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Abstract: This paper provides a new generalization of fuzzy finiteestatachines, fuzzy transformation semigroups and their
relationship. Consider a cubic structure, we introducdccfibite state machines, cubic transformation semigrouopbijc successor,
cubic exchange properties cubic subsystems, cubic sulinescltubic g-twins, cubic retrievable and study fundasgmtoperties of
them. We provide relationship between cubjitwins and a cubig-related. We provide a characterization of a cubic retbevae
define cfsm homomorphism and investigated related pr@seie show that the composition of strong cfsm homomorplsaiso
strong. We also define cubic transformation semigroup areddted properties. We define cts homomorphism and its piepe
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1 Introduction

Mathematical models of classical computation, automate feeen an important area in theoretical computer science
[37]. It started from a seminal paper of Kleer88], and within a few years developed into a rich mathematies¢arch
topic. From the very beginning finite automata constitutezbee of computer science. One of the reason is that they
capture very fundamental ideas is witnessed by a numerdteratit characterizations of the family of rational
languages, i.e. languages defined by finite automd@ [In fact, the interrelation of finite automata and their
applications in computer science is a splendid example ealyrfruitful connection of theory, practice and thesel wil
accept regular languag89). Finite automata played a crucial role in the theory of pemgming languages, compiler
constructions, switching circuit design, controllersyrad networks, text editor and lexical analyzdd]. The topic of
these investigations belongs to the theoretical soft cdimgfuzzy structures). Indeed, it is well known that seroigps

are basic structures in many applied branches of informat@ences, like finite state machines or automata, formal
languages, coding theory and others. To be more precisefste theory of finite state machines (automata) is based on
transformation semigroups. Algebraic automata theoryigeopowerful decomposition results for finite transforimat
semigroups by cascade simple parts. Any full transformagiemigroup is regular. The fuzzy set theory, proposed by
Zadeh B2] is a framework for dealing uncertainty. The literature arzfy set theory and its applications have been
growing rapidly. Research on fuzzy set theory has receivadhnattention in recent years. Applications of fuzzy set
theory have been studied in different areas, that is, adiifictelligence, computer sciences, control engineeraxgert,
robotics, automat theory, finite state machine, graph thaad others. Fuzzy set is a type of important mathematical
structure to epitomize a assortment of objects whose baynslaague. There are some type of fuzzy set extensions in
the fuzzy set theory, for example: interval-valued fuzzg setuitionistic fuzzy sets, bipolar fuzzy set and vagets £tc.
Cubic set which was introduced by JUH], is an extension of fuzzy set and interval valued fuzzy setiatuitionistic
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fuzzy set. Jun combined interval valued fuzzy set and fuztyts introduced cubic sets and also defined P-union,
P-intersection, R-union and R-intersection of cubic sat&] investigate several related properties. Cubic setena
framework for dealing uncertainty when fuzzy sets, intemadued fuzzy sets and intuitionistic fuzzy sets fail degli
uncertainty.

The concept of transformation semigroup, covering, casgadduct and wreath product play vital role in the study of
automata?3]. Since Wee 20] in 1967 introduced the concept of fuzzy automata followtagleh f2], fuzzy automata
theory has been developed by many researchers. Malik &t,3)4[5] introduced the concepts of fuzzy state machines
and fuzzy transformation semigroups based on Wee's corafefuitzzy automata and related concepts and applied
algebraic technique. In1], Kim et al. introduced the notion of T-generalized statechiae and T-generalized
transformation semigroup that are extensions of fuzzy stechine and fuzzy transformation semigroup, respegtivel
They defined the notions of fuzzy finite state submachine afzzyf finite state machine, retrievable, separated and
connected fuzzy finite state machines and discussed thsic Ipaoperties. They also introduced a decomposition
theorem for fuzzy finite state machines in terms of primagzfufinite state submachines. Kumbhojkar and Chaudhari
[25] gave different ways of constructing products of fuzzy gnstate machines and their mutual relationship, through
isomorphism and coverings.

Algebraic technique is very significant in the study of fuzaytomat theory 7,3,4,5]. Algebraic properties and
minimization of fuzzy automata and fuzzy languages stuthgdnany authors?,8,9,10,11,12,13,14,15]. One of the
essential problems in algebraic fuzzy automata theoryésmgosition theory of fuzzy automata, which gives a way for
stimulating complex machine by simpler machi2g][ In classical fuzzy automata, the decomposition theorbaeve
been given by utilizing successor operators and submaelf3de35]. In [33], Bavel introduced source and successor
operators to used explore subautomata, separabilityevability and homomorphism. Moreover, these operatoes ar
often applied to topology, fuzzy directed graphs, fuzzytites algebra, model logic and interval structu?®,p7,28,

40]. Recently, Jun have been introduced intuitionistic ffsansl intuitionistic ftss, as well as studied their relatioips
(see [16,17,18,19)), but it is clear, looking through the literature, that thebic sets are more advisable in order to model
uncertainty in some applications. Taking cubic structi#e defined cubic finite state machine (cfsm) and cubic
transformation semigroups (cts) as a generalization afyftinite state machine, fuzzy transformation semigro@p3, [
4,5], intuitionistic fuzzy finite state machine and intuitistic fuzzy transformation semigroupsg 17,18,19]. We also
define cubic successor, cubic exchange properties cubsysigims, cubic submachines, cubic g-twins, cubic retoleva
and study related properties. Using a cubic finite state mackve make two finite semigroups with identity, and show
that they are isomorphic. We also introduce the notion ofcalimissible relation, and initiate its characterizatidfe
establish an isomorphism between a cubic finite state madmd the quotient structure of another cubic finite state
machine.

In this article, we apply the notion of cubic sets to finitetstenachine to introduce the concept of cubic finite state
machines, cubic transformation semigroups, cubic suocessibic exchange properties cubic subsystems, cubic
submachines, cubic g-twins, cubic retrievable, and stethted properties. We show relationship between cgitigins

and a cubicg-related. We provide a characterization of a cubic rettdwaWe define cfsm homomorphism and
investigated related properties. We show that the conipasiif strong cfsm homomorphism is also strong. We also
define cubic transformation semigroup and it related prgreiVe define cts homomorphism and its properties.

2 Basic concept

A mapA : X — [0,1] is called a fuzzy set oX. A functionA : X — [l] is called an interval-valued fuzzy set (shortly, an
IVF set) inX. Let [I] stands for the set of all sub interval [ff 1] and[I]X stand for the set of all IVF oX. For every
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Ac [IJ* andx € X, A(x) = [A~(x),A*(x)] is called the degree of membership of an elemetat A, whereA~ : X — |
andA™ : X — | are fuzzy sets iX which are called a lower fuzzy set and an upper fuzzy seé,inespectively. For
simplicity, we denoté = [A~,A*]. For everyA, B € [I]%, we defineA C Bif and only if A(x) < B(x) for all x € X. A map
o =(A,A): X —[I] x [0,1] is called a cubic set.

Definition 1. A fuzzy finite state machine (fsm, for short) is a triple= (Q, X, d) where Q and X are finite non-empty
sets, called the set of states and the set of input symbefgecévely, and is a fuzzy setin Q X x Q.

Definition 2. Let0 = (Q,M, d) be a ffsm. Then, define a fuzzy &&in Q x M* x Q as follow:

. lifq=p
o (q,s,p)={0ifq#p

0" (qvmnv p) = \/ {5* (q7 mvr) Ao (ra n, p)}
reQ

forall p,ge Q, mac M*.

Definition 3. A fuzzy transformation semigroups (in short, fts) is a &ipf = (Q,X,A), where Q is a non-empty finite
set, X is a finite semigroup with identityand A is a fuzzy set in X x Q such that

(TS

lifqg=p
A(q,s,p)={0ifq¢p

(T)

A (qvxya p) - \/ {/\ (q,x,r)/\)\ (raya p)}
reQ

forall p,qe Q, x,y € X.

3 Cubic finite state machine

In [2,5], Malik et al. defined fuzzy finite state machine (automatsdd on Wee’s concept of fuzzy automata and related
concepts and applied algebraic technique. Jun introduoeaddncept of intuitionistic fuzzy finite state machine and
studied fundamental results. We define cubic finite statehinas, cubic successor, cubic exchange properties cubic
subsystems, cubic submachines, cubic g-twins, cubiceketble, and study related properties. The present congept i
generalization the concept of Malik et & 5] and Jun conceptl[7].

Definition 4. A cubic finite state machine (cfsm, shortly) is a triple= (Q,M, <), where Q and M are finite non-empty
sets, called the set of states and the set of input symbsfsecévely, andy :<5,/\> is a cubic setin M x Q.

Example 1.Let Q = {p1, P2, P3, P4, Ps, Ps, P7} andX = {x} and let/ :<§,A> be a cubic set iQ x M x Q defined by

A(P1,X, p2) = [0.7,0.8],A(p1,X, p3) = [0.3,0.35],A(p1, X, pn) =0,n=1,4, .7
A(P2,X, pa) = [0.6,0.65],A(p1,X, ps) = [0.4,0.45],A(p1,X, pm) = 0,m=1,2,3.6,7
A(ps, X, ps) = [0.1,0.15],A(p1,X, p7) = [0.6,0.65,A(p1,x,p) = 0,1 =1,2,...6
A(ps,x,pt) =[0,0.2],s=4,..7 andt=1,..7
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and

A (P1,X%, P2) = 0.7,A (P1, X, p3) = 0.3,A (P, X, pn) =0,n=1,4,...7

A (P2,%, Pa) = 0.6,A (p1,X, ps) = 0.4,A (p1,X, pm) =0,m=1,2,3,6,7
A (p3, %, ps) = 0.1, A (p1,X, p7) = 0.6,A (p1,%, p) =0, =1,2,...6
A(ps,X,pt) =01,5=4,.7 and t=1,..7

Thus, O = (Q,M, ) is a cubic finite state machine

Let M* denote the set of all words of elementd\f finite length. Lefm| denote the length of for everym € M* and
£ denote the the empty word M*. We generalized the following definition by using theorm and co-norm.

Definition 5. Let0 = (Q,M, <) be a cfsm. Then, define a cubic sét:(Av*,)\ﬂ in Q x M* x Q as follow

— 1ifq= i 0ifq=
A*(q,s,p){aifg?ég A (q,e,m{lifg%g

and

A (g,mnp)=\/ {E(q,m,r)AE(r,n, p)}
reQ

A*(g,mnp)= A {A*(g.mr)vA*(r,n p)}
reQ

forall p,qe Q, me M* and ne M.

Proposition 1.Let0 = (Q,M, <) be a cfsm. Then, the following hold

A (gmap) =\ {A@mnAA(rap)]
reQ

and

A (gmap)= A {A"(qmr)vA*(rap)}
reQ

forall p,qe Q, mac M*.

Proof. Takep,q € Q andm,n € M*. Then, we shall prove the result by using inductionan= n. In case ofn = 0, then
a= ¢ and soama= me = m. Hence,

\V {Z\;(q,m,r)/\ﬁ(r,a, p)} =\ {E(q,mvr)/\ﬁ(rvfap)}
reQ reQ

= A" (q,me,r) = A" (g, mar)

A (g,mar) = \/ {Av*(q,m,r)/\Av*(r,a, p)}
reQ
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and

A A (@mr)arc(rap)}= A {A*(@mr)VvA*(rep)}
reQ reQ

=A"(q,me,r) =A"(g,mar)

/\*(qvmaar): /\ {)‘*(qamar)\//\*(raaa p)}
reQ

Hence, the result is valid for= 0. Assume that the result is true for alke M* such thaju| =n—1,n> 0. Leta=uy,
whereu € M* andv € M. Then,

A (gmar) = A° (g muvr) = \/ {A (q.mun) AA (r,v.p)}
reQ

= \/ {\/ {Av*(q,m,s)/\Av*(s,u,r)}/\Av*(r,v, p)}
reQ \seQ
=\ {Av*(q,m,s)/\/Av*(s,u,r)AAv*(r,v,p)}

rseQ

Y {ﬁ(q,m,s)A (\/ {K?(s,u,r)Aﬁ(r,v, p)})}
s€Q reQ

\/ {E(q,m,s)AE(S,UV, p)}

S

72}

o]

=\/ {Av*(q,m,s) AA*(s,a, p)}
s€Q
and

A*(gmar)=A*(gmuvr) = A {A*(g,mur)vA*(rv,p)}

reQ
= A {/\ (A (q,m,s) VA*(s,u,r)}VA*(r,v, p)}
:ZQ{S;S(q,m,s)v/\*(s,u,r)v)\*(r,v, p)}

- A {A*(q,m,s)\/ </\ {A"(sur)vA*(ry, p)}>}
- Z{A* (a,m,s) vA*r(?uv, P}
:S&{A*(q,m,s)w*(s,a,p)}-

Thus, the result is true fda| = n.

Definition 6. Let 01 = (Q1,M1,.2%) and0, = (Q2, Mz, o) be two cfsms. A cfsm homomorphism ffdmto O, is fair
(&,n) of mappingsé : Q1 — Q2 andn : M3 — M, such that

Aq (a1, My, p1) < Az (& (an) .1 (M), € (pa))
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and
A1(Q, M, p1) > A2(€(ar),n (M), € (p1)) Vp1,02 € Qrand m € My,

We denoted by, n) : 01 — 0.

A cfsm homomorphisni&, n) is calledstrongif, in addition, for anyp;,g; € Q1 andmy € My,

Ao (& (a1 (m) . & (pr)) = \/ { Ax (qmu,m) [ € (ra) = £ (p) }

and

A2(& (1), n (M), & (p1)) = A { A (ae,me,r1)n (r1) = n (pa)}-

A cfsm homomorphisnié, n) is called isomorphism if, both mappingsandn are bijective.

Remarklf (&,n): 01 — Oy is a strong cfsm homomorphism and one-to-one, then

Aq (01, my,r1) = Ao((€ (qn),n (M), € (p1))
and

A1(Q1,my,r1) = A2(& (a1),n (M), & (p1)), Vp1,01 € Q1 andmy € M.

Theorem 1.Let (&1,n1) : 01 — Oz and (&2, n2) : O, — O3 be strong cfsm homomorphism between the cfSins
(Q1,My,.1), 01 = (Q2,M2,.9%) and 03 = (Q3, M3, 24).

(1) Leté; be onto. Then, the compositidéy, n2) o (&1,n1) : O1 — Oz is a strong cfsm homomorphism.
(2) Leté; and&, be one-to-one. Then, the composed cfsm homomorphism isttsny.

Proof. (1) Since(é1,n1) : 01 — Oy and(&2,n2) : O, — O3 are both strong homomorphism, for apy,q; € Q1 and
my € My, we have

As((&20&1) (@), (20 M) (M), (&20&1) (p1))
= Ag(&2 (&1 (aw)) M2 (n1(my)), €2(E1(pr)))
=V { R () m (my) ) &2 (r2) = &2 (& (p) }

Sinceé; is onto, so every; € Q, can be written ag; (s1) for somes; € Q;. And then, for every, € Q, such that

&(r2) = & (&1 (p1)) . Thus,
P (& (an) ma(my) 1) = \/ { As(a o, s1)| & (s1) =12}

Hence,

A3 ((&20 &) (cu), (20 M1) (Mu), (&20 1) (P1))
\/{\/{Al O1, M1, S )‘El(sl):rz}fz(rl):(EZOEl)(pl)}
\/{Al (O, M1, 1 ‘(52051)( )= (52051)(p1)}.
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and

A3((&20&1) (1), (N20n1) (M), (&20&1) (P1))
=A3(&2(&1 (), n2(N1 (M), &2(&1(p1)))
)

n
= A{A2(&1(an),n1(m),r1)| &2 (r1) = & (&1 (p1))}

Sinceé; is onto, so every; € Q, can be written a€; (s1) for somes; € Q. And then, for everyr, € Q, such that

&2(r2) = &(&1(p1)).- Thus,
A2 (&1 (1), n1(my),r1) = A { A1 (e, m,s1)| €1 (s1) =2}

Hence,

As((&20€2) (A) (120 71) (M) (€20 €0) (Pa)
= A A (@m0 & (s1) = 12} &2.(12) = (2080 (p) |
= A {A1(ar,my,s1)[ (E20&1) (s1) = (§20&1) (1)}

(2) Sinceé; andé, are one-to-one, then we have, for gny g; € Q; andmy € My, so

As((&20&1) (a1),(N2on1) (M), (E20&1) (1)) = Az (&1 (an), N1 (M), &1 (pa))
As((&20&1) (q1),(N20n1) (M), (E20 &) (p1)) = As (qu, M4, P1)

and

A3((&20¢&1) (1), (N20n1) (M), (&20&1) (P1)) = A2(&1 (), N1 (M), &1 (Pa))
A3((&20&1) (A1), (N20n1) (M), (&20&1) (P1)) = A1 (Q1, My, P1)-

Hence, proof.

Definition 7. LetO = (Q,M, <) is a cfsm and take,jg € Q. Then,

(1) pis called acubic immediate successof q if there exists ¥ M such thatﬁ(q,v, p) > 0andA (a,v,p) <1

(2) pis called acubic successaf g and q is called source of p if there exists an elemendé such thatd* (9,a,p) >~ 0
andA*(q,a,p) < 1. The set of alcubic successaof g is denoted by @) and the set of altubic sourcesf p is
denoted by CH).

Theorem 2.Letd = (Q,M, &) is a cfsm. Then, for any.@ r € Q, the following properties hold.

(1) aeC(q)
(2) If peC(g)andre C(p), thenre C(q).

Proof.1) SinceA*(q,v,q) = 1 = 0 andA* (q,v,q) =0 < 1, soq € C(q).

2) Takep € C(q) andr € C(p), then there exish,a € M* such thai* (g,m,p) = 0,A* (g,m, p) < 1,Av*(p, a,r) > 0 and
A*(p,a,r) < 1. We using Propositioh, we have

A (g.mar)=\/ {K;(q,m,s)/\ﬁ(s,a,r)}
s€Q

= A (g.mp) AA (p,ar) -0
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and

A*(g,mar)= A\ {A*(a.ms)VA*(sar)}
s€Q

A*(qm,p)VA*(p,ar) <1
Hencer € C(q).

Definition 8. Let = (Q,M, .«7) is a cfsm. Then, the cubic source, cubic successor opergfoC& : [J (Q) — [ (Q)
are defined as:

Cx(T) = {qu:EF(q,m, p) = 0andA* (q,m, p) < 1 for some(m, p) € X* xT}
Co(T)= {peQ:ﬂ;(q,m, p) = 0andA* (q,m, p) < 1for some(q,m) € T xx*}

Note thatCSy (T) andCq (T) are denoted a8S(T) andC(T), respectively. If no confusion creates, the@{q}) and
CS({a})

Theorem 3.Letd = (Q,M, .« is a cfsm and let T and N be any subsets of Q. Then, the follcagsertions hold.

(1) fT CN,thenQT) CC(N) and.CS(T) CCS(N)

(2) TCC(T)and TCC(T).

(3) C(C(T)) =C(T).

(4) C(TUN)=C(T)UC(N)andCSTUN) =CS(T)UC(N).
(5) C(TNN) CC(T)NC(N).

(6) C(T)=T ifand only if CSQ\T) = Q\T

Proof. The proofs of(1), (2), (4), (5) are straightforward. We only prov€s), obviouslyC(T) C C(C(T)). Let
g€ C(C(T)). Then,q € C(p) for somep € C(T). If p e C(T), then there exiss € T such thatp € C(s). Using
Theorenm?2, we haveq € C(s) CC(T) so thatC(C(T)) CC(T). Hence,(3) is true.

(6) AssumeC(T) =T andqg € CS(Q\T). Then,q & CS(p) for somep € Q\T. Thus,pc C(T). If g€ T, then
peC(q) CC(T) =T, which is a contradiction with the fagte Q\.T. Henceg € Q\.T andCS(Q\.T) C Q\\T. Since
Q\.T CCS(Q\T), this follows thalCS(Q\T) = Q\T.

Conversely, supposeS(Q\T) = Q\T. Letqe C(T). Then,q € C(p) forsomep € T. Thus,p CS(q). If g€ Q\T,
thenp € CS(q) C CS(Q\T) = Q\T, which contradicts with the assumption pfe T. Thus,qe T. So,C(T) C T.
SinceT CC(T), it follows thatC(T) =T.

Definition 9. Letd = (Q,M, &) is a cfsm. Therl] satisfies the cubic exchange property if for algE Q and T is any
subset of Q such that@C(T U{qg}) and p¢ C(T), then ge C(TU{p}).

Theorem 4.Letd = (Q,M, .o/} is a cfsm. Then, the following axioms are equivalent.

(1) O holds the cubic exchange property.
(2) (vp,acQ) (peC(q) < qeC(p)).

Proof. Suppose thafl holds the cubic exchange property. Taggy in Q such thatp € C(q) = C(0U{q}). Since
p¢C(0)soge C(0U{p})=C(p). Similarly, we prove that ifyc C(p), thenp € C(q).
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Conversely, suppose thé&2) is true. Takep,qin Q andT is a subset o). If pe C(TU{q}) andp ¢ C(T), then by
using(2), we have
qeC(p) CC(Tu{p}).

Hence,d holds the cubic exchange property.

Definition 10. Let0 = (Q,M, <) be a cfsm and le® = <I§,u> be a cubic set in Q. TherQ, #,M, .o7) is said to be a
cubic subsystem &f if for all p,gq € Q and me M, the following conditions hold.

B(q) = rinf {B(p),B(q.m p)} andu (a) <rinf {u(p), u(,m.p)}

If (Q,%,M, ) is a cubic subsystem, we will writ&, instead of Q, #,M, «7).

Example 2.Let Q = {p,q}, M = {m}, A(gq,m, p) = A(p,m,q) = [0.45,0.55] and A (q,m,p) = A (p,m,q) = 0.5. Now
define% = (B, u) in Q asB(q) = [0.7,0.8], B(p) = [0.45,0.55], u (q) = 0.7 andu (g) = 0.5. Then, clearlyZ is a cubic
subsystem.

Example 3.Let Q = {p,q,r}, M = {ml,mz} A(t,my,s) = [0.45,0.5], A(t,m,s) = [0.55,0.6] and A (t,my,s) = 0.55,
A (t,m,s) = 0.6 forallt,sc Q. Let # = (B, u) be given byB(q) = [0.7,0.75], B(p) = [0.78,0.8], B(p) = [0.55,0.6] and
1 (q)=0.7,u(p) =0.75, u (p) = 0.6. Hence, by routine calculatio#® is a cubic subsystem.

Theorem 5.Letd = (Q,M, <) be a cfsm and le®8 = <I§, K1) be a cubic setin Q. The is a cubic subsystef if and
only if

B(q) = B(p) AA* (g,m,p) andp (q) < {u(p) AA*(g,m,p)}

for all p.q € Q and me M*.

Proof. Assume thatZ is a cubic subsystem af and letp.q € Q andm e M*. We will use the induction for prodfn| = n.
In case ofn = 0, thenm= ¢. Now if p=q, then

B(p) AA*(g,m,p) =B(q) and {u(p) AA* (a.m p)} = (p).

Ifp#q
B(p) AA* (g.m,p) =0=B(q) and {p (p) AA*(q,m p)} =0 < u(q).

Thus, the result is valid fon = 0. Now assume the result is true for gle M* such thaty| =n—1,n> 0. Letm=yx,
wherex € M. Then,

B(p) AA* (q,m, p) = B(p) AA* (g,yX p)

—B(p)A <\/ {E(q,y,S)AA(S,X, p)})

s€Q
{B(p)AA (a9 AAGsX.P)}

{B(p)AAsxp)} <B(0)

v
s€Q
v
s€Q
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and

H(p) VAT (g,mp)=p(p)VA*(Q,y%P)

=u(p)V (/\ {A"(a.y,9) VA (sx, p>}>
seQ

= A{u(P)VA*(q,y,5) VA (sXp)}

Conversely, straightforward.

Definition 11. A cfsmO = (Q,M, &) is called a cubic retrievable if

(Vge Q) (Vme M*) (3t € Q) (ZF (q,mt) = 0andA* (g, mt) < 1)

= (3ae M¥) (fAv*(t,a,q) ~0andA* (t,a,q) < 1) .

Definition 12. Let O = (Q,M, <) be a cfsm and take,gt € Q. Then, r and t are calledubic g-relatedif there exists
me M* such thatd* (g,mr) = 0, A* (g, m,t) = 0, A* (q,m,r) < 1andA* (q,mt) < L.

We say that r and t are cubic g-twins if

(i) randt are called cubic g-related,

(i) C(r)=C(1).
Proposition 2.Letd = (Q,M, <) be a cfsm. Then, the following conditions are equivalent.

(1) vq,r,t € Q, if r andt are cubiog-related, them andt are cubiag-twins.
(2) (vq,r,t €Q)(Va,me M*)(A*(g,m,r) > 0, A*(q,m,t) = 0, A*(g,m,r) < 1landA*(g,mt) <1=peC(r)).

Proof. (1) = (2) : Takep,q,r € Q anda,me M* be such that
A*(g.mr) - 0,A" (g,ma p) - 0,A" (g,mr) < 1andA*(q,ma p) < L.

Since,
A (g,map) =\/ {A* (@muAA(ta, p)} ~0
teQ

and
A*(a,map) = A {A"(@mt)vA*(tap} <l
teQ
Then, by Propositiod, there exists$ € Q such tha’* (q,m,t) = 0, A* (t,a,p) = 0, A* (q,m,t) < 1, A*(t,a, p) < 1. This
mean that andt are cubiog-related. This follows from (1), andt are cubiag-twins, so thapp € C(r) = C(t).

(2) = (1) : Assume thaf2) is true. Takep,q,r € Q be such that andt are cubicg-related. Then, there exists € M*

such that\* (g, mt) = 0, A* (t,m, p) = 0, A* (q,m,t) < 1,A*(t,m,p) < 1. If p € C(t), then there exista € M* such that
A“(g,at) = 0,A*(t,a,p) = 0,A*(q,a,t) < 1,A*(t,a,p) < 1. Thus,

A (amap)=\/ {A(@mtAA (tap)} -0
teQ
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and

A*(g,map)= A {A*(@mt)vA*(tar} <1l
teQ

Hence,p € C(r) by given condition. Similarly, ifp € C(t), thenp € C(r). Thus,r andt are cubicg-twins.
Theorem 6.Let0 = (Q,M, .«7) be a cfsm. Theri] is a cubic retrievable if and only if it hold
)
(Vge Q) (Vme M*) (3t € Q) (Av*(q,m,t) = 0andA* (g,mt) < 1)
= (3aeM¥) (Av*(q,maq) = 0andA*(g,maq) < 1) .
(2) va,r,t € Q, ifrandt are cubic g-related, then r and t are cubic g-twins

Proof. Straightforward

4 Cubic transformation semigroups

In this section, we define cubic transformation semigrouysralated properties. The given concept is a generalizatio
of fuzzy transformation semigroup and intuitionistic fyzransformation semigroups.

Definition 13. A cubic transformation semigroup (in short, cts) is a tripl€ = (Q, X, <), where Q is a non-empty finite
set, X is a finite semigroup ane =(A A} is a cubic set in Q< X x Q such tha{T S1)

_ 1ifa= Qifg=
A(q,e,p)z{aifg%g /\(q,e,p)z{lifg%g

(TS)

Axyp) =\ {A@xn)AArYP) |
reQ

A (qaxyv p) - /\ {)\ (q,x,r)\//\ (rvyv p)}
reQ

forall p,ge Q, x,y € M.

A(a,x,p) = A(,Y, p)

A9, p)=A(a,Y:p)
< ={(Q,X, ) is called a faithful cubic transformation semigroup.

If addition, if ¥ = (Q, X, <) holds the propert>< ) = x=yforanyxye X and pg € Q. Then,

Now takeM* is free monoid with respect to the binary operation conaten of two words. Leim,a € M*. Define a
relation~ onM* by m~ a< A*(g,m, p) = A*(qg,a,p) andA* (g,m,p) = A*(q,a, p) for all p,g € Q.

Lemma l.Letd = (Q,M, <) be a cfsm. Then, a relatior on M* is an equivalence relation, where*Nk a semigroup
with identitye.

Proof. Let p,g € Q and ma € M*. Then, clearly ~ is reflexive. i.e E(q,m,p) = ﬁ(q,m, p) and
A*(g,m,p) = A*(g,m, p). Thusm~ a.
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Symmetric: Now lein~ a. Then,

A" (q,m,p) = A (g,a,p) andA* (g,m p) = A*(q,a,p)
A*(g,a,p) = A*(q,m,p) andA*(g,a,p) =A"(q,m,p).

Hencea~ m.
Transitive: Takep,q € Q andm,a,b € M* be such tham~ aanda ~ b. Then,

A (g,m, p) = A*(g,a,p) andA* (g,m,p) = A* (q,a,p) (1)

and
A (g,a,p) = A* (q,b, p) andA* (g,a,p) = A" (g,b, p). ()

From equatiori and2, its follow that

A" (q,m, p) = A*(g,a,p) = A" (q,b, p) andA* (q,m, p) = A* (q,a,p) = A* (q,b, p)
A (g,m,p) = A" (g,b, p) andA* (g,m, p) = A* (g,b,p) = m~b.

Hence,~ is an equivalence relation dvi*.
For anym € M*, we denotém] = {a€ M*|m~ a} andE (O0) = {[m]|me M*}.

Proposition 3. Let 0 = (Q,M, <) be a cfsm and define a binary operatignon E(00) by [m] © [a] = [m4d for all
[m©[a] € E(O). Then(E(O),®) is a semigroup.

Proof. Straightforward.

Example 4.Let O = (Q,M, «7) be cfsm, wher&® = {q} andX = {x3, %2} and.</ :@,)\) is defined by

A(0d,x1,q) = A(d,x1,q) = [0.5,0.6]
/\ (q7X17Q) = /\ (q7Xl7q) = 05

For anya,b € M*, we have

A" (q,a,q) = A" (q,b,q) = [0.5,0.55
A (qa a, Q) =A (q, b, q) =0.6.

Hencea~ band soE (O) = {[¢],[a]}, obviously[e] is identity anda] © [a] = [a].

We can easily construct a faithful transformation semigrfsam any transformation semigroup in the case of cubic set.

A(9,%,p) = A(,Y, p)

A(a,xp) =A(a,y;p)
relation onX. Let [[x]] denote the equivalence class@induced byx. Let X/ ~= {[[x]] : x € X}.

Define a relatiore on X by x~ y < (p,q € Q) < ) for all x,y € X. Hence %" is a equivalence

Theorem 7.'Let .¥ = (Q, X, o) be cft andx a equivalence relation on X. Then,

(i) The equivalence relatios is a congruence and the quotient set % is finite semigroup.
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(i) The triple.” = (Q,X/ ~,.7) is a faithful cubic transformation semigroup, where
o Qx X/~ xQ— [I] x [0,1] is given by
A(a,[[X] p) = A(d,x, p) andA (g, [[X]], p) = A (d,X, P)
forall [[x]] € X/ ~and pge Q.
Proof.
(i) Takex,y € X such thak =~ y. If we X, then, for anyp,q € Q.
Algxwp) =/ {A@Gxn) AArwp)}
reQ
=V {A@ynrAEw) }
reQ
= A(g,yw.p)
and
Aaxwp) = A {A(axr)VA(rwp)}
reQ
= A{A @y VA (Lwp)}
reQ
=A(q,ywp).
So, xw = yw. Similarly we can prove ik ~ w = yx= yw Hence,~ is a congruence. Therefobe/ ~ is finite

semigroup with binary operation defined ] = [[X]] = [[xl].

(i) The mappinge : Q x X/ ~ xQ — [I] x [0,1] is well defined. Next we prove that’ =

a finite semigroup with identitg, then[[€]] is the identity ofX/ ~. Since

A(a.[€],p) =A(g.e.p) = {%:Ig; E

X(q,[[en,mm,e,p){2:;3;2

Thus, we conclude thatSl holds.
If we consider anyk,w € X, and anyp,q € Q, then

A0, () W], ) = A(g,xw p) = v{ q,xrAA<rwp>}

and

A (0[] [W],p) = A (axwp) = A {A (a,%1) VA (r,w.p)}
reQ

- A {X(q,[[x]],r)vx(r, [[W]],p)}-

reQ

(Q,X/ =, &) cft. If Xis
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Thus, TS holds.

Finally, for any[[x]],[[y]] € X/ ~ and for anyp,q € Q

>
>

(a,[[y]]. p) = A(q.x, p) =A(q, W, p) = X =Yy
A(a,[yll,p) = [[X] = [I¥]]-

(a,[¥], p) =
(a,[[¥], p)

>

Hence,” = (Q,X/ ~,.</) is a faithful.

Definition 14.Let.#1 = (Q1,X1,71) and.%2 = (Q2, X2,.27>) be ctss. A cts homomorphism frar to .7, is a fair (&, 1)
such that

() &:Q1— Qzisamap.

(i) n: Xy — Xz is a semigroup homomorphism.
(iii) 1f X1 and X% are semigroup having identity elemenis®eX; and & € Xy, thenn (e1) = ey.
(iv) Forany p,01 € Q1 and x € X;.

Aq (G X1, pr) < A2 (& (an),n (xa), € (p1))
and

A1(0z, X1, P1) > A2 (& (q1),n (X1), € (p1))-
We denoted by ,n) : /1 — .

A cts homomorphisni€, n) is calledstrongif, in addition, for anyps,q1 € Q1 andx; € X,

P (& (a),n (xa). & (pr)) = V/ { A (quxa,m0)| € () = € (p) }
and

A2(&(aqn),n (x1), & (p1) = A\ { A (ae,xa,r1) 1N (r1) = n (p1)} -
A cts homomorphisni€, n) is called isomorphism if, both mappingsandn are bijective.

Remarklf (&,n): 01 — Oy is a strong cts homomorphism aédne-to-one, then for angy, q; € Q1 andx; € X3

A(dr,my,r1) = Ag((€ (1) ,n (M), € (pa))

and
A1(G1,my, 1) = A2 (& (qa), N (M), & (p1))-

Theorem 8.The set of all cfts together with all the cts homomorphisnstitiutes a category.

Proof. First, since the faifidg, idx) is an cts homomorphism for any ct§ = (Q,X/ =, <). Next we prove, it#1, .72,
3 are cubic transformation semigroups and let us considertthkomomorphism&i,n1) : 1 — S and(&2,n2) :
S — 3. Then, the compositiof€z 0 &1, 010 12) : /1 — 3 is also homomorphism, denoted B8, né12) o (&1, N1).

The next result, as well as his proof, is same as Thedrem

Theorem 9. Let .1, .7, .3 be ctss and le{(é&1,n1) : 1 — %% and (&2,n2) : 2 — .3 be bothstrong cts
homomorphisms.

(i) If & isonto, then(&y,n2) 0 (&1,m) : S1 — 3 is astrongcts homomorphism.
(ii) If &1, &> are one to one, then the composed cts homomorphism is absmstr
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