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Abstract

Some geometry on non-singular cubic curves, mainly over finite fields, is surveyed.

Such a curve has 9, 3, 1 or 0 points of inflexion, and cubic curves are classified ac-

cordingly. The group structure and the possible numbers of rational points are also

surveyed. A possible strengthening of the security of elliptic curve cryptography is

proposed using a ‘shared secret’ related to the group law. Cubic curves are also used

in a new way to construct sets of points having various combinatorial and geometric

properties that are of particular interest in finite Desarguesian planes.
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1 Introduction

In cryptography, the following views of an elliptic curve over a particular field K are com-
mon:

(i) a curve of genus 1;

(ii) a plane non-singular cubic curve;

(iii) a plane non-singular cubic curve with an inflexion;

(iv) {(x, y) | y2 = x3 + ax + b}.

In this paper (iii) is used; for many fields, it is equivalent to (iv).
However, to perform elliptic curve cryptography (ECC) on a non-singular cubic curve

it is really not necessary to assume that the curve has an inflexion. This then widens the
choice of the curve that is used for the encryption. Given two irreducible curves C, D, an
isomorphism from C to D is an invertible polynomial transformation; it induces an isomor-
phism of their function fields. A non-singular cubic curve is isomorphic to one containing
at least one inflexion point; see, for example, [6, Section 7.10]. Two non-singular cubics,
both with at least one inflexion, are isomorphic if and only if there is a projective transfor-
mation between them. So to classify non-singular cubics up to isomorphism is equivalent
to classifying non-singular cubics with an inflexion up to projective transformation.

Given a non-singular cubic with an inflexion, when the field K has characteristic other
than two, co-ordinates may be chosen so that the line at infinity contains an inflexion point
and the curve is normalised to the form y2 = f(x), where f has degree 3. Canonical forms
for these cubics are given in Section 6.3. However, there do exist non-singular cubic curves
having no inflexion point; see Section 6.4.



Also, in this paper, a modification of the usual version of elliptic curve cryptography
is suggested. Suppose two parties A and B are establishing a secret key using elliptic
curve cryptography. They are working with a given cubic curve C; it may be singular or
non-singular and it may or may not have an inflexion. It may also be noted that elliptic
curve cryptography may be carried out over any finite field using any cubic curve. In the
usual version of elliptic curve cryptography, the line at infinity is a tangent at the inflexion
O = (0 : 1 : 0). The identity element for the group structure is always chosen to be the
inflexion point O. In the proposed variation, A and B share a secret. This secret, which
will be digitised, is the choice of the identity element which is known only to A and B and
which can be any point of the curve C. The choice of this identity point determines the
group operation. The unknown identity of the identity point then makes the task of an
eavesdropper that much more difficult.

In Section 8, some new and purely geometrical applications of cubic curves over finite
fields are discussed.

2 Projective plane curves

Let K be any field and let K be its the algebraic closure. Let F (X, Y, Z) be a form, that
is, a homogeneous polynomial in K[X, Y, Z]. The graph of this form,

C = {(x : y : z) ∈ P2(K) | F (x, y, z) = 0},

is a curve in the projective plane P2(K). The curve is irreducible if F (X, Y, Z) does not
factor in K[X, Y, Z].

A point P lying on a curve is a singular point of the curve if there is more than one
tangent line to the curve through P , [6, Section 1.3]. If no such point exists in P2(K),
that is, if there is a unique tangent line at each point of the curve considered over K, then
the curve is non-singular. This means that, working over the algebraic closure of K, it is
impossible to find a point P on C such that the three partial derivatives of F with respect
to X, Y, Z are all zero at P . If a curve C in P2(K) has a singular point in P2(K) then the
curve C is singular.

Geometrically, the non-singularity of C means that it has no node or cusp or isolated
double point; so there is a unique tangent line to the curve at every point P .

3 Inflexion points

A point of inflexion P of a curve is one for which the tangent at P has triple contact with
the curve, [6, Section 1.3]. Thus, in particular, the tangent line at an inflexion P of a cubic
curve has no other point in common with the curve.

The condition that the tangent line at P has triple contact with the curve is expressed
algebraically by the requirement that

F (X, Y, Z) = f(X, Y, Z) · g(X, Y, Z) + (aX + bY + cZ)3h(X, Y, Z),

where

(i) f(X, Y, Z) is the linear form defining the tangent line at P ,



(ii) g(X, Y, Z) is some form of degree n − 1,

(iii) h(X, Y, Z) is a form of degree n − 3,

(iv) aX + bY + cZ is some linear form vanishing at P ,

(v) n is the degree of the form F .

For cubic curves, Points of inflexion are considered in relation to the group structure
in Section 4.

Over any field, the line joining any two inflexions meets the cubic in a third inflexion.
To see this result the following Theorem of the Nine Associated Points is used.

Theorem 3.1. Let E be an irreducible cubic curve defined over K by E and suppose that

D and D′ are any two other cubic curves defined over K by the forms D and D′. If

E · D = P1 + P2 + · · · + P9,

E · D′ = P1 + P2 + · · · + P8 + R,

then R = P9.

Proof Here, the classical proof is given in the case that the Pi are distinct. The general
proof follows from Noether’s Theorem; see Fulton [4, Section 5.6] or [6, Section 4.5]. The
general cubic form F (X, Y, Z) has 10 coefficients. The 8 equations E(Pi) = 0 for i =
1, 2, . . . , 8 impose 8 linearly independent conditions on the form E. So there is a pencil
of cubics which pass through the 8 points P1, P2, . . . , P8. Hence D′ = αE + βD for some
α, β ∈ K. Since E(P9) = D(P9) = 0, so D′(P9) = 0. Therefore R = P9. �

Theorem 3.2. Let C be a cubic defined over K. If P1, P2 are two distinct inflexion points

of C lying in P2(K), and the line ℓ = P1P2 meets C again in P3, then P3 is also an inflexion

point of C.

Proof Let ℓi be the tangent line to C at the point Pi, i = 1, 2, 3, and let C · ℓ3 = 2P3 + R.
Define two cubics D = ℓ3 and D′ = ℓ1ℓ2ℓ3. Then

C · D = 3P1 + 3P2 + 3P3,

C · D′ = 3P1 + 3P2 + 2P3 + R.

So, by the previous theorem, R = P3; that is, C · ℓ3 = 3P3 and thus P3 is an inflexion point
of C. �

Given a form F (x, y, z) of degree n, its Hessian H is defined as the curve given by the
form H that is the determinant of the second-order partial derivatives of F :
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Thus the Hessian is a curve of degree 3(n − 2).



Theorem 3.3. Suppose F (X, Y, Z) ∈ K[X, Y, Z] is a form of degree n and that 2(n− 1) is

invertible in K. A non-singular point P lying on the curve C defined by F is an inflexion

point of C if and only if its Hessian form H vanishes at P .

Remark 3.4. If 2(n−1) is not invertible in K then H is identically zero. For an appropriate
treatment in this case, see [5, Section 11.2].

Suppose now that C is a non-singular cubic curve. Then its Hessian H is also a cubic.
Bézout’s Theorem shows that, over an algebraically closed field of characteristic different
from 2 and 3, there are, in general, 9 inflexion points of C.

Over the field of complex numbers these nine points form a famous configuration,
namely the 9 points of AG(2, 3), the affine plane of order 3. Classically this (94, 123)
configuration of 9 points and 12 lines, with 4 lines through a point and 3 points on a line, is
called the Hesse Configuration. Over a finite field K = Fq there are 0, 1, 3 or 9 inflexions.
In the case of 9 inflexions, the 9 points again form a copy of AG(2, 3) embedded in the
projective plane PG(2, q).

Theorem 3.5. The number of rational inflexions of a non-singular cubic over Fq is 0, 1, 3,
or 9. The possibilities are as follows:

q ≡ 0 (mod 3) : 0, 1, 3;
q ≡ 2 (mod 3) : 0, 1, 3;
q ≡ 1 (mod 3) : 0, 1, 3, 9.

In the case that q ≡ 1 (mod 3), by a suitable choice of coordinates, the configuration
of 9 points always has the following form K9, where ω is a primitive cube root of unity in
K:

K9 = {(0, 1,−1), (0, 1,−ω), (0, 1,−ω2), (−1, 0, 1), (−ω, 0, 1),

(−ω2, 0, 1), (1,−1, 0), (1,−ω, 0), (1,−ω2, 0)} (3.1)

This set K9 is a Hessian configuration for the non-singular cubic with form

F = X3 + Y 3 + Z2 − 3cXY Z,

with c any element such that c3 6= 1. When q = 4, take c = 0; then K9 is the set of rational
points of the Hermitian curve with form

XX + Y Y + ZZ,

where T = T
√

q = T 2.
For further illumination on inflexions of a cubic, including the singular ones, see [5,

Chapter 11].
The advent of elliptic curve cryptography has aroused considerable interest in elliptic

curves over Fq. The main idea involves a key-exchange between two communicating parties,
similar to the Diffie–Hellman protocol. There is a publicly prescribed elliptic curve over
some finite field, with associated group G that may be taken to be cyclic, with generator
P . Communicating parties A, B choose their secret positive numbers α, β. Then A openly
transmits the point αP , that is, P added to itself α times, to B. Also, B transmits βP in
the open to A. Now, A calculates α(βP ) and B calculates β(αP ). The upshot is that A
and B are now in possession of a common secret key αβP = βαP . Security rests on the
unproved assumption that, given mP , it is not possible to calculate m in a ‘reasonable’
amount of time. The commercialisation of this key-exchange has led to an intensive study
of elliptic curves over a finite field.



4 The group law on a cubic

Let C be an irreducible cubic curve in P2(K), and consider only the rational points of C,
that is, those lying over K; denote this set by C(K). If C is singular with singularity P0,
let C(K)′ = C(K)\{P0}. When C is non-singular, write C(K)′ = C(K).

If P, Q are points of C(K)′ then define P ∗ Q to be the third intersection of the line
PQ with C. In particular, when Q = P , the line PQ is the tangent at P and P ∗ P = Pt is
the tangential of P . If P is an inflexion then Pt = P .

Now choose any point O of C(K)′ as the identity point for the group operation. Then
an operation ⊕ is defined on C(K)′ as follows:

P ⊕ Q = (P ∗ Q) ∗ O. (4.1)

The negative of ⊕ is written −.

O
P ⊕ Q

P ∗ Q

Q

P

r

r

r

r

r

Figure 1: Abelian group law on an elliptic curve

Let the tangential Ot at O be denoted by N .

Theorem 4.1. (i) The points of C(K)′ form a group G with identity O under the oper-

ation ⊕.

(ii) −N = N .

(iii) Three points P, Q, R of C(K)′ are collinear if and only if P ⊕ Q ⊕ R = N.

(iv) If O is an inflexion, then three points P, Q, R of C(K)′ are collinear if and only if

P ⊕ Q ⊕ R = O.

If the characteristic of K is not 2 or 3, then, as in Theorem 6.4, C may be given by
the form F = Y 2Z − X3 − cXZ2 − dZ3.

With the identity point O = (0 : 1 : 0) the group law may be expressed algebraically
as follows. With P = (x1 : y1 : 1) and Q = (x2 : y2 : 1),

P ⊕ Q =

{

(0 : 1 : 0), if x1 = x2 and y1 6= y2,
(γ2 − x1 − x2 : −γ3 + 2γx1 + γx2 − y1 : 1), otherwise,

where

γ =

{

3x2
1 + a/(2y1), if x1 = x2,

(y2 − y1)/(x2 − x1), if x1 6= x2;



see [3, Section 6.6].
Part (iii) of Theorem 4.1 can be generalised to curves of higher degree.

Theorem 4.2. (i) The six distinct points P, Q, R, S, T, U of C(K)′ lie on a conic if and

only if P ⊕ Q ⊕ R ⊕ S ⊕ T ⊕ U = 2N .

(ii) A set of 3m points P1, P2, . . . , P3m of C(K)′ lie on a curve of order m if and only if
∑m

i=1 Pi = mN .

For cubics, geometric results have algebraic counterparts. Here is a sample from [7],
originally for the complex numbers, but applicable over any field.

Geometric formulation Group-theoretic formulation

P and Q have the same tangential 2P = 2Q or 2(P − Q) = 0

There exist four tangents from P 2X ⊕ P = N has four solutions

P is a inflexion 3P = N

C has 9 inflexions 3P = N has nine solutions

If P and Q are inflexions then If 3P = N and 3Q = N , then
R = P ∗ Q is another inflexion; P ⊕ Q ⊕ R = N implies 3R = N
if P 6= Q then R 6= P, Q

The calculations become more familiar, but not less complicated, if the point O is
in fact an inflexion point. It is important to note that all different choices for O yield
isomorphic groups.

5 Classification of singular cubics

An irreducible cubic C over K with a singular point P0 has 2, 1 or 0 tangents lying over K
at P0, which is correspondingly a node, cusp or isolated double point. Let N j

i indicate an
irreducible singular cubic over Fq with i rational inflexions and j distinct rational tangents
at the singularity; here, ‘rational’ means ‘over K’.

When the characteristic of K is 3, there is one cubic C = N 1
q of particular note. It

has the associated canonical form F = ZY 2 − X3 and every point of N 1
q in P2(K) other

than the singular point P0 = (0 : 0 : 1) is an inflexion.

Theorem 5.1. (i) For an irreducible singular plane cubic curve C over Fq, with C 6= N 1
q ,

(a) there are 3 collinear inflexions over K;

(b) the inflexions are rational or lie over a quadratic extension or a cubic extension.

(ii) For any q there are precisely four projectively distinct singular cubics.



Table 1: Canonical forms for singular cubics

Symbol q ≡ m (mod 12) Form
m

N 2
1 3, 9, 2, 8, 5, 11 XY Z − X3 − Y 3

N 2
3 4, 1, 7 XY − X3 − Y 3

N 2
0 4, 1, 7 XY Z − X3 − αY 3, α non-cube

N 1
0 3, 9 ZY 2 − X2Y − X3

N 1
q 3, 9 ZY 2 − X3

N 1
1 2, 8, 4, 1, 5, 7, 11 ZY 2 − X3

In Table 1, canonical forms are given in the cases of a node and a cusp including N 1
q .

For the canonical forms in the case of an isolated double point, see [5, Section 11.4].
There is a nice combinatorial/geometric characterisation of singular cubics due to

Tallini Scafati [11]. See also [5, Section 12.8].

Theorem 5.2. Let K be a set of k points in PG(2, q), with q odd, q > 11, and with no 4
points of K collinear. If K contains 4 points P, P1, P2, P3 such that

(i) there is no line through P intersecting K in 3 points,

(ii) any conic through P and one of the Pi meets K in at most 3 other points,

(iii) k > q − 1
4

√
q + 19

4
,

then K is contained in a rational cubic with a double point at P .

Due to later results, see [5, Sections 10.4, 10.5] the lower bound in (iii) in this theorem
can be improved.

6 Classification of non-singular cubics

The following result from Section 3 is recalled.

Theorem 6.1. If C is a non-singular cubic curve defined over K then C has exactly 0, 1, 3
or 9 inflexion points in P2(K).

6.1 Non-singular cubics with nine rational inflexions

Theorem 6.2. A non-singular cubic C with form F and nine rational inflexions exists over

Fq if and only if q ≡ 1 (mod 3), and then F has canonical form

F = X3 + Y 3 + Z3 − 3cXY Z.

The nine inflexions are those given in (3.1).



6.2 Non-singular cubics with three rational inflexions

Theorem 6.3. A non-singular cubic C with form F and three rational inflexions exists

over Fq for all q. The inflexions are necessarily collinear.

(i) If the inflexional tangents are concurrent, the canonical forms are as follows:

(a) q ≡ 0, 2 (mod 3),

F = XY (X + Y ) + Z3;

(b) q ≡ 1 (mod 3),

F = XY (X + Y ) + Z3,

F = XY (X + Y ) + αZ3,

F = XY (X + Y ) + α2Z3,

where α is a primitive element of Fq.

(ii) If the inflexional tangents are non-concurrent, the canonical form is as follows:

F = XY Z + e(X + Y + Z)3,

e 6= 0,−1/27.

In case (i), the inflexions are

(1 : 0 : 0), (0 : 1 : 0), (1 : −1; 0);

in case (ii), the inflexions are

(0 : 1 : −1), (1 : 0 : −1), (1 : −1 : 0).

6.3 Non-singular cubics with one rational inflexion

For q = 2h, the trace of an element x ∈ Fq is

τ(x) = x + x2 + x4 + · · · + x2h−1

.

Theorem 6.4. A non-singular, plane, cubic curve defined over Fq, q = ph, with at least

one inflexion has one of the following canonical forms F .

(i) p 6= 2, 3,
F = Y 2Z − X3 − cXZ2 − dZ3,

where 4c3 + 27d2 6= 0.

(ii) p = 3,

(a)
F = Y 2Z − X3 − bX2Z − dZ3,

where bd 6= 0;



(b)
F ′ = Y 2Z − X3 − cXZ2 − dZ3,

where c 6= 0.

(iii) p = 2,

(a)
F = Y 2Z + XY Z + X3 + bX2Z + dZ3,

where b = 0 or a fixed element of trace 1, and c 6= 0;

(b)
F = Y 2Z + Y Z2 + eX3 + cXZ2 + dZ3,

where e = 1 when q ≡ 0, 2 (mod 3) and e = 1, α, α2 when q ≡ 1 (mod 3), with

α a primitive element of Fq; also, d = 0 or a given element of trace 1.

A complete discussion and classification of cubic curves over finite fields may be found
in [5].

6.4 Non-singular cubics with no rational inflexions

Theorem 6.5. A non-singular, plane, cubic curve defined over Fq, q = ph, with no rational

inflexion has one of the following canonical forms F .

(i) q ≡ 2 (mod 3),

F = Z3 − 3c(X2 − dXY + Y 2)Z − (X3 − 3XY 2 + dY 3),

where T 3 − 3T + d is irreducible.

(ii) q ≡ 1 (mod 3),

(a)
F = X3 + αY 3 + α2Z3 − 3cXY Z,

with α a primitive element of Fq.

(b)
F = XY 2 + X2Z + eY Z2 − c(X3 + eY 3 + e2Z3 − 3eXY Z),

with α a primitive element of = Fq and e = α, α2.

(ii) q ≡ 0 (mod 3),

F = X3 + Y 3 + cZ3 + dX2Z + dXY 2 + d2X2 + dY Z2,

where c 6= 1 and T 3 + dT − 1 is a fixed irreducible polynomial.



7 Number of rational points on a cubic

With N1 the number of rational points on a curve F , consider the case that F is a non-
singular plane cubic C. The Hasse bound states that

q + 1 − 2
√

q ≤ N1 ≤ q + 1 + 2
√

q. (7.1)

The next result shows what values in the range actually occur. For any integer M
and any prime divisor ℓ, let vℓ(M) be the highest power of ℓ dividing M ; that is,

∏

ℓ ℓvℓ(M)

is the prime decomposition of M .

Theorem 7.1. There exists a non-singular plane cubic over Fq, q = ph, with precisely

N1 = q + 1 − t rational points, where | t | ≤ 2
√

q, in the cases listed in Table 2. Below, GC
is the corresponding group formed by the points of the cubic.

Table 2: Values of t

t p h

(1) t 6≡ 0 (mod p)

(2) t = 0 odd

(3) t = 0 p 6≡ 1 (mod 4) even

(4) t = ±√
q p 6≡ 1 (mod 3) even

(5) t = ±2
√

q even

(6) t = ±√
2q p = 2 odd

(7) t = ±√
3q p = 3 odd

(1) GC = Z/(pvp(N1)) × ∏

ℓ 6=p (Z/(ℓrℓ) × Z/(ℓsℓ)) ,
with rℓ + sℓ = vℓ(N1) and min(rℓ, sℓ) ≤ vℓ(q − 1);

(2)
(3)

GC =

{

Z/(q + 1) for q 6≡ −1 (mod 4),
Z/(q + 1) or Z/(2) × Z/((q + 1)/2) for q ≡ −1 (mod 4);

(4) GC = Z/(N1);

(5) GC = Z/(
√

N1) × Z/(
√

N1), N1 = (
√

q ± 1)2;

(6) GC = Z/(N1);

(7) GC = Z/(N1).

The range of t is due to Waterhouse [14] and the corresponding groups independently
to Rück [8] and Voloch [13].

Let Nq(1) denote the maximum number of rational points on any non-singular cubic
over Fq and Lq(1) the minimum number. The prime power q = ph is exceptional if h is odd,
h ≥ 3, and p divides ⌊2√q⌋.



Corollary 7.2. The bounds Nq(1) and Lq(1) are as follows:

(i) Nq(1) =

{

q + ⌊2√q⌋, if q is exceptional

q + 1 + ⌊2√q⌋, if q is non-exceptional;

(ii) Lq(1) =

{

q + 2 − ⌊2√q⌋, if q is exceptional

q + 1 − ⌊2√q⌋, if q is non-exceptional.

Corollary 7.3. The number N1 takes every value between q +1−⌊2√q⌋ and q +1+ ⌊2√q⌋
if and only if (a) q = p or (b) q = p2 with p = 2 or p = 3 or p ≡ 11 (mod 12).

Remark 7.4. The only exceptional q < 1000 is q = 128.

Theorem 7.5. The number of points N1 on a non-singular cubic, for which the number n
of rational inflexions is n = 0, 1, 3, 9, satisfies the following:

(i) If n = 0, then N1 ≡ 0 (mod 3);

(ii) If n = 1, then N1 ≡ ±1 (mod 3);

(iii) If n = 3, then N1 ≡ 0 (mod 3);

(iv) If n = 9, then N1 ≡ 0 (mod 9).

Let Aq be the total number of isomorphism classes and Pq the total number of pro-
jective equivalence classes. Also, ni for i = 0, 1, 3, 9 is the number of projective equivalence
classes with exactly i rational inflexions. Hence

Aq = n9 + n3 + n1, Pq = n9 + n3 + n1 + n0.

Theorem 7.6. (i) Aq = 2q + 3 +

(−4

q

)

+ 2

(−3

q

)

;

(ii) Pq = 3q + 2 +

(−4

q

)

+

(−3

q

)2

+ 3

(−3

q

)

.

Here, the following Legendre–Jacobi symbols are used:

(−4

c

)

=







1 if c ≡ 1 (mod 4),
0 if c ≡ 0 (mod 2),

−1 if c ≡ −1 (mod 4);

(−3

c

)

=







1 if c ≡ 1 (mod 3),
0 if c ≡ 0 (mod 3),

−1 if c ≡ −1 (mod 3).

The number of inequivalent types of cubic with a fixed number of rational points can
also be given. Let Aq(t) and Pq(t) be the number of inequivalent non-singular cubics with
exactly q + 1 − t rational points under isomorphism and projective equivalence. So

Aq =
∑

t

Aq(t), Pq =
∑

t

Pq(t).

The values of Aq(t) and Pq(t), due to Schoof [9], are also given in [5, Section 11.11].



Table 3: Number of inequivalent cubics

q ≡ m (mod 12) n9 n3 n1 n0 Aq Pq

m

3 0 q − 1 q + 3 q − 1 2q + 2 3q + 1

9 0 q − 1 q + 5 q − 1 2q + 4 3q + 3

2, 8 0 q − 1 q + 2 q − 1 2q + 1 3q

4 1
12

(q + 8) 1
3
(2q + 4) 1

4
(5q + 12) q + 1 2q + 5 3q + 6

1 1
12

(q + 11) 1
3
(2q + 4) 1

4
(5q + 15) q + 1 2q + 6 3q + 7

7 1
12

(q + 5) 1
3
(2q + 4) 1

4
(5q + 9) q + 1 2q + 4 3q + 5

5 0 q − 1 q + 3 q − 1 2q + 2 3q + 1

11 0 q − 1 q + 1 q − 1 2q 3q − 1

8 Some new applications in finite geometries

Much of finite geometries is concerned with maximal sets of points in PG(2, q) obeying
various geometrical conditions: such sets are often of considerable interest also in algebraic
coding theory. For example, a key result in the theory of MDS codes has as its foundation
a famous theorem of the late B. Segre. This result asserts that, for q odd, a set of points
with no 3 collinear has size at most q + 1 with equality if and only if the set is the point
set of a non-degenerate conic.

The next result, found independently by A. Zirilli and P.M. Neumann, see [2], is
usually phrased using elliptic curves, that is, non-singular cubic curves with an inflexion
point. However, as is seen below, this assumption is not necessary.

Theorem 8.1. If a non-singular cubic curve C has an even number k of rational points,
then there exists a set S of k/2 points of C with no three collinear.

Proof Let G be the abelian group obtained from C, using the general construction of
Section 4 and the notation there. Then, from Theorem 4.1, three points on C are collinear
if and only if they add up to N . Let H be the subgroup of index 2 in G. There is another
coset K of H in G so that G is the disjoint union of H and K. There are two cases:

(i) N lies in H ;

(ii) N lies in K.

In case (i), take S to be the set K. Suppose that P, Q, R are in K. Then P ⊕Q must
be in H so that P ⊕Q⊕R must be in K. In particular, P ⊕Q⊕R cannot be equal to N ,
which is in H . Therefore S is a set of k/2 points with no 3 collinear.

In case (ii), take S to be the set H . Let P, Q, R be any 3 points of S. Since H is a
subgroup, P ⊕ Q ⊕ R is in H . In particular, P ⊕ Q ⊕ R cannot equal N since N is in K.
Thus S is a set of k/2 points, with no 3 collinear. �



Remark 8.2. It is possible that such sets S are not maximal when considered as sets of
points in PG(2, q) with no 3 collinear.

So far, sets of points with no three collinear have been considered. As any two points
define a unique line, the next step is to try to find a result analogous to Theorem 8.1 for
higher degree curves.

Theorem 8.1 can be generalised as follows.

Theorem 8.3. Let C be a non-singular cubic curve in PG(2, q) containing exactly n points

and with a cyclic group structure. Suppose the integer r divides n. Then there exists a set

S of n/r points on C satisfying the following condition: no 3k points of S lie on any curve

of degree k other than C whenever 1 ≤ k < ⌈r/3⌉.

Proof The group G has a subgroup H of order n/r and index r. The cosets of H are
denoted by H = H0, H1, H2, . . .Hr−1, where Hi ⊕ Hj = Hi+j (mod r).

Let Hj be the coset containing the point N . Take S = Hi where i is to be determined.
Choose any 3k points P1, P2, . . . , P3k in S. Their sum lies in the coset 3kH1 = H3k (mod r).
Using Theorem 4.2, S has the desired property if the sum of these 3k points is always
different from kN . This will follow from showing that the cosets H3ki (mod r) and Hkj (mod r)

are unequal; that is k(3i − j) 6≡ 0 (mod r).
There are three cases to consider:

(i) 3 does not divide r;

(ii) 3 divides r but 3 does not divide j;

(iii) 3 divides both r and j.

In case (i), 3 does not divide r. Then 3 has a multiplicative inverse u modulo r. Put
i = uj +u. Then 3i− j ≡ 1 (mod r). Thus, if k(3i− j) ≡ 0 (mod r), then k ≡ 0 (mod r).
The hypotheses imply that 0 < k < r. So S = Hi has the desired property.

In case (ii), if j ≡ 2 (mod 3) then put i = (j + 1)/3. If j ≡ 1 (mod 3) then put
i = (j − 1)/3. Thus 3i − j is either 1 or −1 modulo r. Hence, if k(3i − j) ≡ 0 (mod r),
then k ≡ 0 (mod r). As in case (i), this implies that S has the required property.

In case (iii), put i = j/3 + 1. Then 3i − j = 3. If k(3i − j) ≡ 0 (mod r) then 3k ≡ 0
(mod r). But this contradicts the assumed bounds on k. Again this implies that S has the
desired property. �

Remark 8.4. In this proof, only the fact that G/H is cyclic is used. Strictly speaking, the
assumption that G is cyclic can weakened to merely assuming that G/H is cyclic.

Remark 8.5. In the statement of the theorem, the restriction that k < ⌈r/3⌉ is only
required in case (iii). In the other two cases, it is sufficient to assume that k < r.

Remark 8.6. Concerning the sets constructed in Theorem 8.1, Voloch [12] has shown that,
in many cases, they cannot be extended to larger sets with no 3 points collinear. In [1], it
is shown that these results of Voloch can be strengthened and generalised.

The research of the first author is supported by grants from NSERC. The research of
the third author is supported by grants from ARP and NSERC.
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