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Abstract: This paper provides a new generalization of fuzzy finite state machines, fuzzy transformation semigroups and their
relationship. Consider a cubic structure, we introduce cubic finite state machines, cubic transformation semigroups,cubic successor,
cubic exchange properties cubic subsystems, cubic submachines, cubic q-twins, cubic retrievable and study fundamental properties of
them. We provide relationship between cubicq-twins and a cubicq-related. We provide a characterization of a cubic retrievable. We
define cfsm homomorphism and investigated related properties. We show that the composition of strong cfsm homomorphismis also
strong. We also define cubic transformation semigroup and itrelated properties. We define cts homomorphism and its properties.
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1 Introduction

Mathematical models of classical computation, automata have been an important area in theoretical computer science

[37]. It started from a seminal paper of Kleene [38], and within a few years developed into a rich mathematical research

topic. From the very beginning finite automata constituted acore of computer science. One of the reason is that they

capture very fundamental ideas is witnessed by a numerous different characterizations of the family of rational

languages, i.e. languages defined by finite automata [37]. In fact, the interrelation of finite automata and their

applications in computer science is a splendid example of a really fruitful connection of theory, practice and these will

accept regular language [39]. Finite automata played a crucial role in the theory of programming languages, compiler

constructions, switching circuit design, controllers, neural networks, text editor and lexical analyzer [41]. The topic of

these investigations belongs to the theoretical soft computing (fuzzy structures). Indeed, it is well known that semigroups

are basic structures in many applied branches of information sciences, like finite state machines or automata, formal

languages, coding theory and others. To be more precise, structure theory of finite state machines (automata) is based on

transformation semigroups. Algebraic automata theory provide powerful decomposition results for finite transformation

semigroups by cascade simple parts. Any full transformation semigroup is regular. The fuzzy set theory, proposed by

Zadeh [42] is a framework for dealing uncertainty. The literature on fuzzy set theory and its applications have been

growing rapidly. Research on fuzzy set theory has received much attention in recent years. Applications of fuzzy set

theory have been studied in different areas, that is, artificial intelligence, computer sciences, control engineering, expert,

robotics, automat theory, finite state machine, graph theory and others. Fuzzy set is a type of important mathematical

structure to epitomize a assortment of objects whose boundary is vague. There are some type of fuzzy set extensions in

the fuzzy set theory, for example: interval-valued fuzzy sets, intuitionistic fuzzy sets, bipolar fuzzy set and vague sets etc.

Cubic set which was introduced by Jun [36], is an extension of fuzzy set and interval valued fuzzy set and intuitionistic
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fuzzy set. Jun combined interval valued fuzzy set and fuzzy set to introduced cubic sets and also defined P-union,

P-intersection, R-union and R-intersection of cubic sets,and investigate several related properties. Cubic sets is anew

framework for dealing uncertainty when fuzzy sets, interval valued fuzzy sets and intuitionistic fuzzy sets fail dealing

uncertainty.

The concept of transformation semigroup, covering, cascade product and wreath product play vital role in the study of

automata [23]. Since Wee [20] in 1967 introduced the concept of fuzzy automata followingZadeh [42], fuzzy automata

theory has been developed by many researchers. Malik et al. [2,3,4,5] introduced the concepts of fuzzy state machines

and fuzzy transformation semigroups based on Wee’s conceptof fuzzy automata and related concepts and applied

algebraic technique. In [1], Kim et al. introduced the notion of T-generalized state machine and T-generalized

transformation semigroup that are extensions of fuzzy state machine and fuzzy transformation semigroup, respectively.

They defined the notions of fuzzy finite state submachine of a fuzzy finite state machine, retrievable, separated and

connected fuzzy finite state machines and discussed their basic properties. They also introduced a decomposition

theorem for fuzzy finite state machines in terms of primary fuzzy finite state submachines. Kumbhojkar and Chaudhari

[25] gave different ways of constructing products of fuzzy finite state machines and their mutual relationship, through

isomorphism and coverings.

Algebraic technique is very significant in the study of fuzzyautomat theory [2,3,4,5]. Algebraic properties and

minimization of fuzzy automata and fuzzy languages studiedby many authors [7,8,9,10,11,12,13,14,15]. One of the

essential problems in algebraic fuzzy automata theory is decomposition theory of fuzzy automata, which gives a way for

stimulating complex machine by simpler machine [23]. In classical fuzzy automata, the decomposition theoremshave

been given by utilizing successor operators and submachines [34,35]. In [33], Bavel introduced source and successor

operators to used explore subautomata, separability, retrievability and homomorphism. Moreover, these operators are

often applied to topology, fuzzy directed graphs, fuzzy abstract algebra, model logic and interval structure [26,27,28,

40]. Recently, Jun have been introduced intuitionistic ffsmsand intuitionistic ftss, as well as studied their relationship

(see [16,17,18,19]), but it is clear, looking through the literature, that thecubic sets are more advisable in order to model

uncertainty in some applications. Taking cubic structure,We defined cubic finite state machine (cfsm) and cubic

transformation semigroups (cts) as a generalization of fuzzy finite state machine, fuzzy transformation semigroups [2,3,

4,5], intuitionistic fuzzy finite state machine and intuitionistic fuzzy transformation semigroups [16,17,18,19]. We also

define cubic successor, cubic exchange properties cubic subsystems, cubic submachines, cubic q-twins, cubic retrievable,

and study related properties. Using a cubic finite state machine, we make two finite semigroups with identity, and show

that they are isomorphic. We also introduce the notion of cubic admissible relation, and initiate its characterization. We

establish an isomorphism between a cubic finite state machine and the quotient structure of another cubic finite state

machine.

In this article, we apply the notion of cubic sets to finite state machine to introduce the concept of cubic finite state

machines, cubic transformation semigroups, cubic successor, cubic exchange properties cubic subsystems, cubic

submachines, cubic q-twins, cubic retrievable, and study related properties. We show relationship between cubicq-twins

and a cubicq-related. We provide a characterization of a cubic retrievable. We define cfsm homomorphism and

investigated related properties. We show that the composition of strong cfsm homomorphism is also strong. We also

define cubic transformation semigroup and it related properties. We define cts homomorphism and its properties.

2 Basic concept

A mapλ : X → [0,1] is called a fuzzy set ofX. A function A : X → [I ] is called an interval-valued fuzzy set (shortly, an

IVF set) in X. Let [I ] stands for the set of all sub interval of[0,1] and [I ]X stand for the set of all IVF ofX. For every
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A ∈ [I ]X andx ∈ X, A(x) = [A−(x),A+(x)] is called the degree of membership of an elementx to A, whereA− : X → I

andA+ : X → I are fuzzy sets inX which are called a lower fuzzy set and an upper fuzzy set inX, respectively. For

simplicity, we denoteA= [A−,A+]. For everyA,B∈ [I ]X, we defineA⊆ B if and only if A(x)� B(x) for all x∈ X. A map

A =〈Ã,λ 〉 : X → [I ]× [0,1] is called a cubic set.

Definition 1. A fuzzy finite state machine (fsm, for short) is a tripleM = 〈Q,X,δ 〉 where Q and X are finite non-empty

sets, called the set of states and the set of input symbols, respectively, andδ is a fuzzy set in Q×X×Q.

Definition 2. Let ℵ = 〈Q,M,δ 〉 be a ffsm. Then, define a fuzzy setδ ∗ in Q×M∗×Q as follow:

δ ∗ (q,ε, p) =

{
1 if q = p

0 if q 6= p

δ ∗ (q,mn, p) =
∨

r∈Q

{δ ∗ (q,m, r)∧δ ∗ (r,n, p)}

for all p,q∈ Q, m,a∈ M∗.

Definition 3. A fuzzy transformation semigroups (in short, fts) is a triple S = 〈Q,X,λ 〉, where Q is a non-empty finite

set, X is a finite semigroup with identityε andλ is a fuzzy set in Q×X×Q such that

(TS1)

λ (q,ε, p) =

{
1 if q = p

0 if q 6= p

(TS2)

λ (q,xy, p) =
∨

r∈Q

{λ (q,x, r)∧λ (r,y, p)}

for all p,q∈ Q, x,y∈ X.

3 Cubic finite state machine

In [2,5], Malik et al. defined fuzzy finite state machine (automata) based on Wee’s concept of fuzzy automata and related

concepts and applied algebraic technique. Jun introduced the concept of intuitionistic fuzzy finite state machine and

studied fundamental results. We define cubic finite state machines, cubic successor, cubic exchange properties cubic

subsystems, cubic submachines, cubic q-twins, cubic retrievable, and study related properties. The present concept is

generalization the concept of Malik et al [2,5] and Jun concept [17].

Definition 4. A cubic finite state machine (cfsm, shortly) is a tripleℵ = 〈Q,M,A 〉, where Q and M are finite non-empty

sets, called the set of states and the set of input symbols, respectively, andA =〈Ã,λ 〉 is a cubic set in Q×M×Q.

Example 1.Let Q= {p1, p2, p3, p4, p5, p6, p7} andX = {x} and letA =〈Ã,λ 〉 be a cubic set inQ×M×Q defined by

Ã(p1,x, p2) = [0.7,0.8] , Ã(p1,x, p3) = [0.3,0.35] , Ã(p1,x, pn) = 0̃,n= 1,4, ...7

Ã(p2,x, p4) = [0.6,0.65] , Ã(p1,x, p5) = [0.4,0.45] , Ã(p1,x, pm) = 0̃,m= 1,2,3,6,7

Ã(p3,x, p6) = [0.1,0.15] , Ã(p1,x, p7) = [0.6,0.65] , Ã(p1,x, pl ) = 0̃, l = 1,2, ...6

Ã(ps,x, pt) = [0,0.2] ,s= 4, ...7 and t = 1, ...7
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and

λ̃ (p1,x, p2) = 0.7,λ (p1,x, p3) = 0.3,λ (p1,x, pn) = 0,n= 1,4, ...7

λ (p2,x, p4) = 0.6,λ (p1,x, p5) = 0.4,λ (p1,x, pm) = 0,m= 1,2,3,6,7

λ (p3,x, p6) = 0.1,λ (p1,x, p7) = 0.6,λ (p1,x, pl ) = 0, l = 1,2, ...6

λ (ps,x, pt ) = 0.1,s= 4, ...7 and t = 1, ...7

Thus, ℵ = 〈Q,M,A 〉 is a cubic finite state machine

Let M∗ denote the set of all words of elements ofM of finite length. Let|m| denote the length ofm for everym∈ M∗ and

ε denote the the empty word inM∗. We generalized the following definition by using thet̃-norm and cot-norm.

Definition 5. Let ℵ = 〈Q,M,A 〉 be a cfsm. Then, define a cubic setA ∗=〈Ã∗,λ ∗〉 in Q×M∗×Q as follow

Ã∗ (q,ε, p) =

{
1̃ if q = p

0̃ if q 6= p
λ ∗ (q,ε, p) =

{
0 if q = p

1 if q 6= p

and

Ã∗ (q,mn, p) =
∨

r∈Q

{
Ã∗ (q,m, r)∧ Ã∗ (r,n, p)

}

λ ∗ (q,mn, p) =
∧

r∈Q

{λ ∗ (q,m, r)∨λ ∗ (r,n, p)}

for all p,q∈ Q, m∈ M∗ and n∈ M.

Proposition 1.Let ℵ = 〈Q,M,A 〉 be a cfsm. Then, the following hold

Ã∗ (q,ma, p) =
∨

r∈Q

{
Ã∗ (q,m, r)∧ Ã∗ (r,a, p)

}

and

λ ∗ (q,ma, p) =
∧

r∈Q

{λ ∗ (q,m, r)∨λ ∗ (r,a, p)}

for all p,q∈ Q, m,a∈ M∗.

Proof.Takep,q∈ Q andm,n∈ M∗. Then, we shall prove the result by using induction on|a|= n. In case ofn= 0, then

a= ε and soma= mε = m. Hence,

∨

r∈Q

{
Ã∗ (q,m, r)∧ Ã∗ (r,a, p)

}
=
∨

r∈Q

{
Ã∗ (q,m, r)∧ Ã∗ (r,ε, p)

}

= Ã∗ (q,mε, r) = Ã∗ (q,ma, r)

Ã∗ (q,ma, r) =
∨

r∈Q

{
Ã∗ (q,m, r)∧ Ã∗ (r,a, p)

}
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and

∧

r∈Q

{λ ∗ (q,m, r)∧λ ∗ (r,a, p)}=
∧

r∈Q

{λ ∗ (q,m, r)∨λ ∗ (r,ε, p)}

= λ ∗ (q,mε, r) = λ ∗ (q,ma, r)

λ ∗ (q,ma, r) =
∧

r∈Q

{λ ∗ (q,m, r)∨λ ∗ (r,a, p)} .

Hence, the result is valid forn= 0. Assume that the result is true for allu∈ M∗ such that|u|= n−1, n> 0. Leta= uv,

whereu∈ M∗ andv∈ M. Then,

Ã∗ (q,ma, r) = Ã∗ (q,muv, r) =
∨

r∈Q

{
Ã∗ (q,mu, r)∧ Ã∗ (r,v, p)

}

=
∨

r∈Q

{
∨

s∈Q

{
Ã∗ (q,m,s)∧ Ã∗ (s,u, r)

}
∧ Ã∗ (r,v, p)

}

=
∨

r,s∈Q

{
Ã∗ (q,m,s)∧ Ã∗ (s,u, r)∧ Ã∗ (r,v, p)

}

=
∨

s∈Q

{
Ã∗ (q,m,s)∧

(
∨

r∈Q

{
Ã∗ (s,u, r)∧ Ã∗ (r,v, p)

})}

=
∨

s∈Q

{
Ã∗ (q,m,s)∧ Ã∗ (s,uv, p)

}

=
∨

s∈Q

{
Ã∗ (q,m,s)∧ Ã∗ (s,a, p)

}

and

λ ∗ (q,ma, r) = λ ∗ (q,muv, r) =
∧

r∈Q

{λ ∗ (q,mu, r)∨λ ∗ (r,v, p)}

=
∧

r∈Q

{
∧

s∈Q

{λ ∗ (q,m,s)∨λ ∗ (s,u, r)}∨λ ∗ (r,v, p)

}

=
∧

r,s∈Q

{λ ∗ (q,m,s)∨λ ∗ (s,u, r)∨λ ∗ (r,v, p)}

=
∧

s∈Q

{
λ ∗ (q,m,s)∨

(
∧

r∈Q

{λ ∗ (s,u, r)∨λ ∗ (r,v, p)}

)}

=
∧

s∈Q

{λ ∗ (q,m,s)∨λ ∗ (s,uv, p)}

=
∧

s∈Q

{λ ∗ (q,m,s)∨λ ∗ (s,a, p)} .

Thus, the result is true for|a|= n.

Definition 6. Let ℵ1 = 〈Q1,M1,A1〉 andℵ2 = 〈Q2,M2,A2〉 be two cfsms. A cfsm homomorphism fromℵ1 to ℵ2 is fair

(ξ ,η) of mappings,ξ : Q1 −→ Q2 andη : M1 −→ M2, such that

Ã1 (q1,m1, p1)� Ã2 (ξ (q1) ,η (m1) ,ξ (p1))
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and

λ1 (q1,m1, p1)≥ λ2(ξ (q1) ,η (m1) ,ξ (p1)) ∀p1,q2 ∈ Q1 and m1 ∈ M1.

We denoted by(ξ ,η) : ℵ1 −→ ℵ2.

A cfsm homomorphism(ξ ,η) is calledstrongif, in addition, for anyp1,q1 ∈ Q1 andm1 ∈ M1,

Ã2 (ξ (q1) ,η (m1) ,ξ (p1)) =
∨{

Ã1 (q1,m1, r1)
∣∣∣ξ (r1) = ξ (p1)

}

and

λ2(ξ (q1) ,η (m1) ,ξ (p1)) =
∧

{λ1 (q1,m1, r1)|η (r1) = η (p1)} .

A cfsm homomorphism(ξ ,η) is called isomorphism if, both mappingsξ andη are bijective.

Remark.If (ξ ,η) : ℵ1 −→ ℵ2 is a strong cfsm homomorphism and one-to-one, then

Ã1 (q1,m1, r1) = Ã2((ξ (q1) ,η (m1) ,ξ (p1))

and

λ1(q1,m1, r1) = λ2 (ξ (q1) ,η (m1) ,ξ (p1)) , ∀p1,q1 ∈ Q1 andm1 ∈ M1.

Theorem 1.Let (ξ1,η1) : ℵ1 −→ ℵ2 and(ξ2,η2) : ℵ2 −→ ℵ3 be strong cfsm homomorphism between the cfsmsℵ1 =

〈Q1,M1,A1〉, ℵ1 = 〈Q2,M2,A2〉 andℵ3 = 〈Q3,M3,A3〉.

(1) Letξ1 be onto. Then, the composition(ξ2,η2)◦ (ξ1,η1) : ℵ1 −→ ℵ3 is a strong cfsm homomorphism.

(2) Letξ1 andξ2 be one-to-one. Then, the composed cfsm homomorphism is alsostrong.

Proof.(1) Since(ξ1,η1) : ℵ1 −→ ℵ2 and(ξ2,η2) : ℵ2 −→ ℵ3 are both strong homomorphism, for anyp1,q1 ∈ Q1 and

m1 ∈ M1, we have

Ã3 ((ξ2◦ ξ1)(q1) ,(η2◦η1) (m1) ,(ξ2 ◦ ξ1)(p1))

= Ã3 (ξ2 (ξ1 (q1)) ,η2 (η1 (m1)) ,ξ2 (ξ1 (p1)))

=
∨{

Ã2 (ξ1 (q1) ,η1 (m1) , r1)
∣∣∣ξ2 (r1) = ξ2 (ξ1 (p1))

}

Sinceξ1 is onto, so everyr2 ∈ Q2 can be written asξ1 (s1) for somes1 ∈ Q1. And then, for everyr2 ∈ Q2 such that

ξ2 (r2) = ξ2 (ξ1 (p1)) . Thus,

Ã2 (ξ1 (q1) ,η1 (m1) , r1) =
∨{

Ã1 (q1,m1,s1)
∣∣∣ξ1 (s1) = r2

}
.

Hence,

Ã3 ((ξ2◦ ξ1)(q1) ,(η2◦η1)(m1) ,(ξ2 ◦ ξ1)(p1))

=
∨{∨{

Ã1(q1,m1,s1)
∣∣∣ξ1 (s1) = r2

}
ξ2 (r1) = (ξ2 ◦ ξ1)(p1)

}

=
∨{

Ã1 (q1,m1,s1)
∣∣∣(ξ2 ◦ ξ1) (s1) = (ξ2◦ ξ1) (p1)

}
.
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and

λ3 ((ξ2◦ ξ1) (q1) ,(η2 ◦η1)(m1) ,(ξ2◦ ξ1)(p1))

= λ3 (ξ2 (ξ1 (q1)) ,η2 (η1 (m1)) ,ξ2 (ξ1 (p1)))

=
∧

{λ2 (ξ1 (q1) ,η1 (m1) , r1)|ξ2 (r1) = ξ2 (ξ1 (p1))}

Sinceξ1 is onto, so everyr2 ∈ Q2 can be written asξ1 (s1) for somes1 ∈ Q1. And then, for everyr2 ∈ Q2 such that

ξ2 (r2) = ξ2 (ξ1 (p1)) . Thus,

λ2(ξ1 (q1) ,η1 (m1) , r1) =
∧

{λ1 (q1,m1,s1)|ξ1 (s1) = r2} .

Hence,

λ3 ((ξ2◦ ξ1) (q1) ,(η2 ◦η1)(m1) ,(ξ2◦ ξ1)(p1))

=
∧{∧

{λ1 (q1,m1,s1)|ξ1 (s1) = r2}ξ2 (r1) = (ξ2◦ ξ1)(p1)
}

=
∧

{λ1 (q1,m1,s1)|(ξ2 ◦ ξ1) (s1) = (ξ2◦ ξ1) (p1)} .

(2) Sinceξ1 andξ2 are one-to-one, then we have, for anyp1, q1 ∈ Q1 andm1 ∈ M1, so

Ã3 ((ξ2 ◦ ξ1) (q1) ,(η2 ◦η1)(m1) ,(ξ2◦ ξ1) (p1)) = Ã2 (ξ1 (q1) ,η1 (m1) ,ξ1 (p1))

Ã3 ((ξ2 ◦ ξ1) (q1) ,(η2 ◦η1)(m1) ,(ξ2◦ ξ1) (p1)) = Ã1 (q1,m1, p1)

and

λ3 ((ξ2 ◦ ξ1) (q1) ,(η2 ◦η1)(m1) ,(ξ2◦ ξ1) (p1)) = λ2 (ξ1 (q1) ,η1 (m1) ,ξ1 (p1))

λ3 ((ξ2 ◦ ξ1) (q1) ,(η2 ◦η1)(m1) ,(ξ2◦ ξ1) (p1)) = λ1 (q1,m1, p1) .

Hence, proof.

Definition 7. Let ℵ = 〈Q,M,A 〉 is a cfsm and take p,q∈ Q. Then,

(1) p is called acubic immediate successorof q if there exists v∈ M such that̃A(q,v, p)≻ 0̃ andλ (q,v, p)< 1

(2) p is called acubic successorof q and q is called source of p if there exists an element a∈M∗ such that̃A∗ (q,a, p)≻ 0̃

and λ ∗ (q,a, p) < 1. The set of allcubic successorof q is denoted by C(q) and the set of allcubic sourcesof p is

denoted by CS(p).

Theorem 2.Let ℵ = 〈Q,M,A 〉 is a cfsm. Then, for any p.q, r ∈ Q, the following properties hold.

(1) q∈C(q)

(2) If p ∈C(q) and r∈C(p), then r∈C(q).

Proof.1) SinceÃ∗ (q,v,q) = 1̃≻ 0̃ andλ ∗ (q,v,q) = 0< 1, soq∈C(q) .

2) Takep∈C(q) andr ∈C(p), then there existm,a∈ M∗ such that̃A∗ (q,m, p)≻ 0̃, λ ∗ (q,m, p)< 1, Ã∗ (p,a, r)≻ 0̃ and

λ ∗ (p,a, r)< 1. We using Proposition1, we have

Ã∗ (q,ma, r) =
∨

s∈Q

{
Ã∗ (q,m,s)∧ Ã∗ (s,a, r)

}

� Ã∗ (q,m, p)∧ Ã∗ (p,a, r)≻ 0̃
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and

λ ∗ (q,ma, r) =
∧

s∈Q

{λ ∗ (q,m,s)∨λ ∗ (s,a, r)}

≤ λ ∗ (q,m, p)∨λ ∗ (p,a, r)< 1.

Hence,r ∈C(q).

Definition 8. Let ℵ = 〈Q,M,A 〉 is a cfsm. Then, the cubic source, cubic successor operator CQ, CSQ :℘(Q)−→℘(Q)

are defined as:

CSQ(T) =
{

q∈ Q : Ã∗ (q,m, p)≻ 0̃ andλ ∗ (q,m, p)< 1 for some(m, p) ∈ X∗×T
}

CQ (T) =
{

p∈ Q : Ã∗ (q,m, p)≻ 0̃ andλ ∗ (q,m, p)< 1 for some(q,m) ∈ T ×X∗
}

Note thatCSQ (T) andCQ (T) are denoted asCS(T) andC(T), respectively. If no confusion creates, thenC({q}) and

CS({q}).

Theorem 3.Let ℵ = 〈Q,M,A 〉 is a cfsm and let T and N be any subsets of Q. Then, the followingassertions hold.

(1) If T ⊆ N, then C(T)⊆C(N) and.CS(T)⊆CS(N)

(2) T ⊆C(T) and T⊆C(T) .

(3) C(C(T)) =C(T) .

(4) C(T ∪N) =C(T)∪C(N) and CS(T ∪N) =CS(T)∪C(N) .

(5) C(T ∩N)⊆C(T)∩C(N) .

(6) C(T) = T if and only if CS(Q�T) = Q�T

Proof. The proofs of(1), (2), (4), (5) are straightforward. We only prove(3), obviously C(T) ⊆ C(C(T)) . Let

q ∈ C(C(T)). Then,q ∈ C(p) for somep ∈ C(T). If p ∈ C(T), then there exists ∈ T such thatp ∈ C(s). Using

Theorem2, we haveq∈C(s)⊆C(T) so thatC(C(T))⊆C(T) . Hence,(3) is true.

(6) AssumeC(T) = T and q ∈ CS(Q�T). Then,q ∈ CS(p) for somep ∈ Q�T. Thus, p ∈ C(T). If q ∈ T, then

p∈C(q)⊆C(T) = T, which is a contradiction with the factp∈ Q�T. Hence,q∈ Q�T andCS(Q�T)⊆ Q�T. Since

Q�T ⊆CS(Q�T), this follows thatCS(Q�T) = Q�T.

Conversely, supposeCS(Q�T) = Q�T. Let q∈C(T). Then,q∈C(p) for somep∈ T. Thus,p∈CS(q) . If q∈ Q�T,

then p ∈ CS(q) ⊆ CS(Q�T) = Q�T, which contradicts with the assumption ofp ∈ T. Thus,q ∈ T. So,C(T) ⊆ T.

SinceT ⊆C(T) , it follows thatC(T) = T.

Definition 9. Let ℵ = 〈Q,M,A 〉 is a cfsm. Then,ℵ satisfies the cubic exchange property if for all p,q∈ Q and T is any

subset of Q such that p∈C(T ∪{q}) and p/∈C(T), then q∈C(T ∪{p}).

Theorem 4.Let ℵ = 〈Q,M,A 〉 is a cfsm. Then, the following axioms are equivalent.

(1) ℵ holds the cubic exchange property.

(2) (∀p,q∈ Q) (p∈C(q)⇔ q∈C(p)) .

Proof. Suppose thatℵ holds the cubic exchange property. Takep,q in Q such thatp ∈ C(q) = C( /0∪{q}) . Since

p /∈C( /0) soq∈C( /0∪{p}) =C(p). Similarly, we prove that ifq∈C(p), thenp∈C(q).
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Conversely, suppose that(2) is true. Takep,q in Q andT is a subset ofQ. If p ∈ C(T ∪{q}) and p /∈ C(T), then by

using(2), we have

q∈C(p)⊆C(T ∪{p}) .

Hence,ℵ holds the cubic exchange property.

Definition 10. Let ℵ = 〈Q,M,A 〉 be a cfsm and letB = 〈B̃,µ〉 be a cubic set in Q. Then,〈Q,B,M,A 〉 is said to be a

cubic subsystem ofℵ if for all p,q∈ Q and m∈ M, the following conditions hold.

B̃(q)� r inf
{

B̃(p) , B̃(q,m, p)
}

andµ (q)≤ r inf {µ (p) ,µ (q,m, p)}

If 〈Q,B,M,A 〉 is a cubic subsystem, we will writeB, instead of〈Q,B,M,A 〉.

Example 2.Let Q = {p,q}, M = {m}, Ã(q,m, p) = Ã(p,m,q) = [0.45,0.55] andλ (q,m, p) = λ (p,m,q) = 0.5. Now

defineB = 〈B̃,µ〉 in Q asB̃(q) = [0.7,0.8], B̃(p) = [0.45,0.55], µ (q) = 0.7 andµ (q) = 0.5. Then, clearlyB is a cubic

subsystem.

Example 3. Let Q = {p,q, r}, M = {m1,m2}, Ã(t,m1,s) = [0.45,0.5] , Ã(t,m,s) = [0.55,0.6] andλ (t,m1,s) = 0.55,

λ (t,m,s) = 0.6 for all t,s∈ Q. Let B = 〈B̃,µ〉 be given byB̃(q) = [0.7,0.75] , B̃(p) = [0.78,0.8] , B̃(p) = [0.55,0.6] and

µ (q) = 0.7, µ (p) = 0.75, µ (p) = 0.6. Hence, by routine calculationB is a cubic subsystem.

Theorem 5.Letℵ = 〈Q,M,A 〉 be a cfsm and letB = 〈B̃,µ〉 be a cubic set in Q. Then,B is a cubic subsystemℵ if and

only if

B̃(q)� B̃(p)∧ Ã∗ (q,m, p) andµ (q)≤ {µ (p)∧λ ∗ (q,m, p)}

for all p.q∈ Q and m∈ M∗.

Proof.Assume thatB is a cubic subsystem ofℵ and letp.q∈ Q andm∈ M∗. We will use the induction for proof|m|= n.

In case ofn= 0, thenm= ε. Now if p= q, then

B̃(p)∧ Ã∗ (q,m, p) = B̃(q) and{µ (p)∧λ ∗ (q,m, p)}= µ (p) .

If p 6= q

B̃(p)∧ Ã∗ (q,m, p) = 0̃� B̃(q) and{µ (p)∧λ ∗ (q,m, p)}= 0≤ µ (q) .

Thus, the result is valid forn= 0. Now assume the result is true for ally∈ M∗ such that|y| = n−1, n> 0. Letm= yx,

wherex∈ M. Then,

B̃(p)∧ Ã∗ (q,m, p) = B̃(p)∧ Ã∗ (q,yx, p)

= B̃(p)∧

(
∨

s∈Q

{
Ã∗ (q,y,s)∧ Ã(s,x, p)

})

=
∨

s∈Q

{
B̃(p)∧ Ã∗ (q,y,s)∧ Ã(s,x, p)

}

=
∨

s∈Q

{
B̃(p)∧ Ã(s,x, p)

}
� B̃(q)
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and

µ (p)∨λ ∗ (q,m, p) = µ (p)∨λ ∗ (q,yx, p)

= µ (p)∨

(
∧

s∈Q

{λ ∗ (q,y,s)∨λ (s,x, p)}

)

=
∧

s∈Q

{µ (p)∨λ ∗ (q,y,s)∨λ (s,x, p)}

=
∧

s∈Q

{µ (p)∨λ (s,x, p)} ≥ λ (q) .

Conversely, straightforward.

Definition 11. A cfsmℵ = 〈Q,M,A 〉 is called a cubic retrievable if

(∀q∈ Q)(∀m∈ M∗) (∃t ∈ Q)
(

Ã∗ (q,m, t)≻ 0̃ andλ ∗ (q,m, t)< 1
)

⇒ (∃a∈ M∗)
(

Ã∗ (t,a,q)≻ 0̃ andλ ∗ (t,a,q)< 1
)
.

Definition 12. Let ℵ = 〈Q,M,A 〉 be a cfsm and take q, r, t ∈ Q. Then, r and t are calledcubicq-relatedif there exists

m∈ M∗ such that̃A∗ (q,m, r)≻ 0̃, Ã∗ (q,m, t)≻ 0̃, λ ∗ (q,m, r)< 1 andλ ∗ (q,m, t)< 1.

We say that r and t are cubic q-twins if

(i) r and t are called cubic q-related,

(ii) C(r) =C(t) .

Proposition 2.Let ℵ = 〈Q,M,A 〉 be a cfsm. Then, the following conditions are equivalent.

(1) ∀q, r, t ∈ Q, if r andt are cubicq-related, thenr andt are cubicq-twins.

(2) (∀q, r, t ∈ Q)(∀a,m∈ M∗)(Ã∗ (q,m, r)≻ 0̃, Ã∗ (q,m, t)≻ 0̃, λ ∗ (q,m, r)< 1 andλ ∗ (q,m, t)< 1⇒ p∈C(r)).

Proof.(1)⇒ (2) : Takep,q, r ∈ Q anda,m∈ M∗ be such that

Ã∗ (q,m, r)≻ 0̃, Ã∗ (q,ma, p)≻ 0̃,λ ∗ (q,m, r)< 1 andλ ∗ (q,ma, p)< 1.

Since,

Ã∗ (q,ma, p) =
∨

t∈Q

{
Ã∗ (q,m, t)∧ Ã∗ (t,a, p)

}
≻ 0̃

and

λ ∗ (q,ma, p) =
∧

t∈Q

{λ ∗ (q,m, t)∨λ ∗ (t,a, p)}< 1.

Then, by Proposition1, there existst ∈ Q such that̃A∗ (q,m, t)≻ 0̃, Ã∗ (t,a, p)≻ 0̃, λ ∗ (q,m, t)< 1, λ ∗ (t,a, p)< 1. This

mean thatr andt are cubicq-related. This follows from (1),r andt are cubicq-twins, so thatp∈C(r) =C(t).

(2)⇒ (1) : Assume that(2) is true. Takep,q, r ∈ Q be such thatr andt are cubicq-related. Then, there existsm∈ M∗

such that̃A∗ (q,m, t)≻ 0̃, Ã∗ (t,m, p)≻ 0̃, λ ∗ (q,m, t)< 1, λ ∗ (t,m, p)< 1. If p∈C(t), then there existsa∈ M∗ such that

Ã∗ (q,a, t)≻ 0̃, Ã∗ (t,a, p)≻ 0̃, λ ∗ (q,a, t)< 1, λ ∗ (t,a, p)< 1. Thus,

Ã∗ (q,ma, p) =
∨

t∈Q

{
Ã∗ (q,m, t)∧ Ã∗ (t,a, p)

}
≻ 0̃
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and

λ ∗ (q,ma, p) =
∧

t∈Q

{λ ∗ (q,m, t)∨λ ∗ (t,a, r)}< 1.

Hence,p∈C(r) by given condition. Similarly, ifp∈C(t), thenp∈C(r). Thus,r andt are cubicq-twins.

Theorem 6.Let ℵ = 〈Q,M,A 〉 be a cfsm. Then,ℵ is a cubic retrievable if and only if it hold

(1)

(∀q∈ Q)(∀m∈ M∗)(∃t ∈ Q)
(

Ã∗ (q,m, t)� 0̃ andλ ∗ (q,m, t)< 1
)

⇒ (∃a∈ M∗)
(

Ã∗ (q,ma,q)� 0̃ andλ ∗ (q,ma,q)< 1
)
.

(2) ∀q, r, t ∈ Q, if r and t are cubic q-related, then r and t are cubic q-twins.

Proof.Straightforward

4 Cubic transformation semigroups

In this section, we define cubic transformation semigroups and related properties. The given concept is a generalization

of fuzzy transformation semigroup and intuitionistic fuzzy transformation semigroups.

Definition 13. A cubic transformation semigroup (in short, cts) is a triplet S = 〈Q,X,A 〉, where Q is a non-empty finite

set, X is a finite semigroup andA =〈Ã,λ 〉 is a cubic set in Q×X×Q such that(TS1)

Ã(q,ε, p) =

{
1̃ if q = p

0̃ if q 6= p
λ (q,ε, p) =

{
0 if q = p

1 if q 6= p

(TS2)

Ã(q,xy, p) =
∨

r∈Q

{
Ã(q,x, r)∧ Ã(r,y, p)

}

λ (q,xy, p) =
∧

r∈Q

{λ (q,x, r)∨λ (r,y, p)}

for all p,q∈ Q, x,y∈ M.

If addition, if S = 〈Q,X,A 〉 holds the property

(
Ã(q,x, p) = Ã(q,y, p)

λ (q,x, p) = λ (q,y, p)

)
⇒ x= y for any x,y∈ X and p,q∈ Q. Then,

S = 〈Q,X,A 〉 is called a faithful cubic transformation semigroup.

Now takeM∗ is free monoid with respect to the binary operation concatenation of two words. Letm,a ∈ M∗. Define a

relation∼ onM∗ by m∼ a⇔ Ã∗ (q,m, p) = Ã∗ (q,a, p) andλ ∗ (q,m, p) = λ ∗ (q,a, p) for all p,q∈ Q.

Lemma 1.Let ℵ = 〈Q,M,A 〉 be a cfsm. Then, a relation∼ on M∗ is an equivalence relation, where M∗ is a semigroup

with identityε.

Proof. Let p,q ∈ Q and m,a ∈ M∗. Then, clearly ∼ is reflexive. i.e Ã∗ (q,m, p) = Ã∗ (q,m, p) and

λ ∗ (q,m, p) = λ ∗ (q,m, p). Thus,m∼ a.
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Symmetric: Now letm∼ a. Then,

Ã∗ (q,m, p) = Ã∗ (q,a, p) andλ ∗ (q,m, p) = λ ∗ (q,a, p)

Ã∗ (q,a, p) = Ã∗ (q,m, p) andλ ∗ (q,a, p) = λ ∗ (q,m, p) .

Hence,a∼ m.

Transitive: Takep,q∈ Q andm,a,b∈ M∗ be such thatm∼ a anda∼ b. Then,

Ã∗ (q,m, p) = Ã∗ (q,a, p) andλ ∗ (q,m, p) = λ ∗ (q,a, p) (1)

and

Ã∗ (q,a, p) = Ã∗ (q,b, p) andλ ∗ (q,a, p) = λ ∗ (q,b, p) . (2)

From equation1 and2, its follow that

Ã∗ (q,m, p) = Ã∗ (q,a, p) = Ã∗ (q,b, p) andλ ∗ (q,m, p) = λ ∗ (q,a, p) = λ ∗ (q,b, p)

Ã∗ (q,m, p) = Ã∗ (q,b, p) andλ ∗ (q,m, p) = λ ∗ (q,b, p)⇒ m∼ b.

Hence,∼ is an equivalence relation onM∗.

For anym∈ M∗, we denote[m] = {a∈ M∗|m∼ a} andE (ℵ) = { [m]|m∈ M∗}.

Proposition 3. Let ℵ = 〈Q,M,A 〉 be a cfsm and define a binary operation⊙ on E(ℵ) by [m]⊙ [a] = [ma] for all

[m]⊙ [a] ∈ E (ℵ). Then(E (ℵ) ,⊙) is a semigroup.

Proof.Straightforward.

Example 4.Let ℵ = 〈Q,M,A 〉 be cfsm, whereQ= {q} andX = {x1,x2} andA =〈Ã,λ 〉 is defined by

Ã(q,x1,q) = Ã(q,x1,q) = [0.5,0.6]

λ (q,x1,q) = λ (q,x1,q) = 0.5.

For anya,b∈ M∗, we have

Ã∗ (q,a,q) = Ã∗ (q,b,q) = [0.5,0.55]

λ (q,a,q) = λ (q,b,q) = 0.6.

Hence,a∼ b and soE (ℵ) = {[ε] , [a]}, obviously[ε] is identity and[a]⊙ [a] = [a].

We can easily construct a faithful transformation semigroup from any transformation semigroup in the case of cubic set.

Define a relation≈ on X by x ≈ y ⇔ (p,q∈ Q)

(
Ã(q,x, p) = Ã(q,y, p)

λ (q,x, p) = λ (q,y, p)

)
for all x,y ∈ X. Hence “≈” is a equivalence

relation onX. Let [[x]] denote the equivalence class of≈ induced byx. Let X/≈= {[[x]] : x∈ X}.

Theorem 7.‘Let S = 〈Q,X,A 〉 be cft and≈ a equivalence relation on X. Then,

(i) The equivalence relation≈ is a congruence and the quotient set X/≈ is finite semigroup.
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(ii) The tripleS = 〈Q,X/≈,A 〉 is a faithful cubic transformation semigroup, where

A : Q×X/≈×Q−→ [I ]× [0,1] is given by

Ã(q, [[x]] , p) = Ã(q,x, p) andλ (q, [[x]] , p) = λ (q,x, p)

for all [[x]] ∈ X/≈ and p,q∈ Q.

Proof.

(i) Takex,y∈ X such thatx≈ y. If w∈ X, then, for anyp,q∈ Q.

Ã(q,xw, p) =
∨

r∈Q

{
Ã(q,x, r)∧ Ã(r,w, p)

}

=
∨

r∈Q

{
Ã(q,y, r)∧ Ã(r,w, p)

}

= Ã(q,yw, p)

and

λ (q,xw, p) =
∧

r∈Q

{λ (q,x, r)∨λ (r,w, p)}

=
∧

r∈Q

{λ (q,y, r)∨λ (r,w, p)}

= λ (q,yw, p) .

So, xw≈ yw. Similarly we can prove ifx ≈ w ⇒ yx≈ yw. Hence,≈ is a congruence. ThereforeX/ ≈ is finite

semigroup with binary operation defined by[[x]]∗ [[x]] = [[xy]].

(ii) The mappingA : Q×X/≈ ×Q−→ [I ]× [0,1] is well defined. Next we prove thatS = 〈Q,X/ ≈,A 〉 cft. If X is

a finite semigroup with identitye, then[[e]] is the identity ofX/≈. Since

Ã(q, [[e]] , p) = Ã(q,e, p) =

{
1̃ if q= p,

0̃ if q 6= p,

λ (q, [[e]] , p) = λ (q,e, p) =

{
0 if q= p,

1 if q 6= p.

Thus, we conclude thatTS1 holds.

If we consider anyx,w∈ X, and anyp,q∈ Q, then

Ã(q, [[x]] [[w]] , p) = Ã(q,xw, p) =
∨

r∈Q

{
Ã(q,x, r)∧ Ã(r,w, p)

}

=
∨

r∈Q

{
Ã(q, [[x]] , r)∧ Ã(r, [[w]] , p)

}

and

λ (q, [[x]] [[w]] , p) = λ (q,xw, p) =
∧

r∈Q

{λ (q,x, r)∨λ (r,w, p)}

=
∧

r∈Q

{
λ (q, [[x]] , r)∨λ (r, [[w]] , p)

}
.
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Thus,TS2 holds.

Finally, for any[[x]] , [[y]] ∈ X/≈ and for anyp,q∈ Q

Ã(q, [[x]] , p) = Ã(q, [[y]] , p)⇒ Ã(q,x, p) = Ã(q,w, p)⇒ x= y

Ã(q, [[x]] , p) = Ã(q, [[y]] , p)⇒ [[x]] = [[y]] .

Hence,S = 〈Q,X/≈,A 〉 is a faithful.

Definition 14.LetS1 = 〈Q1,X1,A 1〉 andS2 = 〈Q2,X2,A 2〉 be ctss. A cts homomorphism fromS1 to S2 is a fair (ξ ,η)
such that

(i) ξ : Q1 −→ Q2 is a map.

(ii) η : X1 −→ X2 is a semigroup homomorphism.

(iii) If X1 and X2 are semigroup having identity elements e1 ∈ X1 and e2 ∈ X2, thenη (e1) = e2.

(iv) For any p1,q1 ∈ Q1 and x1 ∈ X1.

Ã1(q1,x1, p1)� Ã2 (ξ (q1) ,η (x1) ,ξ (p1))

and

λ1(q1,x1, p1)≥ λ2 (ξ (q1) ,η (x1) ,ξ (p1)) .

We denoted by(ξ ,η) : S1 −→ S2.

A cts homomorphism(ξ ,η) is calledstrongif, in addition, for anyp1,q1 ∈ Q1 andx1 ∈ X1,

Ã2 (ξ (q1) ,η (x1) ,ξ (p1)) =
∨{

Ã1 (q1,x1, r1)
∣∣∣ξ (r1) = ξ (p1)

}

and

λ2(ξ (q1) ,η (x1) ,ξ (p1)) =
∧

{λ1 (q1,x1, r1)|η (r1) = η (p1)} .

A cts homomorphism(ξ ,η) is called isomorphism if, both mappingsξ andη are bijective.

Remark.If (ξ ,η) : ℵ1 −→ ℵ2 is a strong cts homomorphism andξ one-to-one, then for anyp1,q1 ∈ Q1 andx1 ∈ X1

Ã(q1,m1, r1) = Ã2((ξ (q1) ,η (m1) ,ξ (p1))

and

λ1(q1,m1, r1) = λ2 (ξ (q1) ,η (m1) ,ξ (p1)) .

Theorem 8.The set of all cfts together with all the cts homomorphism constitutes a category.

Proof.First, since the fair(idQ, idX) is an cts homomorphism for any ctsS = 〈Q,X/≈,A 〉. Next we prove, ifS1, S2,

S3 are cubic transformation semigroups and let us consider thects homomorphisms(ξ1,η1) : S1 −→ S2 and(ξ2,η2) :

S2 −→S3. Then, the composition(ξ2◦ ξ1,η1 ◦η2) : S1 −→S3 is also homomorphism, denoted by(ξ2,ηξ12)◦(ξ1,η1).

The next result, as well as his proof, is same as Theorem1.

Theorem 9. Let S1, S2, S3 be ctss and let(ξ1,η1) : S1 −→ S2 and (ξ2,η2) : S2 −→ S3 be bothstrong cts

homomorphisms.

(i) If ξ1 is onto, then(ξ2,η2)◦ (ξ1,η1) : S1 −→ S3 is astrongcts homomorphism.

(ii) If ξ1, ξ2 are one to one, then the composed cts homomorphism is also strong.

c© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 4, 24-39 (2017) /www.ntmsci.com 38

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to all parts of the article. Allauthors read and approved the final manuscript.

References

[1] Y.H. Kim, J.G. Kim, S.J. Cho, Products of T-generalized state machines and T-generalized transformation semigroups, Fuzzy Sets

and Systems 93 (1998) 87–97.

[2] D.S. Malik, J.N. Mordeson, M.K. Sen, On subsystems of a fuzzy finite state machine, Fuzzy Sets and Systems 68 (1994) 83–92.

[3] D.S. Malik, J.N. Mordeson, M.K. Sen, Products of fuzzy finite state machines, Fuzzy Sets and Systems 92 (1997) 95–102.

[4] D.S. Malik, J.N. Mordeson, M.K. Sen, Semigroups of fuzzyfinite state machines, in: P.P. Wang (Ed.), Advances in FuzzyTheory

and Technology, Vol. II, 1994, pp. 87–98.

[5] D.S. Malik, J.N. Mordeson, M.K. Sen, Submachines of fuzzy finite state machines, J. Fuzzy Math. 4 (1994) 781–792

[6] H. Bustince, E. Barrenechea, M. Pagola, J. Fernndez, Interval-valued fuzzy sets constructed from matrices: application to edge

detection, Fuzzy Sets Syst. 160, (2009), 1819-1840.

[7] R. Belohlavek, Determinism and fuzzy automata, Inform.Sci. 143 (1) (2002) 205–209.

[8] J. Ignjatovic, M. Ciric, S. Bogdanovic´, Determinations of fuzzy automata with membership values in complete residuated lattices,

Inform. Sci. 178, (2008) 164–180.

[9] H.X. Lei, Y.M. Li, Minimization of states in automata theory based on finite lattice-ordered monoids, Inform. Sci. 177, (6) (2007),

1413–1421.

[10] Y.M. Li, W. Pedrycz, Minimization of lattice finite automata and its application to the decomposition of lattice languages, Fuzzy

Sets Syst. 158, (2007), 1423–1436.

[11] Ping Li, Y.M. Li, Algebraic properties of LA-languages, Inform. Sci. 176 (21) (2006) 3232–3255.

[12] H.Z. Li, P. Li, Y.Y. Li, The relationships among severaltypes of fuzzy automata, Inform. Sci. 176 (15) (2006) 2208–2226.

[13] K. Peeva, Zl. Zahariev, Computing behavior of finite fuzzy machines – algorithm and its application to reduction andminimization,

Inform. Sci. 178 (21), (2008), 4152–4165.

[14] D.W. Qiu, Notes on automata theory based on quantum logic, Science in China Series F: Inform. Sci. 50 (2) (2007) 154–169.

[15] S.P. Tiwari, Arun K. Srivastava, On a decomposition of fuzzy automata, Fuzzy Sets Syst. 151 (2005) 503–511.

[16] Y. B. Jun, Intuitionistic fuzzy transformation semigroups, Inform. Sci. 179 (24) (2009) 4284–4291.

[17] Y.B. Jun, Intuitionistic fuzzy finite state machines, J. Appl. Math. Comput. 17 (1–2) (2005) 109–120.

[18] Y.B. Jun, Intuitionistic fuzzy finite switchboard state machines, J. Appl. Math. Comput. 20 (1–2) (2006) 315–325.

[19] Y.B. Jun, Quotient structures of intuitionistic fuzzyfinite state machines, Inform. Sci. 177 (2007) 4977–4986

[20] W.G. Wee, On generalization of adaptive algorithm and application of fuzzy sets concept to pattern classification.PH.D Theses,

Purdue University, June, 1967.

[21] E. Orlowska, Semantic analysis of inductive reasoning, Theoret. Comput. Sci. 43 (1986) 81–89.

[22] A. Kandal, Fuzzy Switching and Automata: Theory and Applications (Crane Russak, 1980).

[23] W. M. Holcombe, Algebraic Automata Theory (Cambridge Univ. Press, Cambridge, 1982).

[24] L. A. Zadeh, Fuzzy sets, Inform. Control 8, (1965), 338-353.

[25] H. V. Kumbhojkar and S. R. Chaudhari, On covering of products of fuzzy finite state machines, Fuzzy Sets and Systems 125

(2002), 215–222.

[26] K. Peeva, Zl. Zahariev, Computing behavior of finite fuzzy machines – algorithm and its application to reduction andminimization,

Inform. Sci. 178 (21), (2008) 4152–4165.

[27] D.W. Qiu, Notes on automata theory based on quantum logic, Science in China Series F: Inform. Sci. 50 (2), (2007), 154–169.

c© 2017 BISKA Bilisim Technology

www.ntmsci.com


39 S. Abdullah, R. Naz and W. Pedrycz: Cubic finite state machineand cubic transformation semigroups

[28] D.S. Malik, J.N. Mordeson, Structure of upper and lowerapproximation spaces of infinite sets, in: T.Y. Lin, Y.Y. Yao, L.A. Zadeh

(Eds.), Data Mining,

[29] Rough Sets and Granular Computing, Studies in Fuzziness and Soft Computing, vol. 95, Physica-Verlag, Heidelberg,New York,

2002, pp. 461–472.

[30] Z. Pawlak, Rough Sets, Theoretical Aspects about Data,Kluwer Academic Publisher, Dordrecht, 1991.

[31] N. Kuroki, J.N. Mordeson, Successor and source functions, J. Fuzzy Math. 5 (1997) 173–182

[32] N. Kuroki, J.N. Mordeson, Successor and source functions, J. Fuzzy Math. 5 (1997) 173–182

[33] Z. Bavel, Introduction to the Theory of Automata, Reston Publishing Company, Inc., Reston, Virginia, 1983.

[34] E.S. Santos, On reduction of max–min machines, J. Math.Anal. Appl. 37 (1972) 677–686.

[35] E.S. Santos, Fuzzy automata and languages, Inform. Sci. 10 (1976) 193–197.

[36] Y. B. Jun, C. S. Kim, K. O. Yang, Cubic sets, Annals of fuzzy Mathematics and Informatics, 4(2012), 83-98.

[37] S. Eilenberg, “Automata, Languages, and Machines,” Academic Press, New York, vol. A, B, 1974.

[38] S. Kleene, “Representation of events in nerve nets and finite automata,” in: C.E. Shannon and J. McCarthy (eds.), Automata

Studies, Princeton University Press, pp. 3–42, 1956.

[39] S. Yu, “Regular languages,” in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer-Verlag, Berlin,

Heidelberg, vol. 1, pp. 41–110, 1997.

[40] S.P. Tiwari, Arun K. Srivastava, On a decomposition of fuzzy automata, Fuzzy Sets Syst. 151 (2005) 503–511

[41] A. V. Aho and J. D. Ullman , “Foundations of Computer Science,” Computer Science Press, New York, 1994.

[42] L. A. Zadeh, Fuzzy Sets, Inform. & Control 8, (1965), 338-353.

c© 2017 BISKA Bilisim Technology


	Introduction
	Basic concept
	Cubic finite state machine
	Cubic transformation semigroups

