
Eur. Phys. J. C (2022) 82:1007
https://doi.org/10.1140/epjc/s10052-022-10981-y

Regular Article - Theoretical Physics

Cubic interactions of d4 irreducible massless higher spin fields
within BRST approach

I. L. Buchbinder1,2,3,a, V. A. Krykhtin1,2,b, T. V. Snegirev1,2,4,c

1 Center of Theoretical Physics, Tomsk State Pedagogical University, Tomsk 634061, Russia
2 National Research Tomsk State University, Tomsk 634050, Russia
3 Lab. for Theor. Cosmology, International Center of Gravity and Cosmos, Tomsk State University of Control Systems and Radioelectronics, Tomsk

634050, Russia
4 Laboratory of Applied Mathematics and Theoretical Physics, TUSUR, Lenin Ave. 40, Tomsk 634050, Russia

Received: 5 October 2022 / Accepted: 30 October 2022 / Published online: 9 November 2022
© The Author(s) 2022

Abstract We develop an approach to constructing the man-
ifestly Lorentz covariant cubic interaction vertices for the
four-dimensional massless higher spin bosonic fields with
two-component dotted and undotted spinor indices. Such
fields automatically satisfy the traceless conditions what sim-
plify form of the equations determining the irreducible mass-
less representation of the Poincaré group with given helicity.
The cubic vertex is formulated in the framework of the BRST
approach to higher spin field theory. Use of the above spin-
tensor fields allows to simplify a form of the BRST-charge
and hence to find the cubic vertices just in terms of irreducible
higher spin fields. We derive an equation for the cubic vertex
and find solutions for arbitrary spins s1, s2, s3 with the num-
ber of derivatives s1+s2+s3 in the vertex. As an example, we
explicitly construct a vertex corresponding to the interaction
of a higher spin field with scalars.

1 Introduction

Study the various aspects of higher spin filed theory still
attracts an attention motivated among other things by certain
possibilities for the development of new principles for con-
structing unified models of fundamental interactions, includ-
ing quantum gravity (see e.g. the reviews [1–4] and the ref-
erence therein for current progress).

Cubic interactions are the first approximation in the theory
of interacting fields. Their peculiarity is that the cubic inter-
action for given three fields does not depend on the presence
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or absence of any other fields in the full nonlinear theory.
Thus, they are model independent and can be classified. The
complete classification of consistent cubic interaction ver-
tices of massless and massive fields of arbitrary spin was
constructed in the light-cone formalism in the space dimen-
sions d ≥ 4 by Metsaev [5–7]. In the simplest case of three
massless symmetric fields with spins s1, s2, s3 in Minkowsky
space, the cubic vertices are characterized by the number of
derivatives k

kmin =s1 + s2 + s3 − 2smin ≤k ≤ s1 + s2 + s3 = kmax , d > 4.

There are only two vertices in four dimensions d = 4
with k = kmin, kmax (see e.g. [4]). Already in this case the
Lorentz-covariant realization of cubic interaction vertices for
higher spins requires very cumbersome calculations.

As is known the irreducible massless higher spin represen-
tation of the Poincaré group with integer spin s is described
by metric-like symmetric tensor fields φμ1...μs which sat-
isfy equation ∂2φμ1...μs = 0 and subject transversality
∂νφ

μ1...μs−1ν = 0 and tracelessness φμ1...μs−2ν
ν = 0 con-

straints. One can expect that in the case of interacting fields
these equation and constraints should be modified in some
way. One of the generic problems in higher spin field theory
is to derive these modified equations and the corresponding
constraints within the Lagrangian formulation. This problem
has been studied by many authors using different approaches
(see e.g. [9–29] and the references therein). Also it is worth
noting the papers, where the consistent cubic vertices for
massless higher spin fields was constructed in the the frame-
like formalism [30–32].1

1 Recently, there was developed a general approach to gauge invariant
deformations of gauge systems [33–36], that opens the new possibilities
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Recently the cubic vertices for symmetric massless higher
spin fields with integer spins were considered within the
BRST approach for d ≥ 4 [40] in Minkowski space where
the BRST charge takes into account all the constraints. As it
turned out, taking into account the of traceless constraints,
although it requires overcoming some formal difficulties, can
lead to the appearance of new terms in the cubic vertex in
comparison with the formulation without using the condi-
tions of tracelessness in the BRST charge. In this paper, we
consider the same problem but from a different angle.

We want to pay attention that in d4 all the worries with
tracelessness constraints can be avoid if to work within of the
two-component spinor formalism. Irreducible massless fields
with integer spin s are described in this case by multispinors
φa1...as ȧ1...ȧs satisfying the equation ∂2φa1...as ȧ1...ȧs = 0 and
subject to transversality condition ∂bḃφ

a1...as−1bȧ1...ȧs−1ḃ = 0.
There are no need to use the tracelessness constraint. Our
aim is to apply the BRST approach for construction of cubic
interaction for massless bosonic fields in terms of spin-
tensor fields with two component dotted and undotted spinor
indices.

The paper is organized as follows. In Sect. 2 we present
the basic aspects of the BRST approach for constructing the
free Lagrangian formulations of irreducible massless fields
with an arbitrary integer spin in two-component formalism.
In Sect. 3 we describes the general procedure of the BRST
approach for constructing interactions and present the BRST-
closed condition for cubic vertices. Particular solution to this
condition with the number of derivatives kmax = s1 +s2 +s3

in the vertex.is given in Sect. 4. One example of the inter-
action of a higher spin field with scalars in more detail is
discussed in Sect. 5. In Sect. 6 we summarize the results
obtained.

2 BRST charge and free Lagrangian

In space of 4d multispinor tensors the irreducible massless
higher spin fields with integer spin s can be described by
fields φa(s)ȧ(s) subjected to constraints

∂bḃφa(s−1)bȧ(s−1)ḃ = 0, ∂2φa(s)ȧ(s) = 0, (2.1)

where ∂2 = ∂μ∂μ = − 1
2∂aȧ∂

aȧ .
In the framework of the BRST approach, the higher spin

fields appear as the coefficients in the vectors of the Fock

Footnote 1 continued
to construct the higher spin field vertices [37,38]. We also point out a
new approach to problem of locality in the higher spin field theory that
can be related with a structure of the interaction vertices [39].

space

|φ〉 =
∞∑

s=0

|φ(s)〉, |φ(s)〉 = 1

s!φa(s)
ȧ(s)ca(s)cȧ(s)|0〉, (2.2)

ca(s) := ca1 . . . cas cȧ(s) := cȧ1 . . . cȧs (2.3)

generated by creation ca, cȧ and annihilation operators
aa, aȧ

〈0|ca = 〈0|cȧ = 0, aa |0〉 = aȧ |0〉 = 0, 〈0|0〉 = 1

(2.4)

with following nonzero commutation relations

[aa, cb] = εab, [aȧ, cḃ] = −εȧḃ. (2.5)

The Hermitian conjugation in a Fock space is defined as fol-
lows

(aa)+ = cȧ, (aȧ)+ = ca, (ca)+ = aȧ, (cȧ)+ = aa .

(2.6)

Let us introduce operators

p2 = ∂2, l = aaaȧ paȧ, l+ = −cacȧ paȧ, paȧ = ∂aȧ,

(2.7)

which act on the state of the Fock space as

p2|φ(s)〉 = 1

s!∂
2φa(s)

ȧ(s)ca(s)cȧ(s)|0〉,

l|φ(s)〉 = − s2

s! ∂
a
ȧφa(s)

ȧ(s)ca(s−1)cȧ(s−1)|0〉,

l+|φ(s)〉 = 1

s!∂b
ḃφa(s)

ȧ(s)ca(s)bcȧ(s)ḃ|0〉.
The constraints (2.1) in terms of operators (2.7) take form

p2|φ(s)〉 = 0, l|φ(s)〉 = 0. (2.8)

Note the set of operators FA = {p2, l, l+} is invariant
under Hermitian conjugation with respect to the scalar prod-
uct

〈φ||φ〉 (2.9)

and form a closed algebra [FA, FB] = f ABC FC with the
only nonzero commutation relation

[l+, l] = (N + N̄ + 2)p2, (2.10)

where

N = caaa, N̄ = cȧa
ȧ, (N )+ = N̄ .

The Hermitian nilpotent BRST charge is constructed in the
form

Q = ηAFA − 1

2
ηAηB fAB

CPC , Q+ = Q, Q2 = 0,

(2.11)
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where ηA = {θ, c+, c} and PA = {π, b, b+} are the
fermionic ghosts and corresponding momenta (antighosts)
satisfying the anticommutation relations {ηA,PB} = δAB .
The ghost and antighost variables have ghost numbers
gh(ηA) = −gh(PA) = 1 while gh(FA) = 0. Applying
formula (2.11) we obtain the explicit expression for BRST
charge

Q = θp2 + c+l + cl+ + c+c(N + N̄ + 2)π. (2.12)

The operator Q (2.12) is nilpotent Q2 = 0 and acts in the
extended Fock space of the vectors |
〉 including dependence
on the fermionic ghosts defined above.

We note here that there are two operators

S = caaa + c+b + b+c, S̄ = cȧa
ȧ + c+b + b+c,

(2.13)

that commute with the BRST operator (2.12). Thus if we
want to get Lagrangian for bosonic spin s field (2.2) the state
vector |
〉 in the extended Fock space must satisfy

S|
〉 = s|
〉, S̄|
〉 = s|
〉. (2.14)

The basic equation of motion in the BRST approach is pos-
tulated in the extended Fock space as follows

Q|
〉 = 0. (2.15)

To reproduce the conditions of the irreducible representa-
tion (2.8) from the equation of motion (2.15) we define the
vacuum of extended Fock space as

c|0〉 = b|0〉 = π |0〉 = 0 (2.16)

and require that the ghost number of vector |
〉 is equal to the
ghost number of initial vector (2.2), gh(|
〉) = gh(|φ(s)〉) =
0. Then the most general vector |
〉 of the extended Fock
space has the form

|
〉 = |φ(s)〉 + θb+|φ(s−1)
1 〉 + c+b+|φ(s−2)

2 〉 (2.17)

where the |φ(s)〉 is the initial vector (2.2) and the |φ(s−1)
1 〉,

|φ(s−2)
2 〉 have a similar form. After that, the whole construc-

tion is completely defined and closed.
Due to the nilpotency of the BRST charge (2.12), solutions

to Eq. (2.15) is defined up to the gauge transformations

δ|
〉 = Q|�〉. (2.18)

Since gh(Q) = 1 and gh(|
〉) = 0, the gauge parameter
|�〉 has the ghost number −1 and therefore its most general
form looks like

|�〉 = b+|λ(s−1)〉, (2.19)

where the vector |λ(s−1)〉 has decomposition in creation and
annihilation operators similar with vector |φ(s)〉 in (2.2).

The equation of motion Q|
〉 = 0 in terms of the vectors
|φ〉, |φ1〉, |φ2〉 can be rewritten as follows2

p2|φ〉 − l+|φ1〉 = 0,

p2|φ2〉 − l|φ1〉 = 0,

l|φ〉 − l+|φ2〉 + (N + N̄ + 2)|φ2〉 = 0.

In this case, the gauge transformations δ|
〉 = Q|�〉 look
like

δ|φ〉 = l+|λ〉, δ|φ1〉 = p2|λ〉, δ|φ2〉 = l|λ〉.
The gauge invariant Lagrangian is constructed as follows

L = 1

2

∫
dθ〈
|Q|
〉. (2.20)

It is not difficult to rewrite the Lagrangian (2.20) in explicit
component form. Putting the expansion (2.17) into the
Lagrangian (2.20) and integrating over ghost θ according
to the rule
∫

dθ〈0|θ |0〉 = 1,

∫
dθ〈0||0〉 = 0, (2.21)

one obtains

L = 1

2

{
〈φ|(p2|φ〉 − l+|φ1〉)

−〈φ1|(l|φ〉 − l+|φ2〉 + (N + N̄ + 2)|φ1〉)
−〈φ2|(p2|φ2〉 − l|φ1〉)

}
. (2.22)

Now, using the relation (2.2) and the analogous relations
for |φ1〉 and |φ2〉, we define the new Fock space vectors
|H〉, |C〉, |D〉 of the form

|φ〉 = |H〉 = 1

s!Ha(s)
ȧ(s)ca(s)cȧ(s)|0〉, (2.23)

|φ1〉 = |C〉 = 1

(s − 1)!Ca(s−1)
ȧ(s−1)ca(s−1)cȧ(s−1)|0〉,

(2.24)

|φ2〉 = |D〉 = 1

(s − 2)!Da(s−2)
ȧ(s−2)ca(s−2)cȧ(s−2)|0〉.

(2.25)

Then for given spin s, the Lagrangian (2.22) takes the form

L = 1

2

{
Ha(s)

ȧ(s)(∂2Ha(s)
ȧ(s) − s∂aȧC

a(s−1)
ȧ(s−1))

−Ca(s−1)
ȧ(s−1)(−s∂b

ḃHa(s−1)b
ȧ(s−1)b

−(s − 1)∂aȧ D
a(s−2)

ȧ(s−2) + 2sCa(s−1)
ȧ(s−1))

−Da(s−2)
ȧ(s−2)(∂2Da(s−2)

ȧ(s−2)

+(s − 1)∂b
ḃCa(s−2)b

ȧ(s−2)b)
}
. (2.26)

2 In what follows, we will often omit superscripts.
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The corresponding gauge transformations are written as fol-
lows

δHa(s)
ȧ(s) = 1

s
∂a

ȧλa(s−1)
ȧ(s−1)

δCa(s−1)
ȧ(s−1) = ∂2λa(s−1)

ȧ(s−1)

δDa(s−2)
ȧ(s−2) = −(s − 1)∂bḃλa(s−1)b

ȧ(s−1)ḃ. (2.27)

One can show that Lagrangian (2.20) describes massless
spin s field [41,42]. Indeed, after removing field C from
Lagrangian (2.26) with the help of its equation of motion we
are left with two traceless fields H and D. These two trace-
less fields can be combined into one double traceless field
and Lagrangian for this double traceless field will coincide
with the Fronsdal’s Lagrangian [43].

3 Construction of cubic interaction

For deriving the cubic interactions we use three copies of
the vectors in extended Fock space |
i 〉, i = 1, 2, 3 and
three corresponding operators. These operators satisfy the
commutation relations

[aai , c j
b] = δi jε

ab, [aȧi , c j
ḃ] = −δi jε

ȧḃ, (3.1)

{θi , π j } = {ci , b+
j } = {c+

i , b j } = δi j . (3.2)

The full interacting Lagrangian up to cubic level is defined
as follows

L = 1

2

∑

i

∫
dθi 〈
i |Qi |
i 〉

+1

2
g

∫
dθ1dθ2dθ3〈
1|〈
2|〈
3||V 〉 + h.c., (3.3)

where |V 〉 is some cubic vertex, which should be found, and
g is a coupling constant. It is easy to check that Lagrangian
(3.3) is invariant under the following gauge transformations
up to g2 terms (in what follows i � i + 3)

δ|
i 〉 = Qi |�i 〉 − g
∫

dθi+1dθi+2(〈
i+1|〈�i+2|
+〈
i+2|〈�i+1|)|V 〉, (3.4)

if the following condition takes place

Q̂|V 〉 = 0, Q̂ =
3∑

i=1

Qi . (3.5)

This condition is considered as an equation for |V 〉. To guar-
antee zeroth ghost number of Lagrangian (3.3), the vertex
|V 〉 must have ghost number 3. We will looking for vertex in
the form

|V 〉 = V |
〉, |
〉 = θ1θ2θ3|01〉 ⊗ |02〉 ⊗ |03〉, (3.6)

where the operator V has the ghost number 0 and depends
on operators cai , c

ȧ
i , c

+
i , b+

i , πi as well as on momenta paȧi

satisfying the momenta conservation condition
∑

i

paȧi = 0. (3.7)

However, the Eq. (3.5) do not determine the vertex |V 〉
uniquely. Indeed if vertex |V 〉 satisfies the Eq. (3.5) then
the vertex

|V 〉 = |V 〉 + Q̂|W 〉 (3.8)

also satisfies this equation. Vertices of the form Q̂|W 〉 (BRST
exact) can be obtained from the free theory via field redefi-
nitions

|
i 〉 → |
̃i 〉 = |
i 〉 +
∫

dθi+1dθi+2〈
i+1|〈
i+2|W 〉.
(3.9)

Here |W 〉 is a vector with ghost number 2. Our aim is to find
a operator V in (3.6) which satisfies the BRST invariance
condition (3.5) and determined up to transformation (3.8) and
can not be removed by the field redefinition (3.9). We will
call such vertices as BRST-closed. One can use ambiguity
(3.8) in the solution to Eq. (3.5) to obtain different explicit
forms of the same physical vertex.

4 Solutions to the cubic vertices V

First of all, we note that there are six operators Si , S̄i (2.13)
commuting with the BRST operator (3.5). As a consequence
of this we can decompose the vertex |V 〉 as

|V 〉 =
∞∑

si=0

|V (s1, s2, s3)〉 (4.1)

Si |V (s1, s2, s3)〉 = S̄i |V (s1, s2, s3)〉 = si |V (s1, s2, s3)〉
(4.2)

and solve equation on the vertex (3.5) for each values of the
spins si separately

Q̂|V (s1, s2, s3)〉 = 0. (4.3)

Secondly, we note that if we want to construct an inter-
action for fields with spins si then the operator V (s1, s2, s3)

(3.6) must obligatory have terms without the ghost fields,
i.e. terms constructed only from the operators cai , cȧi and the
momenta paȧi . The terms of the operator V (s1, s2, s3) with
the ghost fields are found from Eq. (4.3).

Thirdly, the terms of the operator V (s1, s2, s3) without
the ghost fields must not depend on the operators p2

i and l+i
since these operators are contained in the BRST operators Qi

(2.12) and as a consequence such terms can be removed from
the vertex operator with the help of transformation (3.8).

Let us turn to finding explicit solutions to Eq. (4.3).
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Taking into account the remarks made above and condition
(4.2) one can show that for three scalar fields we get the vertex
operator V (0, 0, 0) = const .

Next let us consider the case s1 = 1, s2 = s3 = 0. In
this case the part of the operator V (1, 0, 0) without the ghost
fields must be linear both in ca1 and in cȧ1 and due to remarks
made above and due to condition (3.7) the only possible
operator is ca1(p2 − p3)aȧcȧ1 . The rest part of the operator
V (1, 0, 0) which depends on the ghost fields are found from
Eq. (4.3). The final result for the operator V (1, 0, 0) is

V (1, 0, 0) ≡ L1 = ca1c
ȧ
1(p2 − p3)aȧ − 2c+

1 (π2 − π3). (4.4)

Similar expression was found in [19], but in our case
[Q̂, L1] �= 0. Vanishing of commutator [Q̂, L1] in [19] is a
consequence that the tracelessness constraint was not taken
into account in the BRST charge in [19]. Nonetheless we try
to generalize the result of [19] to our case, namely, we will
looking for a solution for the vertex operator V (s1, 0, 0) in a
similar form

V (s1, 0, 0) ≡ L
(s1)
1

= Ls1
1 + terms proportional to the ghost fields. (4.5)

Doing so, we find

L
(s1)
1 = Ls1

1 + s1(s1 − 1)Ls1−2
1 c+

1

×
[
l+1 (2π2 + 2π3 − π1) − 2L1(π2 − π3)

]
. (4.6)

Vertex operators V (0, s2, 0) ≡ L
(s2)
2 and V (0, 0, s3) ≡ L

(s3)
3

have analogous form

L
(si )
i = Lsi

i + si (si − 1)Lsi−2
i c+

i

×
[
l+i (2πi+1 + 2πi+2 − πi ) − 2Li (πi+1 − πi+2)

]
,

(4.7)

Li = cai c
ȧ
i (pi+1 − pi+2)aȧ − 2c+

i (πi+1 − πi+2). (4.8)

Since for i �= j

[[Q̂,L
(si )
i ],L(s j )

j ] = 0, [Q̂,L
(si )
i ]|
〉 = 0 (4.9)

then we can construct a vertex for arbitrary values of spins
si with the number of derivatives kmax = s1 + s2 + s3

V (s1, s2, s3; kmax )|
〉 = L
(s1)
1 L

(s2)
2 L

(s3)
3 |
〉. (4.10)

Thus the vertex operator V (s1, s2, s3; kmax ) for arbitrary
values of spins si with the number of derivatives kmax is
found.

5 Example of higher spin interaction

Various problems of interaction of higher spin fields with
scalar fields were considered in many papers (see e.g. [44–
46]).

Let us consider an explicit example of cubic interaction
of one real massless field with arbitrary spin s

|
3〉 = |H〉 + θ3b
+
3 |C〉 + c+

3 b
+
3 |D〉 (5.1)

where

|H〉 = 1

s!Ha(s)
ȧ(s)ca(s)cȧ(s)|0〉, (5.2)

|C〉 = 1

(s − 1)!Ca(s−1)
ȧ(s−1)ca(s−1)cȧ(s−1)|0〉, (5.3)

|D〉 = 1

(s − 2)!Da(s−2)
ȧ(s−2)ca(s−2)cȧ(s−2)|0〉. (5.4)

and two real massless scalar fields

|
1〉 = ϕ1|0〉, |
2〉 = ϕ2|0〉. (5.5)

The total Lagrangian has form

L = L f ree + Lint . (5.6)

Here L f ree is the free Lagrangian for our system of fields
(2.26)

L f ree = 1

2

{
ϕ1∂

2ϕ1 + ϕ2∂
2ϕ2

+Ha(s)
ȧ(s)(∂2Ha(s)

ȧ(s) − s∂aȧC
a(s−1)

ȧ(s−1))

+Ca(s−1)
ȧ(s−1)(s∂b

ḃHa(s−1)b
ȧ(s−1)b

+(s − 1)∂aȧ D
a(s−2)

ȧ(s−2) − 2sCa(s−1)
ȧ(s−1))

−Da(s−2)
ȧ(s−2)(∂2Da(s−2)

ȧ(s−2)

+(s − 1)∂b
ḃCa(s−2)b

ȧ(s−2)b)
}

The interacting Lagrangian Lint corresponds to the vertex
V (0, 0, s; s) = L

(s)
3 |
〉 (3.3)

Lint = 1

2
g

∫
dθ1dθ2dθ3〈
1|〈
2|〈
3|L(s)

3 |
〉 + h.c.,

(5.7)

where

L
(s)
z = Ls

i + s(s − 1)Ls−2
i c+

i [l+i (2πi+1 + 2πi+2 − πi )

−2Li (πi+1 − πi+2)], (5.8)

Li = cai c
ȧ
i (pi+1 − pi+2)aȧ − 2c+

i (πi+1 − πi+2). (5.9)

After rewriting this Lagrangian component form, one gets

Lint = (−1)s+1s!
{
Ha(s)

ȧ(s) ja(s)
ȧ(s)

−(s − 1)∂a
ȧCa(s−1)

ȧ(s−1) ja(s−2)
ȧ(s−2)

}
, (5.10)

where ja(s)
ȧ(s) are the higher spin currents constructed from

two scalar fields

ja(s)
ȧ(s) = ϕ1(

−→
∂ a

ȧ − ←−
∂ a

ȧ)sϕ2

=
s∑

k=0

Ck
s (−∂a

ȧ)s−kϕ1(∂a
ȧ)kϕ2,

123
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Ck
s = s!

k!(s − k)! (5.11)

The relevant gauge transformations for higher spin fields
remain as in free theory

δHa(s)
ȧ(s) = 1

s
∂a

ȧλa(s−1)
ȧ(s−1),

δCa(s−1)
ȧ(s−1) = ∂2λa(s−1)

ȧ(s−1),

δDa(s−2)
ȧ(s−2) = −(s − 1)∂bḃλa(s−1)b

ȧ(s−1)ḃ. (5.12)

However, the general approach leads to gauge transforma-
tions for scalars

δϕ1 = (−1)s 2s! g
[
s
s−1∑

k=0

Ck
s−1(∂a

ȧ)kλa(s−1)
ȧ(s−1)(2∂a

ȧ)s−k−1ϕ2

−(s − 1)

s−2∑

k=0

Ck
s−2(∂a

ȧ)k+1λa(s−1)
ȧ(s−1)(2∂a

ȧ)s−k−2ϕ2

]
,

(5.13)

δϕ2 = 2s! g
[
s
s−1∑

k=0

Ck
s−1(∂a

ȧ)kλa(s−1)
ȧ(s−1)(2∂a

ȧ)s−k−1ϕ1

−(s − 1)

s−2∑

k=0

Ck
s−2(∂a

ȧ)k+1λa(s−1)
ȧ(s−1)(2∂a

ȧ)s−k−2ϕ1

]
.

(5.14)

Thus we have explicitly constructed a vertex corresponding
to the interaction of a field spin s with two real scalars and
deformation of the gauge transformation.

Let us remind once again that there is arbitrariness (3.8)
in the explicit form of the interaction vertex and we can use
it to get more convenient expressions for interaction (5.10)
and/or gauge transformations (5.13) and (5.14).

6 Summary

In this paper we have analyzed and constructed the Lorentz
covariant cubic interactions for completely unconstrained
massless higher spin fields in d = 4 Minkowski space with
the maximum number of derivatives. The construction is
given in the framework of the BRST approach to higher spin
fields adopted to multispinor formalism. Unlike the previous
work [40], in the present formulation there is no need to use
the tracelessness constraint for irreducible massless higher
spin fields since we use spin-tensors with dotted and undot-
ted indices and this constraint is fulfilled identically what in
some sense simplify an analysis. However, the correspond-
ing BRST operator has a different structure than that in [40],
and the derivation of a cubic vertex now requires a separate
analysis. Such an analysis was given in this paper.

Within of the BRST approach, the problem of construct-
ing cubic interaction vertices is reduced to finding a vector
|V 〉 (3.6) which should be BRST-closed Q̂|V 〉 = 0 (3.5).

We have carried out a general analysis of the equation for
the cubic vertex and described a procedure of its finding. For
three given massless fields with spins s1, s2, s3 we have con-
structed a cubic vertex with kmax = s1 + s2 + s3 numbers
of derivatives. The case of constructing a vertex with kmin

number of derivatives will be considered in a future paper.
An explicit example of cubic interaction of a field with

spin s with two real massless scalar fields was constructed in
details. The interacting Lagrangian and the gauge transfor-
mations in explicit component form are given by (5.10) and
(5.12), (5.13), (5.14).

It is evident that the BRST approach to constructing the
interacting vertices for 4d completely irreducible higher spin
fields in terms of spin-tensor fields with dotted and undot-
ted indices can be used for finding the manifestly Lorentz-
covariant cubic and higher vertices for various bosonic and
fermionic, massive and massless higher spin fields. We hope
to study all these issues in the forthcoming papers.
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