 2I 3

s6 by parts and use the equa

tions of motion forAm
6 andCm8

6# reads

V̄I 1I 2I 3

ssA6
[VI 1I 2I 3

ssA6
1VI 1I 2I 3

ssC6
14k3WI 1I 2I 3

s6 ~2.69!

and analogously forsr . The explicit results are given by

V̄I 1I 2I 3

ssA6
528~k311!~2a321!t I 1I 2I 3

6 , ~2.70!
V̄I 1I 2I 3

ssA6
524~k311!~2a321!

~k111!~k11k3!1~k211!~k21k3!24~k311!

~k111!~k211!
t I 1I 2I 3

6 ~2.71!
ling
is
and vanish at extremality. The AdS integral is also diverg
for Eq. ~2.67!, i.e., for a1523/2. However, in this case
t I 1I 2I 3

6 is zero.

Thus we have shown that all the cubic couplings we
termined vanish in the extremal cases.

C. Truncation to the graviton multiplet

The bosonic part of the Lagrangian density for the thr
dimensional supergravity based on theSU(1,1u2)L
3SU(1,1u2)R supergroup is@20#

L5R122«mnrS Am
i j ]nAr

j i 1
2

3
Am

i j An
jkAr

kiD
1«mnrS Am8

i j ]nAr8
j i 1

2

3
Am8

i j An8
jkAr8

kiD , ~2.72!

whereAm
i j 52Am

j i , Am8
i j 52Am8

j i are theSO(3) gauge fields
and according to our conventions we have set the cosmo
cal constant to21.

We now demonstrate that the lowest modes of the ve
fields Am

6 obey the first order Chern-Simons equations,
though generically the equations of motion are of seco
order. Thus, we consider the self-interaction of the vec
fields Am

6 and restrict ourselves to the case where two of
three fields, sayAmI 2

6 ,AmI 3

6 come from the massless gravito

multiplet, i.e., their equations of motion are

P0~A6!m5«m
nr]nAr

650⇔¹mAn
65¹nAm

6 . ~2.73!
t

-

-

i-

or
l-
d
r
e

Then the quadratic corrections to the linear constraint~2.36!
can be written as

Pk121
6 ~A6!mI 1

1Pk113
6 ~C6!mI 1

56
1

2
«m

nrAnI 2

6 ArI 3

6 E «abcYaI1
6 YbI2

6 YcI3
6 . ~2.74!

Since both vector fields on the RHS transform in the~1,0! of
SU(2)L3SU(2)R @or ~0,1! respectively#, YbI2

6 YcI3
6 transform

as

~1,0! ^ ~1,0!5~0,0! % ~1,0! % ~2,0!;

~0,1! % ~0,1!5~0,0! % ~0,1! % ~0,2!, ~2.75!

and therefore theS3 integral is nonzero only ifk151. In this
case we have

P0~A6!mI 1
1P4

6~C6!mI 1

56
1

2
«m

nrAnI 2

6 ArI 3

6 E «abcYaI1
6 YbI2

6 YcI3
6 .

~2.76!

On the other hand, it is easy to show that there is no coup
of CmI

6 with two massless vector fields and therefore it
consistent to set the fieldsCmI

6 to zero.
Since theS3 integral is completely antisymmetric inI 1 ,

I 2 and I 3 ~and theI i run from 1 to 3! it is proportional to
« I 1I 2I 3 and can be represented as72C6I 1

i j C6I 2

jk C6I 3

ki , where

C6I
i j 52C6I

j i . Defining
4-8
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Am
i j 5C1I

i j Am
I 1 , Am

i j 5C2I
i j Am

I 2 ~2.77!

the equation of motion forAm
i j reads

«m
nr]nAr

i j 52«m
nrAn

ikAr
k j ~2.78!

and analogously forAm8
i j . These are precisely the equatio

of motion following from Eq.~2.72!.
Now we address the issue of the consistency of the

truncation to the sum of two multiplets, one of them na
rally the massless graviton multiplet and a second one c
taining lowest mode scalar CPOs. Surprisingly, all the cu
couplings we computed involving two fields from the sum
the massless graviton multiplet and the special spin-
multiplet8 and one field belonging to any other multipl
vanish.9 Recall that the spin-1/2 multiplet contains the sca
modessr with k51 andf ir with k50, and spin-1/2 statesx r

@19#. All the operators in the boundary CFT dual to the gra
ity fields from the spin-1/2 multiplet are either relevant
marginal. Based on the analysis presented here, one ca
exclude that a consistent truncation to the sum ‘‘mass

8Generically the multiplets in the vector representation ofSO(n)
involve fields with spin 1. However at the lowest level these
absent@19#.

9For the cubic couplings with vector fields see Sec. II B.
tt
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K
-
n-
c
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-

not
ss

graviton multiplet1special spin-1/2 multiplet’’ does exist
Of course, only on the basis of the cubic vertices conside
here, this issue cannot be decided. It is worthwhile to n
that sr with k51 correspond in the boundary CFT to th
scalar CPOs with the lowest conformal dimension.

Another natural example to consider is the lowest leve
the spin 1SO(n) singlet multiplet, containings with k52.
Here, however, the consistent truncation is not possible.
deed, the cubic coupling of two CPOs and one symme
second rank~massive! tensor

VI 1I 2I 3

ssw ;~S12!a3@k1
21k2

22~k311!221#aI 1I 2I 3
~2.79!

does not vanish ifk15k25k352. Note also that the CFT
multiplet dual to theSO(n) singlet discussed above contain
irrelevant operators.
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