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1 Introduction

In view of aesthetic features, N -extended supersymmetric theories have attracted consid-

erable interest during long period of time. As is known, light-cone gauge approach offers

considerable simplifications for study of supersymmetric theories. For this reason, the N -

extended supersymmetric theories have extensively been studied in the framework of this

approach. We mention application of light-cone formalism for the investigation of ultra-

violet finiteness of N = 4 supersymmetric YM theory in refs. [1, 2]. Also we note that

the light-cone gauge formulation of type IIB supergravity theories in 10d flat space and

AdS5 × S5 space was developed in the respective ref. [3] and ref. [4], while the study of

type IIA and IIB light-cone gauge superstring field theories may be found in refs. [5, 6].

Recent interesting application of light-cone formalism for studying N = 8 supergravity

may be found in refs. [7–9].

Attractive example of application of light-cone gauge formalism is a supersymmetric

higher-spin massless field theory. This is to say that, in the framework of light-cone gauge

approach, a cubic interaction vertex of the scalar N -extended massless supermultiplet

with arbitrary N = 4N in 4d flat space was obtained in ref. [10], while in ref. [11], for the

case of arbitrary spin (integer and half-integer) N = 1 massless supermultiplets in 4d flat

space, we obtained the full list of cubic interaction vertices. Result in ref. [11] provides

the N = 1 supersymmetric completion for all cubic interaction vertices for arbitrary spin
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bosonic massless fields obtained in refs. [12, 13].1 In this paper, we consider arbitrary spin

(integer and half-integer) N -extended massless supermultiplets with arbitrary N = 4N

in the 4d flat space. For such supermultiplets, our aim is to find all cubic interaction

vertices. To this end, as in ref. [11], we prefer to use a light-cone gauge unconstrained

superfields that are defined in a light-cone momentum superspace. We note that, in the

past, the light-cone momentum superspace has fruitfully been used in many important and

interesting studies of supergravity and superstring theories. As example of attractive use of

the momentum superspace we mention the building of IIB supergravity in 10d flat space

and superstring field theories in 10d flat space in the respective ref. [3] and refs. [5, 6]. The

momentum superspace turns also out to be very convenient for studying supergravity in 11d

flat space [23] and IIB supergravity in AdS5×S5 space [4]. In this paper, using Grassmann

momentum entering the light-cone momentum superspace, we collect fields of N -extended

massless supermultiplets into a suitable unconstrained light-cone gauge superfields and use

such superfields to construct a full list of cubic interaction vertices. We note that it is

the formalism of unconstrained light-cone gauge superfields that provides us a possibility

to build attractively simple expressions for cubic vertices and allows us to obtain the full

classification of cubic interactions.

Some long term motivations for our study of supersymmetric higher-spin field theory

which are beyond the scope of this paper may be found in Conclusions.

Our paper is organized in the following way.

In section 2, we start with brief review of light-cone coordinates frame and discuss gen-

eral structure of the N -extended Poincaré superalgebra. We discuss a field content that

enters arbitrary spin (integer and half-integer) massless N -extended supermultiplets. After

that, we introduce our N -extended momentum superspace and provide the explicit descrip-

tion of light-cone gauge unconstrained superfields which are defined on such superspace.

Section 3 is devoted to description of general structure of n-point interaction vertices

for theories of interacting fields. We provide a detailed description of constraints that are

imposed by kinematical symmetries of the N -extended Poincaré superalgebra on n-point

interaction vertices.

In section 4, we restrict out attention to cubic vertices. First, we adopt general kine-

matical constraints of the N -extended Poincaré superalgebra obtained in section 3 to the

case of cubic vertices. Second, we derive constraints imposed on the cubic vertices by dy-

namical symmetries of the N -extended Poincaré superalgebra. Third, we formulate light-

cone gauge dynamical principle and, finally, we present the complete system of equations

that allows us to fix the cubic vertices unambiguously.

In section 5, we present our main result in this paper. We show explicit expressions for

all cubic vertices that describe interactions of arbitrary spin N -extended massless super-

multiplets. We start with the presentation of the superspace form of the cubic interaction

vertices. After that, we present the restrictions on allowed values of N and superfields he-

licities entering our cubic interaction vertices. These restrictions provide the classification

1In the recent time, the study of cubic interactions of higher-spin N = 1 massless supermultiplets by

using gauge invariant supercurrents, may be found in refs. [15]–[22].
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of the cubic vertices that can be build for arbitrary spin N -extended supermultiplets in

the framework of light-cone gauge approach. Also we discuss representation of the cubic

vertices in terms of the component fields.

Section 6 summarizes our conclusions.

In appendix A, we present our notation and conventions. In appendix B, we describe

properties of our light-cone gauge superfields. In appendix C, we outline the derivation of

the superspace cubic interaction vertices.

2 Light-cone gauge superfield formulation of free N -extended massless

supermultiplets

Light-cone coordinates frame. We consider light-cone gauge fields by using a helicity

basis. Therefore we start with the description of light-cone coordinates frame. In the

flat space R3,1, the Lorentz basis coordinates are denoted as xµ, µ = 0, 1, 2, 3, while the

light-cone basis coordinates denoted as x±, xR, xL are expressed in terms of xµ as

x± ≡ 1√
2
(x3 ± x0) , xR ≡ 1√

2
(x1 + ix2) , xL ≡ 1√

2
(x1 − ix2) . (2.1)

Throughout this paper, the coordinate x+ is taken to be a time-evolution parameter. Let

Xµ be a vector of the so(3, 1) Lorentz algebra. In the light-cone basis (2.1) the Xµ, is

decomposed as X+, X−, XR, XL. Using notation ηµν for the mostly positive flat metric of

R3,1, we note that a scalar product of the so(3, 1) Lorentz algebra vectors Xµ and Y µ is

represented in the following way:

ηµνX
µY ν = X+Y − +X−Y + +XRY L +XLY R . (2.2)

Relation (2.2) implies that, in the light-cone basis, non-vanishing elements of the ηµν are

given by η+− = η−+ = 1, ηRL = ηLR = 1. We note then that the covariant and contravariant

vectors Xµ, X
µ are related as follows: X+ = X−, X

− = X+, X
R = XL, X

L = XR.

Extended Poincaré superalgebra in light-cone frame. The method proposed in

ref. [24] reduces the problem of finding a light-cone gauge dynamical system to the problem

of finding a solution of commutation relations for algebra of basic symmetries. For field

theories with extended supersymmetries in flat space, the basic symmetries are governed

by the extended Poincaré superalgebra. Therefore in order to fix our notation we now

discuss a general structure of the extended Poincaré superalgebra.

For the case of the R3,1 space, the N -extended Poincaré superalgebra consists the

translation generators Pµ, the generators of the so(3, 1) Lorentz algebra Jµν , Majorana

supercharges Qαi, Qα
i , and su(N ) R-symmetry algebra generators J i

j . Explicit light-cone

form of commutation relations of the extended Poincaré superalgebra we use in this paper

may be found in appendix A. Here we note that, in light-cone basis (2.1), generators of the

extended Poincaré superalgebra can be separated into the following two groups:

P+, PR, P L, J+R, J+L, J+−, JRL, Q+R

i , Q+Li, J i
j , kinematical generators; (2.3)

P−, J−R, J−L, Q−Ri, Q−L

i , dynamical generators. (2.4)
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Our aim in this paper is to find a field theoretical realization for generators in (2.3), (2.4).

We note that, with the exception of J+−, the kinematical generators (2.3) are quadratic in

fields,2 while, the dynamical generators (2.4) consist quadratic and higher order terms in

fields. To provide a field realization of generators of the extended Poincaré superalgebra,

we use a light-cone gauge description of fields.

Content of component fields. We now discuss component fields entering extended

massless supermultiplets. To this end we use a label λ to denote a helicity of a massless

field, while the indices i, j, k, l = 1, . . . ,N stand for vector indices of the su(N ) algebra.

Using such notation, we introduce a field φλ ; i1...iq which is (integer or half-integer) helicity-

λ field of the Poincaré algebra and rank-q totally antisymmetric covariant tensor field of

the su(N ) algebra.3 Now the field content entering arbitrary (integer or half-integer) spin

N -extended massless supermultiplet of the Poincaré superalgebra in R3,1 is given by

{λ}ext =
∑

q=0,1,2,...,N

⊕ φλ− 1
2
q+ 1

4
N ; i1...iq

(x) , (2.5)

λ = 0,±1

2
,±1,±3

2
, . . . ,±∞ , N ∈ 4N , (2.6)

where
φλ;i1...iq are bosonic fields for λ ∈ Z;

φλ;i1...iq are fermionic fields for λ ∈ Z+
1

2
.

(2.7)

From (2.5), we see that the N -extended massless supermultiplet involves fields with the

following values of the helicities

λmin, λmin +
1

2
, . . . . . . , λ− 1

2
, λ, λ+

1

2
, . . . . . . , λmax −

1

2
, λmax ; (2.8)

λmin = λ− 1

4
N , λmax = λ+

1

4
N . (2.9)

Also, from (2.5), we see that multiplicity of the helicity λ− 1
2q+

1
4N is equal to Cq

N . We find

it convenient to label the supermultiplet (2.5) by the λ instead of λmax (or λmin) because,

by using such convention, a scalar supermultiplet is simply labelled as {0}ext.
Fields (2.5) depend on the space time-coordinates x ≡ x±, xR,L. By definition,

fields (2.5) satisfy the hermitian conjugation condition given by

φ†
λ ; i1...iq

(x) =
(−)

1
4
N− 1

2
q− 1

2
e 1
2 q

(N − q)!
εi1...iqiq+1...iNφ−λ ; iq+1...iN (x) , (2.10)

where εi1...iN stands for the Levy-Civita symbol of the su(N ) algebra, ε1...N = 1, while the

quantity eλ is defined by the relations

eλ = 0 for λ ∈ Z , eλ = 1 for λ ∈ Z+
1

2
. (2.11)

2The J+− takes the form J+− = G0 + ix+P−, where the generator G0 is quadratic in fields, while the

light-cone Hamiltonian P− consists quadratic and higher order terms in fields.
3Transformations of the field φλ;i1...iq under action of generators of the Poincaré algebra take the same

form as the ones for the field φλ in (2.23)-(2.27) in ref. [11].
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From now, in place of position-space fields (2.5), we prefer to use momentum-space

fields which are defined by the Fourier transform with respect to the coordinates x−, xR,

and xL,

φλ;i1...iq(x) =

∫

d3p

(2π)3/2
ei(βx

−+pRxL+pLxR)φλ;i1...iq(x
+, p) , d3p ≡ dβdpRdpL , (2.12)

where we use the notation β for the momentum in the plus light-cone direction β ≡
p+. Note also that the argument p of fields φλ;i1...iq(x

+, p) stands as a shortcut for the

momenta β, pR, pL. In terms of the momentum-space fields φλ;i1...iq(x
+, p), the hermicity

condition (2.10) can be represented as

φ†
λ ; i1...iq

(p) =
(−)

1
4
N− 1

2
q− 1

2
e 1
2 q

(N − q)!
εi1...iqiq+1...iNφ−λ ; iq+1...iN (−p) . (2.13)

Here and below, dependence of the momentum-space fields φλ;i1...iq(p) on the evolution

parameter x+ is implicit. Let us also to note our convention φ†
λ;i1...iq

(p) ≡ (φλ;i1...iq(p))
†.

Superfield formulation. To develop superfield formulation let us introduce a

Grassmann-odd momentum piθ, {piθ, p
j
θ} = 0. The Grassmann momentum piθ is a contravari-

ant vector of the su(N ) algebra. The light-cone momentum superspace is parametrized by

the light-cone evolution parameter x+, the spatial momenta pR, pL, β and the Grassmann

momentum piθ,

x+ , β , pR , pL , piθ . (2.14)

Using the Grassmann momentum piθ, we collect component fields (2.5), (2.12) into super-

field Φλ(p, pθ) defined as

Φλ(p, pθ) =
N
∑

q=0

1

q!
β

1
4
N− 1

2
q+ 1

2
eλ−

1
2
e
λ− 1

2 q pi1θ . . . p
iq
θ φλ− 1

2
q+ 1

4
N ; i1...iq

(p) , (2.15)

λ = 0,±1

2
,±1,±3

2
, . . . ,±∞ , N ∈ 4N , (2.16)

where eλ is defined in (2.11). Often, we use a shortcut Φλ ≡ Φλ(p, pθ). From (2.7), (2.15),

we see that

Φλ are Grassmann even for λ ∈ Z;

Φλ are Grassmann odd for λ ∈ Z+
1

2
.

(2.17)

We note that, for N = 4, the scalar superfield Φ0 describes famous N = 4 supersym-

metric YM theory, while, for N = 8, the scalar superfield Φ0 describes N = 8 supergravity

theory.

In order to obtain a field theoretical realization we need a realization of the N -extended

Poincaré superalgebra in terms of differential operators. The realization in terms of differ-
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ential operators acting on our light-cone superfield Φλ(p, pθ) takes the following form:

PR = pR , P L = pL , P+ = β , P− = p− , p− ≡ −pRpL

β
, (2.18)

J+R = ix+PR + ∂pLβ , J+L = ix+PL + ∂pRβ , (2.19)

J+− = ix+P− + ∂ββ +M+−
λ , JRL = pR∂pR − pL∂pL +MRL

λ , (2.20)

J−R = −∂βp
R + ∂pLp

− +MRL

λ

pR

β
−M+−

λ

pR

β
, (2.21)

J−L = −∂βp
L + ∂pRp

− −MRL

λ

pL

β
−M+−

λ

pL

β
, (2.22)

M+−
λ =

1

2
piθ∂pi

θ
− 1

4
N − 1

2
eλ , MRL

λ = λ− 1

2
piθ∂pi

θ
+

1

4
N , (2.23)

Q+R

i = (−)eλβ∂pi
θ
, Q+Li = (−)eλpiθ , (2.24)

Q−Ri = (−)eλ
1

β
pRpiθ , Q−L

i = (−)eλpL∂pi
θ
, (2.25)

J i
j = piθ∂pj

θ

− 1

N δijp
k
θ∂pk

θ
, (2.26)

∂β ≡ ∂/∂β , ∂pR ≡ ∂/∂pR , ∂pL ≡ ∂/∂pL , (2.27)

where ∂pi
θ
≡ ∂/∂piθ is left derivative with respect to the Grassmann momentum piθ.

To express hermicity condition in terms of the superfield we find it convenient to

introduce new superfield Φ∗
λ defined by the relation

Φ∗
λ(p, pθ) ≡ β

N
2

∫

dN p†θ e
p
i†
θ

pi
θ

β (Φλ(p, pθ))
† . (2.28)

It is easy to verify then that, in terms of the superfields Φλ and Φ∗
λ, the hermicity condi-

tion (2.13) takes the following simple form:

Φ∗
−λ(−p,−pθ) = Φλ(p, pθ) . (2.29)

Sometimes, we use a shortcut Φ∗
λ ≡ Φ∗

λ(p, pθ). From (2.29), we see that the superfields

Φλ and Φ∗
λ are not independent of each other. From (2.17) and (2.29), we note that the

superfield Φ∗
λ is Grassmann even for λ ∈ Z and Grassmann odd for λ ∈ Z+ 1

2 . Some helpful

relations for the superfield Φ∗
λ may be found in appendix B.

We now ready to provide a field theoretical realization of the Poincaré superalge-

bra.This is to say that, to quadratic order in fields, a field theoretical realization of the

N -extended Poincaré superalgebra generators in terms of the superfields Φλ takes the

following form:

G[2] =

+∞
∑

λ=−∞

G[2], λ G[2], λ =

∫

d3p dN pθ β
e
λ+1

2 Φ∗
λGdiff, λΦλ , (2.30)

where a quantity Gdiff, λ stands for the realization of the N -extended Poincaré superalgebra

generators in terms of differential operators given in (2.18)–(2.26).

– 6 –



J
H
E
P
1
1
(
2
0
1
9
)
0
8
4

By definition, the superfields Φλ and Φ∗
λ satisfy the Poisson-Dirac equal-time

(anti)commutator given by

[Φλ(p, pθ),Φ
∗
λ′(p′, p′θ)]± =

1

2
β
−e

λ+1
2 δ3(p− p′)δN (pθ − p′θ)δλ,λ′ , (2.31)

where the notation [a, b]± is used for a graded commutator, [a, b]± = (−)ǫaǫb+1[b, a]±. With

the help of relations (2.30), (2.31), we verify that the following equal-time (anti)commutator

between the generators and the superfield Φλ

[Φλ, G[2]]± = Gdiff, λΦλ , (2.32)

holds true, where the operators Gdiff, λ are defined in (2.18)–(2.26).

In conclusion of this section, we recall that the light-cone gauge action can be

presented as

S =
1

2

∞
∑

λ=−∞

∫

dx+d3pdN pθ β−eλΦ∗
λ

(

2iβ∂− − 2pRpL
)

Φλ +

∫

dx+P−
int , (2.33)

where ∂− ≡ ∂/∂x+, while P−
int stands for light-cone gauge Hamiltonian that describes

interacting fields.

3 n-point dynamical generators of N -extended Poincaré superalgebra

As we have already noted we follow the method proposed in ref. [24] that reduces the

problem of finding dynamical system to the problem of finding a solution of commutation

relations for algebra of basic symmetries. This implies that, for theories of interacting

fields with extended supersymmetries in flat space, we should find interaction dependent

deformation of the dynamical generators of the extended Poincaré superalgebra. In other

words, in theories of interacting fields, one has the following expansion in fields for the

dynamical generators of the extended Poincaré superalgebra

Gdyn =
∞
∑

n=2

Gdyn
[n] , (3.1)

where Gdyn
[n] (3.1) is functional that has n powers of superfields Φ∗.

Expressions for Gdyn
[2] have been obtained in the previous section. Our aim in this

section is to discuss constraints on the dynamical generators Gdyn
[n] with n ≥ 3 which are

obtained by using the kinematical symmetries of the Poincaré superalgebra. We describe

the constraints in turn.

Kinematical PR,L, P+, Q+Li symmetries. Using (anti)commutators between the

kinematical generators PR, PL, P+, Q+Li and the dynamical generators (2.4), we find that

– 7 –
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the dynamical generators Gdyn
[n] with n ≥ 3 can be presented as:

P−
[n] =

∫

dΓ[n] 〈Φ∗
[n]|p−[n]〉 , (3.2)

Q−Ri
[n] =

∫

dΓ[n] 〈Φ∗
[n]|q−Ri

[n] 〉 , (3.3)

Q−L

i[n]
=

∫

dΓ[n] 〈Φ∗
[n]|q−L

i[n]
〉 , (3.4)

J−R

[n] =

∫

dΓ[n] 〈Φ∗
[n]|j−R

[n] 〉+ 〈XR

[n]Φ
∗
[n]|p−[n]〉 − 〈Xθ i [n]Φ

∗
[n]|q−Ri

[n] 〉 , (3.5)

J−L

[n] =

∫

dΓ[n] 〈Φ∗
[n]|j−L

[n] 〉+ 〈XL

[n]Φ
∗
[n]|p−[n]〉+

1

n
P i
θ [n]〈Φ∗

[n]|q−L

i[n]
〉 , (3.6)

where, in (3.2)–(3.6) and below, we use the following notation:

dΓ[n] = dΓp
[n]dΓ

pθ
[n] , (3.7)

dΓp
[n] = (2π)3δ3

(

n
∑

a=1

pa

)

n
∏

a=1

d3pa

(2π)3/2
, d3pa = dpR

adp
L

adβa , (3.8)

dΓpθ
[n] ≡ δN

(

n
∑

a=1

pθa

)

n
∏

a=1

dN pθa , (3.9)

XR

[n] = − 1

n

n
∑

a=1

∂pLa , XL

[n] = − 1

n

n
∑

a=1

∂pRa , (3.10)

Xθi [n] =
1

n

n
∑

a=1

∂pi
θa
, P i

θ [n] =
n
∑

a=1

piθa
βa

, (3.11)

and the index a = 1, . . . , n is used to label superfields (and their arguments) entering n-

point interaction vertex. We note also that, in (3.2)–(3.6), we use the shortcuts 〈Φ∗
[n]|p−[n]〉,

〈Φ∗
[n]|q−R,L

[n] 〉, and 〈Φ∗
[n]|j−R,L

[n] 〉 for the following expressions

〈Φ∗
[n]|p−[n]〉 ≡

∑

λ1...λn

Φ∗
λ1...λn

p−λ1...λn
, (3.12)

〈Φ∗
[n]|q−R,L

[n] 〉 ≡
∑

λ1...λn

Φ∗
λ1...λn

q−R,L
λ1...λn

, (3.13)

〈Φ∗
[n]|j−R,L

[n] 〉 ≡
∑

λ1...λn

Φ∗
λ1...λn

j−R,L
λ1...λn

, (3.14)

Φ∗
λ1...λn

≡ Φ∗
λ1
(p1, pθ1) . . .Φ

∗
λn
(pn, pθn) . (3.15)

The quantities p−λ1...λn
, q−R,L

λ1...λn
, and j−R,L

λ1...λn
appearing in (3.12)–(3.14), will be referred to

as n-point densities. For brevity, we denote these densities as gλ1...λn
,

gλ1...λn
= p−λ1...λn

, q−R i
λ1...λn

, q−L

i;λ1...λn
, j−R

λ1...λn
, j−L

λ1...λn
. (3.16)

In general, the densities gλ1...λn
(3.16) depend on the spatial momenta pR

a , pL
a , βa, the

Grassmann momenta piθa , and helicities λa, a = 1, 2 . . . , n,

gλ1...λn
= gλ1...λn

(pa, pθa) . (3.17)

– 8 –
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Note that the argument pa in delta-function (3.8), superfields (3.15) and densities (3.17)

stands for the spatial momenta pR
a , p

L
a , and βa. We note also that, in (3.5), (3.6), the

operators XR,L
[n] , Xθi [n] defined in (3.10), (3.11) are acting only on the arguments of the

superfields. Namely, for example, the shortcut 〈XR
[n]Φ

∗
[n]|g[n]〉 should read as follows

〈XR

[n]Φ
∗
[n]|g[n]〉 =

∑

λ1,...λn

(XR

[n]Φ
∗
λ1...λn

)gλ1...λn
. (3.18)

Often, we will refer to the density p−[n] as n-point interaction vertex, while, for n = 3,

the density p−[3] will be refereed to as cubic interaction vertex.

J+−-symmetry equations. Commutators between the kinematical generator J+− and

the dynamical generators P−, Q−R,L, J−R,L lead to the following equations for the densities:
(

J+− − (n− 2)N
4

)

gλ1...λn
= 0 , for gλ1...λn

= p−λ1...λn
, j−R,L

λ1...λn
, (3.19)

(

J+− − (n− 2)N + 2

4

)

gλ1...λn
= 0 , for gλ1...λn

= q−Ri
λ1...λn

, q−L

i;λ1...λn
, (3.20)

J+− ≡
n
∑

a=1

(

βa∂βa
+

1

2
piθa∂piθa

+
1

2
eλa

)

. (3.21)

JRL-symmetry equations. Commutators between the kinematical generator JRL and

the dynamical generators P−, Q−R,L, J−R,L lead to the following equations for the densities:
(

JRL +
(n− 2)N

4

)

p−λ1...λn
= 0 , (3.22)

(

JRL +
(n− 2)N − 2

4

)

q−R i
λ1...λn

= 0 , (3.23)

(

JRL +
(n− 2)N + 2

4

)

q−L

i;λ1...λn
= 0 , (3.24)

(

JRL +
(n− 2)N − 4

4

)

j−R

λ1...λn
= 0 , (3.25)

(

JRL +
(n− 2)N + 4

4

)

j−L

λ1...λn
= 0 , (3.26)

JRL ≡
n
∑

a=1

(

pR

a∂pRa − pL

a∂pLa − 1

2
piθa∂piθa

+ λa

)

. (3.27)

J i
j-symmetry equations. Commutators between the kinematical generators J i

j and

the dynamical generators P−, Q−R,L, J−R,L lead to the following equations for the densities:

Ji
jgλ1...λn

= 0 , for gλ1...λn
= p−λ1...λn

, j−R,L
λ1...λn

, (3.28)

Ji
jq

−R l
λ1...λn

= δljq
−R i
λ1...λn

− 1

N δijq
−R l
λ1...λn

, (3.29)

Ji
jq

−L

l;λ1...λn
= −δilq

−L

j;λ1...λn
+

1

N δijq
−L

l;λ1...λn
, (3.30)

Ji
j ≡

n
∑

a=1

(

piθa∂pj
θa

− 1

N δijp
k
θa∂pkθa

)

. (3.31)
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J+R, J+L, Q+R-symmetry equations. Using (anti)commutators between kinematical

generators J+R, J+L, and Q+R and the dynamical generators P−, Q−R,L, J−R,L, we verify

that the densities gλ1...λn
(3.17) can be presented as

gλ1...λn
= gλ1...λn

(PR

ab,P
L

ab ,Pθ ab, βa) , (3.32)

where we use the notation

P
R

ab ≡ pR

aβb − pR

b βa , P
L

ab ≡ pL

aβb − pL

b βa , P
i
θ ab ≡ piθaβb − piθbβa . (3.33)

In other words, the densities gλ1...λn
(3.17) turn out to be dependent on P

R,L
ab and Grassmann

momenta P
i
θ ab in place of the respective momenta pR,L

a and the Grassmann momenta piθa .

Restriction imposed by Grassmann parity. In conclusion of this section, we note

the following restriction on all densities in (3.16):

gλ1...λn
= 0 for

n
∑

a=1

λa ∈ Z+ 1
2 . (3.34)

Restriction (3.34) is obtained by considering J i
j symmetries and Grassmann parity of the

densities gλ1...λn
. Namely, on the one hand, in view of the J i

j symmetries, a dependence

of the generators P−
[n] and J−R,L

[n] on the Grassmann momenta P
i
θ ab is realized by means of

the Grassmann even quantities

εi1...iNP
i1
a1b1

. . .PiN
aN bN

, (3.35)

while, a dependence of the supercharges Q−Ri
[n] and Q−L

i[n]
on the Grassmann momenta P

i
θ ab

is realized by means of the respective Grassmann odd quantities

P
i
θ ab , εii2...iNP

i2
θ a2b2

. . .PiN
θ aN bN

. (3.36)

On the other hand, by definition, the generators P−
[n] and J−R,L

[n] (3.2), (3.5), (3.6) should

be Grassmann even, while the supercharges Q−Ri
[n] Q−L

i[n]
(3.3), (3.4) should be Grassmann

odd. Taking into account above said and relations in (2.17), we get the restriction (3.34).

We now proceed to the main theme of our study.

4 Complete system of equations for cubic vertices

In this section, we present a complete system of equations required to determine the cu-

bic interaction vertices unambiguously. The complete system of equations is obtained by

analysing the following three requirements.

1. Kinematical symmetries.

2. Dynamical symmetries.

3. Light-cone gauge dynamical principle.

We now analyse these three requirements in turn.
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Kinematical symmetries of cubic densities. Kinematical symmetries for arbitrary

n-point, n ≥ 3, densities have already been considered in the previous section. For cubic

densities, n = 3, the kinematical symmetry equations can further be simplified in view of

the following well known observation. Using the momentum conservation laws

pR

1 + pR

2 + pR

3 = 0 , pL

1 + pL

2 + pL

3 = 0 , β1 + β2 + β3 = 0 , piθ1 + piθ2 + piθ3 = 0 , (4.1)

it is easy to see that six momenta P
R,L
12 , PR,L

23 , PR,L
31 and three Grassmann momenta P

i
θ 12,

P
i
θ 23, P

i
θ 31 (3.33) are expressed in terms of the respective two momenta P

R,L and one

Grassmann momentum P
i
θ,

P
R,L
12 = P

R,L
23 = P

R,L
31 = P

R,L , P
i
θ 12 = P

i
θ 23 = P

i
θ 31 = P

i
θ , (4.2)

where the new momenta P
R,L and P

i
θ are defined as

P
R ≡ 1

3

∑

a=1,2,3

β̌ap
R

a , P
L ≡ 1

3

∑

a=1,2,3

β̌ap
L

a ,

P
i
θ ≡

1

3

∑

a=1,2,3

β̌ap
i
θa , β̌a ≡ βa+1 − βa+2 , βa ≡ βa+3 . (4.3)

Therefore, using the following simplified notation for the cubic densities:

p−[3] = p−λ1λ2λ3
, q−R i

[3] = q−R i
λ1λ2λ3

, q−L

i[3] = q−L

i;λ1λ2λ3
, j−R,L

[3] = j−R,L
λ1λ2λ3

, (4.4)

and taking into account relations (3.32), (4.2), we see that the cubic densities p−[3], q
−R,L
[3] , and

j−R,L
[3] depend on the momenta βa, P

R,L, the Grassmann momentum P
i
θ and the helicities

λ1, λ2, λ3,

p−[3] = p−λ1λ2λ3
(PR,PL,Pθ, βa) , q−R,L

[3] = q−R,L
λ1λ2λ3

(PR,PL,Pθ, βa) ,

j−R,L
[3] = j−R,L

λ1λ2λ3
(PR,PL,Pθ, βa) . (4.5)

Now, restricting to the value n = 3, we represent kinematical symmetry equations obtained

in the previous section in terms of densities (4.5).

J+−-symmetry equations. Using (4.5), we find that, for n = 3, equations (3.19)–(3.21)

can be represented as
(

J+− − 1

4
N
)

p−[3] = 0 , (4.6)

(

J+− − 1

4
(N + 2)

)

q−R,L
[3] = 0 , (4.7)

(

J+− − 1

4
N
)

j−R,L
[3] = 0 , (4.8)

where operator J+− is defined as

J+− ≡ NPR +NPL +
3

2
NPθ

+
∑

a=1,2,3

(

βa∂βa
+

1

2
eλa

)

, (4.9)

NPR ≡ P
R∂PR , NPL ≡ P

L∂PL , NPθ
≡ P

i
θ∂Pi

θ
. (4.10)
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JRL-symmetry equations. Using (4.5), we find that, for n = 3, equations (3.22)–(3.27)

can be represented as
(

JRL +
1

4
N
)

p−[3] = 0 , (4.11)

(

JRL +
1

4
(N − 2)

)

q−R i
[3] = 0 , (4.12)

(

JRL +
1

4
(N + 2)

)

q−L

i [3] = 0 , (4.13)

(

JRL +
1

4
(N − 4)

)

j−R

[3] = 0 , (4.14)

(

JRL +
1

4
(N + 4)

)

j−L

[3] = 0 , (4.15)

where operator JRL is defined as

JRL ≡ NPR −NPL − 1

2
NPθ

+Mλ , Mλ ≡
∑

a=1,2,3

λa , (4.16)

and we use the notation in (4.10).

J i
j-symmetry equations. Using (4.5), we find that, for n = 3, equations (3.28)–(3.31)

can be represented as

Ji
jg[3] = 0 , for g[3] = p−[3] , j−R,L

[3] , (4.17)

Ji
jq

−R l
[3] = δljq

−R i
[3] − 1

N δijq
−R l
[3] , (4.18)

Ji
jq

−L

l [3] = −δilq
−L

j [3]
+

1

N δijq
−L

l [3] , (4.19)

where operator Ji
j is defined as

Ji
j ≡ P

i
θ∂Pj

θ

− 1

N δijP
k
θ∂Pk

θ
. (4.20)

We now proceed with studying the restrictions imposed by dynamical symmetries.

Dynamical symmetries of cubic densities. Constraints on the cubic densities im-

posed by (anti) commutators between the dynamical generators are referred to as dynam-

ical symmetry constraints. This is to say that the (anti)commutators to be considered are

given by

[P−, J−R,L] = 0 , [P−, Q−R,L] = 0 , (4.21)

[J−R, J−L] = 0 , [Q−R,L, J−L] = 0 , [Q−R,L, J−R] = 0 , (4.22)

{Q−Ri, Q−L

j } = −δijP
− , {Q−Ri, Q−Rj} = 0 , {Q−L

i , Q−L

j } = 0 . (4.23)

First, we consider the commutators in (4.21). In the cubic approximation, the commuta-

tors (4.21) take the form

[P−
[2], J

−R

[3] ] + [P−
[3], J

−R

[2] ] = 0 , [P−
[2], Q

−R,L
[3] ] + [P−

[3], Q
−R,L
[2] ] = 0 . (4.24)
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We verify that equations (4.24) allow us to express the densities q−R,L
[3] and j−R,L

[3] in terms

of the cubic vertex p−[3] in the following way:

q−Ri
[3] = −P

i
θ

PL
p−[3] , q−L

i[3] =
β

PR
∂
Pi
θ
p−[3] , (4.25)

j−R

[3] = − β

PRPL
J−Rp−[3] , j−L

[3] = − β

PRPL
J−Lp−[3] , (4.26)

where operators J−R, J−L are defined as

J−R =
P

R

β

(

−Nβ +Mλ − 1

2
Eλ

)

, (4.27)

J−L =
P

L

β

(

−Nβ −Mλ − 1

2
Eλ

)

, (4.28)

Nβ =
1

3

∑

a=1,2,3

β̌aβa∂βa
, β ≡ β1β2β3 , (4.29)

Mλ =
1

3

∑

a=1,2,3

β̌aλa , Eλ =
1

3

∑

a=1,2,3

β̌aeλa
, (4.30)

while the symbol eλ entering (4.30) is given in (2.11).

Second, we verify that, if the dynamical symmetry equations for all densities (4.25),

(4.26) and kinematical symmetry equations for the cubic vertex p−[3] (4.6), (4.11), (4.17)

are satisfied, then all kinematical symmetry equations for the densities q−R,L
[3] , j−R,L

[3] are

satisfied automatically.

Third, we verify that, if the dynamical symmetry equations for all densities (4.25),

(4.26) are satisfied, then all the dynamical symmetry equations obtained from (anti)com-

mutators (4.22), (4.23) are satisfied automatically.

Thus, we see that the kinematical and dynamical symmetry constraints for cubic den-

sities amount to equations for densities (4.25), (4.26) and equations for the cubic vertex

p−[3] (4.6), (4.11), (4.17). Equations (4.25), (4.26) and (4.6), (4.11), (4.17) do not allow us to

fix the cubic densities unambiguously. To determine the cubic densities unambiguously we

need some additional requirement. We refer to such requirement as light-cone dynamical

principle.

Light-cone gauge dynamical principle. We formulate the light-cone gauge dynamical

principle in the following way:

(i) Cubic densities p−[3], q
−R,L
[3] , j−R,L

[3] should be polynomial in the momenta P
R, PL;

(ii) Cubic vertex p−[3] should respect the following constraint:

p−[3] 6= P
R
P

LW , W is polynomial in P
R,PL . (4.31)

For the reader convenience, we note that the requirement in (i) is simply the light-cone

counterpart of locality condition which is commonly used in Lorentz covariant formulations.

We now comment on the constraint (4.31). As is well known, upon field redefinitions, the
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cubic vertex p−[3] for massless fields is changed by terms proportional to P
R
P

L (see, e.g.,

the discussion in appendix B, in ref. [25]). This implies that all cubic vertices that are

proportional to P
R
P

L can be removed by using field redefinitions. As cubic vertices p−[3]
that can be removed by exploiting field redefinitions are out of our interest, we use the

constraint (4.31).

Complete system of equations for cubic vertex. We now present all equations we

obtained for the cubic vertex. Namely, for the cubic vertex

p−[3] = p−λ1λ2λ3
(PR,PL,Pθ, βa) , (4.32)

we found the following complete system of equations:

Kinematical J+−, JRL, and J i
j symmetries ;

(

J+− − N
4

)

p−[3] = 0 ,

(

JRL +
N
4

)

p−[3] = 0 , Ji
jp

−
[3] = 0 , (4.33)

Dynamical P−, Q−R,L, and J−R,L symmetries

q−R i
[3] = −P

i
θ

PL
p−[3] , q−L

i[3] =
β

PR
∂
Pi
θ
p−[3] , j−R,L

[3] = − β

PRPL
J−R,Lp−[3] , (4.34)

Light-cone gauge dynamical principle :

p−[3] , q−R,L
[3] , j−R,L

[3] are polynomial in P
R,PL; (4.35)

p−[3] 6= P
R
P

LW, W is polynomial in P
R,PL; (4.36)

where operators J+−, JRL, Ji
j , and J−R,L are given in (4.9), (4.16), (4.20) and (4.27), (4.28)

respectively.

To conclude this section, it is the equations given in (4.33)–(4.36) that constitute the

complete system of equations which allow us to fix the cubic densities p−[3], q
−R,L
[3] , j−R,L

[3]

unambiguously. As a side of remark we note that by applying our complete system of

equations to supersymmetric Yang-Mills and supergravity theories with extended super-

symmetries, we verify that the complete system equations allows us to fix the cubic inter-

actions of those supersymmetric theories unambiguously (up to coupling constants). We

think therefore that it is worthwhile to apply our complete system of equations to study

the cubic vertices of arbitrary spin N -extended supersymmetric theories.

5 Cubic interaction vertices

Now we present the solution to our complete system of equations presented in (4.33)–

(4.36). Some details of solving these equations may be in appendix C. This is to say that
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the general solution for the cubic vertex p−λ1λ2λ3
, the supercharges q−R,L

λ1λ2λ3
, and the angular

momenta j−R,L
λ1λ2λ3

is given by

p−λ1λ2λ3
= Vλ1λ2λ3 + V̄λ1λ2λ3 , (5.1)

Vλ1λ2λ3 = Cλ1λ2λ3(PL)
1
4
N+Mλ

∏

a=1,2,3

β
−λa−

1
2
eλa

a , (5.2)

V̄λ1λ2λ3 = C̄λ1λ2λ3(PR)
1
4
N−Mλ (εPN

θ )
∏

a=1,2,3

β
λa−

1
2
N− 1

2
eλa

a , (5.3)

q−R i
λ1λ2λ3

= −Cλ1λ2λ3(PL)
1
4
N+Mλ−1

P
i
θ

∏

a=1,2,3

β
−λa−

1
2
eλa

a , (5.4)

q−L

i;λ1λ2λ3
= C̄λ1λ2λ3(PR)

1
4
N−Mλ−1(εPN−1

θ )i
∏

a=1,2,3

β
λa+1− 1

2
N− 1

2
eλa

a , (5.5)

j−R

λ1λ2λ3
= −2Cλ1λ2λ3Mλ(P

L)
1
4
N+Mλ−1

∏

a=1,2,3

β
−λa−

1
2
eλa

a , (5.6)

j−L

λ1λ2λ3
= 2C̄λ1λ2λ3Mλ(P

R)
1
4
N−Mλ−1 (εPN

θ )
∏

a=1,2,3

β
λa−

1
2
N− 1

2
eλa

a , (5.7)

where we use the notation

Mλ =
∑

a=1,2,3

λa , Mλ =
1

3

∑

a=1,2,3

β̌aλa , (5.8)

(εPN
θ ) ≡ 1

N !
εi1...iNP

i1
θ . . .PiN

θ , (εPN−1
θ )i ≡

1

(N − 1)!
εii2...iNP

i2
θ . . .PiN

θ . (5.9)

Definition of the symbol eλ and momenta P
R,L, Pi

θ, β̌a may be found in (2.11) and (4.3)

respectively, while quantity εi1......iN is the Levy-Civita symbol of the su(N ) algebra,

ε1......N = 1. Quantities Cλ1λ2λ3 , C̄λ1λ2λ3 entering our solution (5.1)–(5.7) are coupling

constants. In general, these coupling constants depend on the helicities λ1, λ2, λ3. The

coupling constants are nontrivial for the following values of N and the superfield helicities

λ1, λ2, λ3:

Cλ1λ2λ3 6= 0 , for
1

4
N +Mλ − 1 ≥ 0 , Mλ ∈ Z ; (5.10)

C̄λ1λ2λ3 6= 0 , for
1

4
N −Mλ − 1 ≥ 0 , Mλ ∈ Z ; (5.11)

Cλ1λ2λ3∗ = (−)MλC̄−λ1−λ2−λ3 , (5.12)

where, in (5.12), the asterisk implies complex conjugation. We make comments on the

constraints for the coupling constants presented in (5.10)–(5.12).

(i) Constraint on Cλ1λ2λ3 and first constraint on Mλ and N in (5.10) are obtainable

from the requirement the densities (5.2), (5.4), and (5.6) to be polynomial in the

momentum P
L. Accordingly, constraint on C̄λ1λ2λ3 and first constraint on Mλ and

N in (5.11) are obtainable from the requirement the densities (5.3), (5.5), and (5.7)

to be polynomial in the momentum P
R.
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(ii) Constraint Mλ ∈ Z in (5.10), (5.11) is simply obtained from the one in (3.34) when

n = 3.

(iii) Constraint on the coupling constants in (5.12) is obtained from the requirement the

cubic Hamiltonian P−
[3] to be hermitian. This constraint can straightforwardly be

derived by using relation (B.15) in appendix B.

To summarize, relations (5.10)–(5.12) give the classification of cubic interaction vertices

for N -extended massless arbitrary spin supermultiplets, while expressions (5.1)–(5.3) give

the momentum superspace representation for these vertices.

Cubic interaction vertices in terms of component fields. For the reader conve-

nience, we now present cubic vertices in terms of the component fields. To this end we

focus on interaction of three superfields Φ∗
λ1
, Φ∗

λ2
, Φ∗

λ3
and represent the cubic Hamiltonian

in the following way:

P−
[3](Φλ1 ,Φλ2Φλ3) =

∫

dΓp
[3] C

λ1λ2λ3VΦλ1
,Φλ2

Φλ3 + h.c. , (5.13)

Cλ1λ2λ3VΦλ1
Φλ2

Φλ3 ≡
∫

dΓpθ
[3] Φ

∗
λ1λ2λ3

Vλ1λ2λ3 , (5.14)

where expressions for dΓp
[3], dΓ

pθ
[3] are obtainable by setting n = 3 in (3.8), (3.9). It is the

vertex VΦλ1
Φλ2

Φλ3 (5.14) that provides us the representation in terms of the component

fields. To get explicit representation of VΦλ1
Φλ2

Φλ3 in terms of component fields (2.5) we

plug (5.2) into (5.14) and use the representation for Φ∗
λ in terms of the component fields

given in (B.1). Doing so, we get

VΦλ1
Φλ2

Φλ3 =
N
∑

q1,q2,q3=0
q1+q2+q3=N

Ci(q1)i(q2)i(q3)V
Λ1Λ2Λ3

i(q1)i(q2)i(q3)
, (5.15)

V Λ1Λ2Λ3

i(q1)i(q2)i(q3)
≡ (PL)Λ1+Λ2+Λ3

∏

a=1,2,3

φ†
Λa;i(qa)

(pa)β
−Λa−

1
2
eΛa

a , (5.16)

where we use the notation

Λa ≡ λa −
qa
2

+
N
4

, a = 1, 2, 3 , (5.17)

Ci(q1)i(q2)i(q3) ≡
ωq1q2q3

q1!q2!q3!

∫

dΓpθ
[3](εp

N−q1
θ1

)i(q1)(εp
N−q2
θ2

)i(q2)(εp
N−q3
θ3

)i(q3) , (5.18)

ωq1q2q3 ≡ (−)
e
λ1−

q1
2
e q1

2
+ e

λ3−
q3
2
e q2

2 . (5.19)

In (5.15)–(5.18), shortcut i(qa) stands for the su(N ) algebra tensor indices ia1 . . . i
a
qa , while

the quantities (εpN−q
θ )i(q) appearing in (5.18) are defined in (A.20). Also note that,

in (5.15), the summation runs over those values of q1, q2, q3 = 0, 1, . . . ,N which satisfy

the restriction q1 + q2 + q3 = N . Such restriction is appearing in view of

Ci(q1)i(q2)i(q3) 6= 0 only for q1 + q2 + q3 = N , 0 ≤ qa ≤ N , a = 1, 2, 3 . (5.20)
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From (5.15), we see that our generic vertex VΦλ1
Φλ2

Φλ3 is decomposed into elementary

vertices denoted by V
Λ1Λ2Λ3
i(q1)i(q2)i(q3)

(5.16). We note that the elementary vertex V
Λ1Λ2Λ3
i(q1)i(q2)i(q3)

describes interaction of three component fields φ†
Λa;i(qa), a = 1, 2, 3, having the respective

helicities Λ1, Λ2, and Λ3

Internal symmetry. Let us demonstrate the incorporation of internal symmetry in our

model by considering the algebra o(N) as internal symmetry algebra. The internal symme-

try can then be incorporated into our model as follows.

First, in place of the superfields Φλ, Φ
∗
λ, we use matrix-valued superfields Φab

λ , Φ∗ab
λ ,

where indices a, b stand for matrix indices of the o(N) algebra, a, b = 1, . . . ,N. By definition,

our new matrix-valued superfields satisfy the following algebraic constraints

Φab

λ = (−)λ+
N
4
+ 1

2
ηλeλΦba

λ , Φ∗ab
λ = (−)λ+

N
4
+ 1

2
ηλeλΦ∗ba

λ , η2λ = 1 , η−λ = −ηλ ,

(5.21)

where eλ is given in (2.11). It is easy to check that the constraints (5.21) are consistent in

view of the relation (−)2λ+
1
2
N+ηλeλ = 1. Note that, in general, the sign of ηλ may depend

of N . As in the case of the singlet superfields (2.29), the superfields Φab

λ and Φ∗ab
λ are

related as

Φ∗ab
−λ (−p,−pθ) = Φab

λ (p, pθ) . (5.22)

Second, in formulas for generators and the action (2.30), (2.33), in place of Φ∗
λΦλ, we

use Φ∗ab
λ Φab

λ , while, in the cubic vertices, in place of Φ∗
λ1
Φ∗
λ2
Φ∗
λ3
, we use the expressions

Φ∗ab
λ1

Φ∗bc
λ2

Φ∗ca
λ3

.

Third, (anti)commutator (2.31) is represented as

[Φab

λ (p, pθ),Φ
∗a′b′

λ′ (p′, p′θ)]± =
1

2
β
−e

λ+1
2 Πab,a′b′

λ δ3(p− p′)δN (pθ − p′θ)δλ,λ′ , (5.23)

Πab,a′b′

λ ≡ 1

2

(

δaa
′
δbb

′
+ (−)λ+

N
4
+ 1

2
ηλeλδab

′
δba

′
)

, Πab,a′b′

λ Πa
′
b
′,ce

λ = Πab,ce
λ . (5.24)

The following remarks are in order.

(i) For λ1 = 0, λ2 = 0, λ3 = 0, the vertex given in (5.1) describes self-interacting scalar

superfield Φ0 and such vertex has already been obtained in ref. [10]. Thus, our result

for the cubic vertex p−λ1λ2λ3
given in (5.1) agrees with previously reported result

related to the particular values λ1 = 0, λ2 = 0, λ3 = 0, and provides expression for

the cubic vertex p−λ1λ2λ3
corresponding to arbitrary values of the superfield helicities

λ1, λ2, λ3.

(ii) Our vertices VΦλ1
Φλ2

Φλ3 (5.15) can be considered as a supersymmetric completion

of cubic vertices for bosonic massless fields in the 4d flat space found in ref. [13].

We note however that a manifestly Lorentz covariant description of some light-cone

gauge vertices presented in ref. [13] is not available so far. In section 6, in ref. [11],

we provided the detailed discussion of vertices in ref. [13] that can be translated

into manifestly Lorentz covariant form. The reader interested in Lorentz covariant

formulation of light-cone gauge vertices is invited to read section 6, in ref. [11].
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(iii) Taking into account relations (5.17), the restrictions on qa in (5.20) can entirely be

represented in terms of λa and Λa as,

λ1 + λ2 + λ3 = Λ1 + Λ2 + Λ3 −
1

4
N , (5.25)

Λa −
1

4
N ≤ λa ≤ Λa +

1

4
N , a = 1, 2, 3 . (5.26)

Restrictions (5.25), (5.26) provide the classification of cubic interactions of the com-

ponent fields which admit the supersymmetric completion. Namely, the cubic interactions

of the three component fields having the helicities Λ1, Λ2, Λ3 are described by the vertex

in (5.16). Restrictions (5.25), (5.26) tell us then which superfields Φλ are required for the

supersymmetric completion of the vertex in (5.16). Also, from restrictions (5.25), (5.26),

we can learn which vertices in (5.16) do not admit supersymmetric completion.

For the reader convenience, we now illustrate the use of restrictions (5.25), (5.26).

To this end, for three spin-2 component fields, we consider cubic vertices of power (PL)6

in (5.16). For spin-2 component fields, the helicities take values Λa = ±2, a = 1, 2, 3.

From (5.16), we see that, in order to get vertices of power (PL)6, we should choose

Λ1 = Λ2 = Λ3 = 2. Plugging Λa=2, a=1, 2, 3, into (5.25), (5.26), we obtain the restrictions

λ1 + λ2 + λ3 = 6− 1

4
N , (5.27)

2− 1

4
N ≤ λa ≤ 2 +

1

4
N , a = 1, 2, 3 . (5.28)

To explore further our illustrative example, we apply the restrictions (5.27), (5.28) toN = 8

supergravity. We recall that N = 8 supergravity is described by the superfield Φλ with

λ = 0. Plugging N = 8, λ1 = λ2 = λ3 = 0 into (5.27), we see that the restriction (5.27)

is not satisfied. So, on the one hand, using (5.27), (5.28), we are led to the well known

statement: supersymmetries of N = 8 supergravity do not admit supersymmetric com-

pletion of bosonic R3-terms, where R stands for the Riemann curvature tensor. On the

other hand, using (5.27), (5.28), we can find superfields Φλ required for supersymmetric

completion of the vertex of power (PL)6 for the three spin-2 fields. Obviously, to this end

we should go beyond N = 8 supergravity. Namely considering, for example, the particular

case of the superfields Φλa
, with λ1 = 6 − 1

4N , λ2 = λ3 = 0, and N ≥ 8, we verify that

restrictions (5.27), (5.28) are satisfied.

Conjecture for coupling constants of N -extended supersymmetric theory. Let

us set Φλ = 0 for λ ∈ Z + 1
2 in (2.15), (2.16) and consider N -extended supersymmetric

model described by superfields Φλ with all λ ∈ Z. Using (5.25), we note that, if we choose

the following solution for the cubic couplings constants:

Cλ1λ2λ3 = gkλ1+λ2+λ3+
1
4
N
/

(

λ1 + λ2 + λ3 +
1

4
N − 1

)

! , (5.29)

then, in terms of the helicities Λa of the component fields appearing in (5.15), we get the

relation

Cλ1λ2λ3 = gkΛ1+Λ2+Λ3
/

(Λ1 + Λ2 + Λ3 − 1)! . (5.30)
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In (5.29), (5.30), the g is a dimensionless coupling constant, while the k is a dimensionful

parameter. Relation for coupling constants (5.30) coincides with one found in refs. [26, 27]

for bosonic theories of higher-spin fields. Thus, we see that for bosonic truncation of our N -

extended supersymmetric model, solution given in (5.29) coincides with the one in refs. [26,

27]. Taking this into account, we then conjecture that generalization of our solution for

coupling constants in refs. [26, 27] to the case of N -extended supersymmetric model is

given by the relation in (5.29).4 Also one can conjecture that solution (5.29) supplemented

by the constraint C̄λ1λ2λ3 = 0 provides N -extended supersymmetric generalization of the

bosonic higher-spin chiral model in ref. [28].

6 Conclusions

In this paper, we generalized our previous study of N = 1 massless arbitrary spin super-

multiplets in the flat 4d space in ref. [11] to the case of N -extended massless arbitrary spin

supermultiplets, N = 4N. For the N -extended massless supermultiplets, we built uncon-

strained superfields and used such superfields to develop the light-cone gauge superspace

formulation. We used our light-cone gauge superfield formulation to get full list of the

cubic interaction vertices for N -extended massless arbitrary spin (integer and half-integer)

supermultiplets. We obtained restrictions on the values of N and helicities of superfields

which provide the complete classification of cubic vertices for the N -extended massless

supermultiplets studied in this paper. We note also that our treatment of light-cone gauge

superfields provides us the attractively simple superspace representation for the cubic in-

teraction vertices. Now we would like to discuss potentially interesting generalizations and

applications of our study.

(i) Perhaps most interesting generalization of our results in this paper is related to the

light-cone gauge higher-spin field theory in AdS. Light-cone gauge formulation of

interacting higher-spin massless fields in AdS4 space has recently been developed in

ref. [29]. Namely, in ref. [29], we demonstrated that the flat space cubic bosonic

vertices obtained in ref. [13] enter as building blocks into AdS cubic bosonic vertices.

We expect therefore that results, methods, and approaches in this paper and in

ref. [29] will have interesting applications for studying light-cone gauge N -extended

supersymmetric theories in AdS4 space. For example, in ref. [29], we shown that

the flat light-cone gauge bosonic vertices are in one-to-one correspondence with the

AdS light-cone gauge bosonic vertices. For supersymmetric light-cone gauge flat and

AdS cubic vertices, we also expect the one-to-one correspondence. This implies then

that our classification for the N -extended flat cubic vertices obtained in this paper

4Solution for the cubic coupling constants (5.30) of bosonic higher-spin theories was found in refs. [26, 27]

by analyzing the quartic approximation. In order to prove our conjecture for the cubic coupling con-

stants (5.29) one needs to extend analysis of cubic approximation in this paper to the quartic approxima-

tion for the N -extended supersymmetric higher-spin theories. As a side remark we note that, taking into

account relation (5.25), it is easy to see that the solution (5.29) is unique solution that leads to (5.30).
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provides immediately the classification for N -extended AdS cubic vertices.5 Here, for

the reader convenience, we note that Vasiliev’s equations for higher-spin gauge fields

in AdS4 were obtained in ref. [31]. The complete cubic coupling was found in ref. [32]

and the quartic interaction was reconstructed in refs. [33, 34]. Recent development

of approach in ref. [31] may be found in refs. [35, 36]. In the framework of approach

in ref. [31], various N -extended supersymmetric higher-spin gauge field theories in

AdS space were studied in refs. [37]–[42]. Also we mention the metric-like approaches

in refs. [43]–[48] which might be helpful for studying higher-spin supersymmetric

theories in AdS. Application of collective dipole approach for the investigation of

higher-spin interactions may be found in refs. [49–51]. We expect that light-cone

gauge approach will be helpful for investigation of the problem of bulk definition of

higher-spin theories identified in ref. [52].

(ii) In this paper, we restricted our study to massless supermultiplets in the four di-

mensions. Generalization of our study to the case of massless supermultiplets in the

higher dimensions could be of interest. In this respect, we note that all parity invari-

ant cubic vertices for massless arbitrary spin light-cone gauge bosonic and fermionic

fields in the higher dimensions were built in refs. [25, 53], while the discussion of mass-

less supermultiplets in higher dimensions may be found, e.g., in refs. [54, 55].6 We

expect therefore that studies in refs. [25, 53–55] might be helpful for the investigation

of interacting supermultiplets in the higher dimensions.7

(iii) We expect that our results for supersymmetric massless higher-spin light-cone gauge

fields obtained in this paper might be helpful for the extension of our study to the case

of supersymmetric massive fields. In light-cone gauge approach, interaction vertices

for massive arbitrary spin bosonic and fermionic fields in the flat space were studied

in refs. [25, 53]. We think that light-cone gauge cubic vertices in refs. [25, 53] will be

helpful for the studying supersymmetric theories of massless and massive fields. For

the reader convenience, we note that, in Lorentz covariant approach, N = 1 higher-

spin massless supermultiplets, by using BRST method, were studied in ref. [68], while

the N = 1 massive supermultiplets are considered in ref. [69]. Cubic self-interactions

of massive fields and couplings of massive fields to massless fields were studied by

using BRST approach in ref. [58].

(iv) In the recent time, higher-spin theories in three-dimensional flat and AdS spaces have

extensively been studied in the literature. Namely, we mention that the interacting

massless higher-spin gauge fields in 3d flat space have been studied in refs. [70–72],

5We think that results in this paper might also have interesting applications for the studying supersym-

metric extension of the conjectured non-local higher-spin field theories in flat space discussed in ref. [30].
6In the framework of BRST-BV approach and various metric-like Lorentz covariant approaches, cubic

interactions for massless higher-spin fields were investigated in the respective refs. [56]–[60] and refs. [61–63].

Lorentz covariant parity-odd cubic interactions for higher-spin massless fields in R3,1 are studied in ref. [64].

Recent interesting studies of fermionic fields may be found in refs. [65–67].
7Twistor methods addressed, e.g., in refs. [91–93], could also be helpful for studying interactions of

massless supermultiplets in higher dimensions.
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while massive higher-spin fields have been investigated in refs. [73]–[75]. Recent ap-

plications of conformal geometry for studying 3d conformal higher-spin fields may be

found in refs. [76, 77], while unfolded formulation of 3d conformal fields is considered

in refs. [78, 79]. We note, because the massless light-cone gauge higher-spin fields are

trivial in 3d space, the usefulness of the light-cone formalism for studying such fields

is not obvious. However, for the case of massive fields and conformal fields, we expect

that the light-cone gauge approach might be helpful for better understanding of vari-

ous aspect of massive and conformal field theories in three dimensions. For the reader

convenience, we note that light-cone formulation of higher-spin massive fields in the

3d flat space is well known, while the light-cone gauge formulation of higher-spin

massive fields in AdS3 was obtained in refs. [80, 81]. In the framework of ordinary-

derivative (2nd-derivative) light-cone gauge formalism, higher-spin conformal fields

were studied in ref. [82].

(v) Quantum properties of bosonic higher-spin gauge field theories were studied in

refs. [83, 84]. In ref. [84], the arguments were given for UV finiteness of bosonic chiral

higher-spin theory. We note also that, in the framework of light-cone approach, recent

discussion of quantum properties of N = 8 supergravity may be found in refs. [7, 8].

We believe that our results for cubic interactions of N -extended arbitrary spin su-

permultiplets and methods in refs. [7, 8, 84] might be helpful for study of quantum

properties of N -extended supersymmetric higher-spin field theories. As note in the

literature, extended N = 8 supergravity theory is a candidate for UV finite theory

(see, e.g., refs. [7, 8] and references therein). We think therefore that supersymmetric

(chiral and non-chiral) higher-spin theories are also candidates for UV finite theories.

Last but not least motivation for our interest in supersymmetric higher-spin theories

is related to the fact that supersymmetry makes study of four point vertices easier.

We expect that, as compared to bosonic higher-spin theories, interesting features of

the supersymmetric higher-spin theories will be seen upon consideration of four point

vertices. For the case of 11d supergravity, example of application of supersymmetry

for the studying four point vertices can be found in section 5 in ref. [23].

(vi) Application of light-cone gauge approach for studying interacting continuous-spin

bosonic field may be found in refs. [85, 86]. We expect that the methods developed in

this paper might be helpful for studying interactions of supersymmetric continuous-

spin fields. In the Lorentz covariant frame, the study of interactions of bosonic

continuous-spin field may be found in refs. [87, 88]. Discussion of light-cone gauge

continuous-spin field in AdS is given in refs. [89, 90].
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A Notation and conventions

N -extended Poincaré superalgebra in light-cone basis. Using notation Pµ, Jµν ,

µ, ν = 0, 1, 2, 3, for generators of the Poincaré algebra, we present (anti)commutators of

the N -extended Poincaré superalgebra given in (2.3), (2.4) as

Commutators of generators of Poincaré algebra, Pµ, Jµν , and generators of su(N ) algebra,

J i
j:

[Pµ, Jνρ] = ηµνP ρ − ηµρP ν , [Jµν , Jρσ] = ηνρJµσ + 3 terms , (A.1)

[J i
j , J

k
l] = δkj J

i
l − δilJ

k
j , i, j, k, l = 1, . . . ,N ; (A.2)

Commutators between supercharges:

{Q+R

j , Q+Li} = δijP
+ , {Q−Ri, Q−L

j } = −δijP
− , (A.3)

{Q+R

j , Q−Ri} = δijP
R , {Q+Li, Q−L

j } = δijP
L ; (A.4)

Commutators between supercharges and generators of Lorentz algebra:

[J+−, Q±R] = ±1

2
Q±R , [J+−, Q±L] = ±1

2
Q±L , (A.5)

[JRL, Q±R] =
1

2
Q±R , [JRL, Q±L] = −1

2
Q±L , (A.6)

[Q−Ri, J+L] = −Q+Li , [Q−L

i , J+R] = −Q+R

i , (A.7)

[Q+R

i , J−L] = Q−L

i , [Q+Li, J−R] = Q−Ri ; (A.8)

Commutators between supercharges and generators of su(N ) algebra:

[Qi, J
j
k] = δjiQk −

1

N δjkQi , [Qi, J j
k] = −δikQ

j +
1

N δjkQ
i . (A.9)

In the light-cone basis (2.3), (2.4), commutation relations for generators of the Poincaré

algebra can be obtained from (A.1) by using the flat metric ηµν which has the following

non-vanishing elements η+− = η−+ = 1, ηRL = ηLR = 1. Also note that, in (A.9), the

shortcut Qi is used to indicate the supercharges Q+R

i , Q−L

i , while the shortcut Qi is used

to indicate the supercharges Q+Li, Q−Ri.

Hermitian properties of the generators are assumed to be as follows:

P±† = P±, PR† = PL, JRL† = JRL , J+−† = −J+−, J±R† = −J±L ,

Q+R†
i = Q+Li , Q−Ri† = Q−L

i , J i
j
† = J j

i . (A.10)

Covariant and contravariant vectors fields Xi, X
i of the su(N ) algebra are transformed as

[Xi, J
j
k] = δjiXk −

1

N δjkXi , [Xi, J j
k] = −δikX

j +
1

N δjkX
i . (A.11)

Hermitian conjugated of the field φλ;i1...iq(p) (2.12) is denoted as φ†
λ;i1...iq

(p). Note that

the fields φλ;i1...iq(p) and φ†
λ;i1...iq

(p) are the respective covariant and contravariant tensor

fields of the su(N ) algebra. Transformations of φλ;i1...iq(p) and φ†
λ;i1...iq

(p) under action

of the generators of the su(N ) algebra are realized as tensor products of the respective

transformations for covariant and contravariant vector fields Xi and Xi (A.11).
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Grassmann algebra. Grassmann momentum is denoted by piθ. Throughout this paper

we use the left derivative ∂pi
θ
w.r.t. the Grassmann momentum piθ, ∂piθ

pjθ = δji . The integral

over the Grassmann momentum piθ is normalized to be
∫

dN pθ p
i1
θ . . . piNθ = εi1...iN , (A.12)

where εi1......iN is the Levy-Civita symbol of the su(N ) algebra, ε1......N = 1. Ghost parities

of the piθ, ∂piθ
, and measure dN pθ are given by

GP(piθ) = 1 , GP(∂pi
θ
) = 1 , GP(dN pθ) = 0 . (A.13)

We note the following relations which are helpful for analysis of supercharges

piθ(εp
N−1
θ )j = δij(εp

N
θ ) , ∂pi

θ
(εpNθ ) = (εpN−1

θ )i , (A.14)

(εpNθ ) ≡ 1

N !
εi1...iN pi1θ . . . piNθ , (εpN−1

θ )i ≡
1

(N − 1)!
εii2...iN pi2θ . . . piNθ . (A.15)

The hermitian conjugation for product of two quantities A, B having arbitrary ghost

numbers is defined according to the rule (AB)† = B†A†. For the Berezin integral, we use

the rule ∫

dN pθ (∂pi
θ
A)B = (−)ǫA+1

∫

dN pθA∂pi
θ
B , ǫA ≡ GP(A) . (A.16)

Grassmann Dirac delta-function is defined by the relations

δN (pθ) = p1θ . . . p
N
θ ,

∫

dN p′θ δ
N (p′θ − pθ)f(p

′
θ) = f(pθ) , (A.17)

while the Grassmann Fourier transformation and its inverse are fixed to be

F (pθ) =

∫

dN p′θe
p′
θ
pθ
β f(p′θ) , f(pθ) = βN

∫

dN p′θe
p′
θ
pθ
β F (p′θ) . (A.18)

We note the following useful integral over the Grassmann momenta

∫

dN p†θe
p
i†
θ

pi
θ

β pi1†θ . . . p
iq†
θ = (−)qβq−N (εpN−q

θ )iq ...i1 , (A.19)

(εpN−q
θ )i1...iq ≡ 1

(N − q)!
εi1...iqiq+1...iN p

iq+1

θ . . . piNθ . (A.20)

Taking into account expression for dΓpθ
[3] obtained from (3.9) by setting n = 3 and

notation in (A.15), we note the following helpful Berezin integrals for 3-point vertices:

∫

dΓ
p†
θ

[3] exp





∑

a=1,2,3

piθap
i
θa
†

βa



 = β−N (εPN
θ )(εPN

θ ) , β ≡ β1β2β3 , (A.21)

∫

dΓ
p†
θ

[3] (εP
†N
θ ) exp





∑

a=1,2,3

piθap
i
θa
†

βa



 = (εPN
θ ) , Pi

θ ≡
∑

a=1,2,3

piθa , (A.22)

where P
i
θ
† appearing in (A.22) is obtained from (4.3) by the replacement piθa → pi†θa .
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B Superfield Φ∗

λ

Using (2.28) and notation in (A.20), we find the following expansion for the superfield Φ∗
λ:

Φ∗
λ(p, pθ) =

N
∑

q=0

(−)q

q!
β

1
2
q− 1

4
N+ 1

2
eλ−

1
2
e
λ− 1

2 qφ†

λ− 1
2
q+ 1

4
N ; i1...iq

(p)(εpN−q
θ )i1...iq . (B.1)

We note that equal-time (anti)commutator for the component fields (2.12) takes the form

[φλ ; i1...iq(p), φ
†
λ′ ; i′1...i

′
q′
(p′)]± =

β
−e

λ+1
2

2(N − q)!
δ3(p− p′)δλλ′δqq′εi1...iqjq+1...jN εi

′
1...i

′
qjq+1...jN .

(B.2)

Using (B.2), we verify that (anti)commutator for superfields (2.15), (B.1) takes the form

given in (2.31).

Realization of N -extended Poincaré superalgebra on superfield Φ∗

λ.

Using (2.18)–(2.26) and (2.29), we get the realization of the N -extended Poincaré

superalgebra on the superfield Φ∗
λ in terms of differential operators,

PR = −pR , P L = −pL , P+ = −β , P− = −p− , p− ≡ −pRpL

β
, (B.3)

J+R = ix+PR + ∂pLβ , J+L = ix+PL + ∂pRβ , (B.4)

J+− = ix+P− + ∂ββ +M+−
−λ , JRL = pR∂pR − pL∂pL +MRL

−λ , (B.5)

J−R = −∂βp
R + ∂pLp

− +MRL

−λ

pR

β
−M+−

−λ

pR

β
, (B.6)

J−L = −∂βp
L + ∂pRp

− −MRL

−λ

pL

β
−M+−

−λ

pL

β
, (B.7)

M+−
λ =

1

2
piθ∂pi

θ
− 1

4
N − 1

2
eλ , MRL

λ = λ− 1

2
piθ∂pi

θ
+

1

4
N , (B.8)

Q+R

i = (−)eλβ∂pi
θ
, Q+Li = (−)

e
λ+1

2 piθ , (B.9)

Q−Ri = (−)
e
λ+1

2
1

β
pRpiθ , Q−L

i = (−)eλpL∂pi
θ
, (B.10)

J i
j = piθ∂pj

θ

− 1

N δijp
k
θ∂pk

θ
, (B.11)

where eλ is given in (2.11).

Use of relations in (2.30), (2.31), leads to equal-time (anti)commutation relations be-

tween the generators of the Poincaré superalgebra and the superfield Φ∗
λ,

[Φ∗
λ, G[2]]± = Gdiff, λΦ

∗
λ , (B.12)

where Gdiff, λ are given in (B.3)–(B.11).

Hermitian conjugate of superfields and vertices. Using (2.28), (2.29), we verify

that the hermitian conjugate of Φ∗
λ can be presented as

(Φ∗
λ(p, pθ))

† ≡ β
N
2

∫

dN pθe
pi
θ
p
i†
θ

β Φ∗
−λ(−p, pθ) . (B.13)
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The constraint on the coupling constants (5.12) can be obtained in the following way. First,

we introduce the vertices

vλ1λ2λ3 =(PL)
N
4
+Mλ

∏

a=1,2,3

β
−λa−

1
2
eλa

a , v̄λ1λ2λ3 =(PR)
N
4
−Mλ (εPN

θ )
∏

a=1,2,3

β
λa−

1
2
N− 1

2
eλa

a ,

(B.14)

where Mλ is given in (5.8). Second, using (B.13), (B.14), we get the relation

(∫

dΓ[3]Φ
∗
λ1λ2λ3

vλ1λ2λ3

)†

= (−)Mλ

∫

dΓ[3]Φ
∗
−λ1,−λ3,−λ3

v̄−λ1,−λ2,−λ3 . (B.15)

Finally, with the help of (B.15), we see that, requiring the P−
[3] to be hermitian, we obtain

the constraint on coupling constants in (5.12).

C Derivation of cubic vertex p
−

λ1λ2λ3
(5.1)

Our procedure of the derivation of cubic interaction vertex p−[3] given in (5.1) is realized in

the following five steps.

Step 1. From (4.36) we see that the vertex p−[3] can be presented as

p−[3] = V (PL,Pθ) + V̄ (PR,Pθ) . (C.1)

J i
j symmetries (4.33) imply that vertices V ,V̄ (C.1) can be presented as

V (PL,Pθ) = V0(P
L) + (εPN

θ )Vε(P
L) , (C.2)

V̄ (PR,Pθ) = V̄0(P
R) + (εPN

θ )V̄ε(P
R) , (C.3)

where we use notation in (5.9).

Step 2. Using p−[3] (C.1) and requiring that the density q−L

[3] (4.34) be polynomial in

the momentum P
R, we find Vε(P

L) = 0. Using p−[3] (C.1) and requiring that the density

q−R

[3] (4.34) be polynomial in the momentum P
L, we find V̄0(P

R) = 0. We have the relations

V (PL,Pθ) = V0(P
L) , V̄ (PR,Pθ) = (εPN

θ )V̄ε(P
R) . (C.4)

Step 3. Taking into account (C.4), we learn that equations (4.34), (4.33) amount to the

following

Equations for V0:



NPL − N
4

+
1

2
Eλ +

∑

a=1,2,3

βa∂βa



V0 = 0 , (C.5)

(

−NPL +Mλ +
N
4

)

V0 = 0 , (C.6)

(

−Nβ −Mλ − 1

2
Eλ

)

V0 = 0 . (C.7)
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Equations for V̄ε:


NPR +
5N
4

+
1

2
Eλ +

∑

a=1,2,3

βa∂βa



 V̄ε = 0 , (C.8)

(

NPR +Mλ − N
4

)

V̄ε = 0 , (C.9)

(

−Nβ +Mλ +
1

2
Eλ

)

V̄ε = 0 , (C.10)

where operators NPR , NPL and Nβ are given in (4.10), (4.29) and we use the notation

Mλ ≡
∑

a=1,2,3

λa , Eλ ≡
∑

a=1,2,3

eλa
, Mλ =

1

3

∑

a=1,2,3

β̌aλa , Eλ =
1

3

∑

a=1,2,3

β̌aeλa
.

(C.11)

Let us consider the system of equations (C.5)–(C.7).

Step 4. Equation (C.6) is solved as

V0 = (PL)Mλ+
N
4 V (1) , V (1) = V (1)(β1, β2, β3) , (C.12)

where V (1) depends on the momenta β1, β2, β3 and the helicities λ1, λ2, λ3. Plugging (C.12)

into (C.5) and (C.7), we obtain the respective equations


Mλ +
1

2
Eλ +

∑

a=1,2,3

βa∂βa



V (1) = 0 ,

(

Nβ +Mλ +
1

2
Eλ

)

V (1) = 0 . (C.13)

Step 5. Introducing new vertex V (2),

V (1) = V (2)
∏

a=1,2,3

β
−λa−

1
2
eλa

a , (C.14)

we learn that equations (C.13) lead to the following two respective equations for V (2):
∑

a=1,2,3

βa∂βa
V (2) = 0 , Nβ V

(2) = 0 . (C.15)

From (C.15), we find that the V (2) does not dependent on the momenta β1, β2, β3,

V (2) = Cλ1λ2λ3 , (C.16)

where Cλ1λ2λ3 is a constant depending only on the helicities. Collecting formulas in (C.12)–

(C.16), we obtain vertex Vλ1λ2λ3 presented in (5.2). To determine the vertex V̄ε we should

analyse equations (C.8)–(C.10). Repeating analysis above-given, we obtain solution to

V̄λ1λ2λ3 presented in (5.3).
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