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1 Introduction

The present paper is meant to complete the program set out in [1], concerning the clas-
sification of cubic interactions for massless bosons in three space-time dimensions. In
perspective, the hope is that this work will lead to a full non-linear action formulation for
higher-spin systems coupled with matter in d = 3.

Higher-Spin (HS) Gravity [2, 3] is one of the promising attempts for the reconciliation
of quantum theory and General Relativity. Conjectured dualities with known CFT’s (see
[4-7] and references therein) put various models of HS gravity in the front line of holographic
studies of quantum gravity. A simple and promising example of holographic duality is the
AdS3/CFT, conjecture of [4]. One of the main drawbacks of these models is, however, the
lack of a bulk description suitable for quantisation. This problem in particular is attacked
through the so-called Fronsdal program — a perturbative construction of classical action
for HS gravity models by applying the Noether method to the gauge symmetries of massless
HS fields. The starting point is the free Fronsdal action for massless fields of any spin [8].
The interacting theories can be constructed order-by-order in powers of the fields, starting
from the first non-trivial order — cubic vertices. The latter are the main building blocks
of most of the known interacting theories.

Cubic interactions of massless higher-spin fields in arbitrary space-time dimensions
d > 4 were studied extensively starting from the pioneering work [9] later extended to the
complete light-cone gauge classification of vertices first in four dimensions [10] and then in
arbitrary dimensions d > 4 [11]. The covariant approach has been developed more slowly
compared to the light-cone approach, and after seminal works of the same period [12, 13],
the Fronsdal program [8] was revived again in the current millenium (see [14-21] and
references therein) resulting in the classification of parity-even cubic vertices in Minkowski
space of any dimension d > 4 [22], i.e. the covariant extension of [11]. These vertices
were packed into surprisingly compact generating functions [23-26], with intriguing hints
on possible relations with String Theory, and the studies of their (A)dS extensions followed
[27-29] in parallel with Vasiliev’s frame-like approach [30-32] to (A)dS vertices.

Even though the light-cone classification has been known since long time, the full
covariant classification in four dimensions was completed only recently in [33], where the
parity-odd vertices in d = 4 were derived. A notable difference between covariant and light-
cone vertices in four dimensions is the existence of a two-derivative “minimal” coupling to
gravity in the light-cone, which is absent in the covariant classification. It is tempting
to speculate that in four dimensions symmetric tensor fields may not constitute a perfect
choice for minimal covariant variables for describing flat space theories and possibly even
for the (A)dS, Vasiliev theory!. Indeed, these extra light-cone vertices are crucial for the
consistency of the HS theories in four-dimensional Minkowski space [36] (see also [33, 37—
40]). The absence of corresponding covariant couplings in d > 4 is known as Aragone-Deser

!The possibility of describing the same spectrum of particles with alternative choice of “minimal vari-
ables”, i.e. mixed-symmetry tensors, are poorly explored despite the fact that Vasiliev system contains
these tensors on the same footing as the symmetric ones. See, however, [34, 35] and references therein.



problem [41] which is resolved in constant non-zero curvature (A)dS spacetimes by the
Fradkin-Vasiliev mechanism [13] (see [18, 42] for related discussion).

The covariant classification of cubic vertices in [22] not only completed the light-cone
vertices of Metsaev [11] to off-shell ones for Fronsdal fields but also defined a scheme of
field redefinitions in a given cubic action to bring it to the form containing not more than
$1 + s + sg derivatives. This form does not contain any contraction between derivatives
and is uniquely defined. We refer to it as a vertex in Metsaev basis. This was implemented
later in [43, 44] for translating the quadratic order of the Vasiliev equations in (A)dSy,
corresponding to cubic action, to the Metsaev basis in metric formulation, that is, AdS
extensions of Minkowski vertices for each number of derivatives A = s; + s9 + s3 — 2n for
n=0,1,...,min{s1, s2, s3}.

Attempts for going beyond cubic order [23, 45-49] have met difficulties in the frame-
work of local field theory. An interesting suggestion for a possibility of a non-local theory
with conformal symmetry has been made in [49] which calls for further studies.

Another interesting recent development is the progress in the holographic reconstruc-
tion [50-52] of type A HS theory in AdSy.1. Together with the aforementioned attempts
of construction of a quartic order action via the Noether procedure, these results brought
to the forefront of HS research the puzzle of locality which, to our best knowledge, was
first posed sharply for three dimensional systems in [3]. One may hope that the key to the
solution of this puzzle can be found more easily in the three-dimensional case by applying
recently obtained knowledge of the metric-like theory. Unfortunately, most of the afore-
mentioned advances in higher-dimensional HS gravities are not directly applicable to three
dimensional models. This is due to the heavy use of Metsaev basis of cubic interactions
in higher dimensions that does not apply to d = 3. In order to make use of new results
in metric-like HS gravity also for the three-dimensional models, one first needs to address
the gap in the classification of cubic vertices. In this paper, we continue the study aimed
at filling this gap initiated in [1] where parity-even cubic vertices of massless bosons were
classified. We complete the three-dimensional classification of cubic interactions deriving
parity-odd vertices for massless bosonic fields as well as their couplings to Chern-Simons
fields. We also elaborate on the analogous classification in two dimensions in the Appendix.

Despite all the successes of the three-dimensional HS gravities (see [3, 53-56] and
references therein), there is no action formulation? for the only known example of higher
spin theory with propagating degrees of freedom in three dimensions i.e. Prokushkin-
Vasiliev theory [3]. This theory contains scalar degrees of freedom interacting with higher
spin gauge fields which do not carry propagating degrees of freedom in the bulk. The Chern-
Simons formulation of HS gravity in three dimensions does not answer the question whether
a Lagrangian for the Prokushkin-Vasiliev theory exists. This question may be tackled in
the metric-like formulation where scalar and gauge fields can be put into interaction in a
straightforward manner. This approach is much less explored in three dimensions though,
with the exception of a few works on higher spins in the Fronsdal formulation [58-60].

S-matrix methods do not apply to three dimensions where massless particles of spin

2See, however, [57] and references therein for non-standard actions.



s = 2 do not propagate. For the same reason, Metsaev’s light-cone classification [11] does
not work in three dimensions. The part of the cubic vertices that contains no divergences
and traces i.e. traceless-transverse (TT) vertices are non-trivial though, as shown in [1],
and can serve as the basis for the classification of cubic interactions of massless fields in
three dimensions.

The main difference between dimensions d > 5 and d < 4 for the cubic interactions of
massless symmetric HS fields is the existence of dimension-dependent identities (Schouten
identities) that are available in the latter case. Due to these identities, the classification
of cubic vertices in three dimensions becomes a completely independent problem which
overlaps with the generic dimensional classification only for some vertices involving lower
spin fields. The classification of d = 3 vertices was initiated in [1] where the parity-
even vertices for interactions of massless bosons were derived. In this work, we complete
the classification adding to it the parity-odd vertices of massless bosons as well as their
interactions with Chern-Simons vector fields.

The paper is organized as follows: In Section 2 we review metric-like formulation of free
HS fields. In Section 3 we review the construction of cubic vertices in higher dimensions,
and the parity-even vertices in three dimensions. In Section 4 we derive full list of parity-
odd cubic vertices of massless bosons in three dimensions and establish interesting relation
between parity-odd and parity-even vertices. In Section 5 we study interactions of massless
fields with Chern-Simons vector fields. We conclude by summary of results and discussion
in Section 6. Appendices provide curious observations related to the parity-even vertices
and classification of Fronsdal cubic vertices in two dimensions.

2 Review: Free Theory

In this paper we study interactions of massless fields of any spin as deformations of the
free theory. To this end, we first set the stage by describing the free theory. In order
to streamline the notation, we will contract spacetime indices p,v,... with commuting

auxiliary variables a”. In this language, the rank s symmetric tensor field is given by:
1
¢°(a) = 5 G, @ (2.1)

In order to describe a free particle with spin s in a covariant manner, one has to impose
on the rank s symmetric Lorenz tensor field the so-called Fierz equations [61]:

1
O +m*)e*(a) = - @+ m?) Gy, .. 0" =0, (2.2a)
1
(596 . 5a)¢s (a) = m 8V¢VM2___MS GMQ e a“s = 0, (22b)
62¢s (a) = ! ' ¢Vuu3...us a...a' =0. (22C)

(5—2)
For the massless fields (m? = 0), one has to require also an extra equivalence between

fields, differing by a gradient shift with traceless and transverse parameter €*~'(z;a):

6¢°(a) = (a-0z)e  (a), (0p-0a)e Ha) =0, &% (a)=0. (2.3)



It has been a challenge to find a Lagrangian, even for the free Fierz equations. The natural
expectations based on experience with lower spins is to have a single equation of motion
for the rank s tensor field, which has all the three Fierz equations as its consequences and
also gauge symmetry of action in the massless case.

For the massless case, the most conventional description is due to Fronsdal [8]. The
equation of motion is given by Fronsdal tensor:

F(a)= [0~ (a-2,)D] 6"(a) = 0, (2.4
with the de Donder operator D(a) = (0, - d,) — 5 (a - 8)02. The Fronsdal tensor F is
invariant with respect to gauge transformations:
d¢*(a) = (a- dx)e* " (a) with e a)=0. (2.5)
The Fronsdal field ¢*(a) is doubly traceless:
(62)*¢°(a) = 0. (2.6)
The action is given by:
50 = 5 [t ¢ @@ 20 (), 27)

with Lagrangian equations of motion:
1
G*(a) = F*(a) — 1 a?02 F*(a) = 0. (2.8)

Using double-tracelessness of the Fronsdal field, one can easily show that the equations of
motion G = 0 are equivalent to the Fronsdal equations F = 0. At the linearised level, the
Fronsdal equations imply the Fierz equations.

An alternative to the Fronsdal action is given by the Maxwell-like formulation [62]
of HS dynamics. The traceless-transverse (TT) parts of vertices in both formulations are
equivalent though [29] and we will therefore not distinguish them in this work since we
restrict ourselves to TT vertices only following [1]. The TT vertices studied here can be
completed to off-shell vertices for both Fronsdal and Maxwell-like HS fields®. One can
regard the results of this work as the classification of deformations of the Fierz system of
equations [61] for massless HS fields in d = 3. There is an important difference between
Fronsdal and Maxwell-like descriptions relevant to this work which we do not elaborate
on here, though. While Fronsdal fields do not carry propagating degrees of freedom in
three dimensions, the reducible Maxwell-like fields do carry a propagating massless scalar
(vector) degree of freedom for even (odd) spin. As a consequence, non-linear theories of
Maxwell-like fields, if any, cannot be given by Chern-Simons actions in striking difference
with many known models for Fronsdal fields. The classification that we carry out here can
be implemented for building models with both Fronsdal and Maxwell-like field content.

3Tt is an empirical observation that the TT vertices can be completed to off-shell ones, based on the
known examples of both Fronsdal [22] and Maxwell-like [29] vertices in d > 4. We do not have a proof that
it will work in 3d straightforwardly. One interesting check would be to see if the “Grassmann miracle” of
[25] (which allows to immediately derive the off-shell vertices from TT ones) works in this case. In three
dimensions the off-shell vertex computations are technically involved, though, and we do not attempt them
here.



3 Review: Cubic Vertices

We will assume that there exists a gauge invariant non-linear action S that can be expanded
in power of fields with a small expansion parameter g as follows

S=8%4+g5® 4 28W (3.1)

where §2) = §(s1) 4 G(s2) 4 G(3) with S denoting the Fronsdal action for the spin s;
field (2.7). Gauge invariance of the action implies

65 = (0@ + g6M + .. (P 4 g8 4 ) - §05®) L M@ — ¢,
Using the fact that 60 8@ = §Mg G, it follows that?
5054 ~ 0, (3.2)

where ~ denotes equality upon imposing free equations of motion G = 0. Note also that
any two actions S and S’ related by a field redefinition ¢ — ¢ + g f(¢, @), obey

5B ~ §/6) (3.3)

This ambiguity in field redefinition at the cubic order will be fixed by restricting the
possibility of derivative contractions in the cubic vertex (as reviewed for example in [1, 33]).
One can now make the following ansatz for the cubic action

3
SB) = fddxv ¢ (ar, 1) ¢ (az, x2) ¢*3 (a3, T3) (H oz — xi)dez) ) (3.4)
=1

where the differential operator V = V(0yz,, Oay s Ozys Oays Ozss Oag) 1S to be determined. Since
V is a scalar operator, it is built of contractions of the derivatives J,, and 0,,. It can be
shown that, up to total derivatives and upon fixing the freedom in field redefinitions °, all
contractions can be written in terms of

0Oq; * Oz; = Divy, (3.5a)
Oa; * Oxiyr = Vi s (3.5b)
Oa; * Oazor = Zit2 s (3.5¢)
Ou, 00, =T} . (3.5d)

Let us furthermore restrict to interaction terms which do not involve traces T; or divergences
Div;. In this case, one obviously has

V = V(yi, Zz) . (3.6)

4Note that our notation is somewhat schematic. The variation is to be understood as a sum of three
terms, i.e. 6(Vp G = Mgl gl1) 4 §M pls2) gls2) 4 51 pls3) glsa),

The field redefinition freedom is fixed following [21, 22], that is, by removing all terms with derivatives
contracted with each other. Strictly speaking, one can exclude the derivative contractions by field redefini-
tions only in the terms that do not contain divergences. That turns out to be already sufficient for fixing
the field redefinition freedom (see, e.g., [25]).



The gauge variation of the ansatz for the cubic action is then given by
3 3
5(0)5(3) = Jdd$Hd$Z5($ - xz) % Z aj - ar].e(aj,xj) gb(ajJrl,ijrl) gb(aj,l,xj,l) s
i1 j=1

where here and in the following we assume indices i, j,... to be cyclic in (1,2,3), for
example y; = y;4+3. Using the commutators

[Zi41, i - Oi) = Yita, [zit2,0i - O] = —¥iy1, (3.7)

where = denotes equality up to equations of motion, total derivatives, traces and diver-
gences. Similarly, it can be shown that all other commutators vanish up to these terms.
After dropping total derivatives with respect to 0,, it then follows that

3
(5(0)5(3) = fddxndmzé(x — .%'Z) Z(yj_lazj+1 — yj+1azj_l) V
i=1 7

x €(aj, ;) ¢laji1, zj11) dlaj—1,2j-1)

It then immediately follows that gauge invariant vertices solve the equations

DZV = (yi—laziH - yi+1azi,1)v = 05 1= 1, 25 35 (38)
and are given by
3
VYV =V(yi, G) with G = Z Yi* % - (3.9)
i=1

In generic spacetime dimension, these solutions span the entire space of possible cubic
vertices. However at fixed dimension d < 4, most of these vertices are vanishing [33], while
there may be more solutions due to Schouten identities as demonstrated in [1]. We will
briefly review the main results of the latter work on parity-even vertices in d = 3 here.

3.1 Parity-even Vertices in d = 3

The derivation of Lorentz covariant cubic vertices described above has to be supplemented
with Schouten identities that are relevant for d < 4. The case of four dimensions can be
found in [33] while in [1] the d = 3 parity even vertices were classified. The Schouten
identities can be systematically derived by “over-antisymmetrisation” of Lorentz indices
and there are even Mathematica packages doing so [63]. The elementary three-dimensional
Schouten identities for parity-even TT cubic vertices are given as (grouped in two-, three-
and four-derivative identities, no summation over repeating indices assumed):

(G —yiz)? =0, YiziG — Yic1%zi-1Yir12i41 = 0, (3.10a)
Yiyi+1(G — yizi) =0, (3.10Db)
Yiyi1 =0, Y2Yis1yio1 = 0. (3.10¢)



These identities will be supplemented with parity-odd ones in the next section and are
needed for the derivation of parity-odd vertices.

Due to identities (3.10), the classification of parity-even cubic vertices in 3d is different
from that of d > 4. In particular, these identities allow for existence of two-derivative and
three-derivative TT vertices given by [1]:

Vs,s2,83 = [(51 — Dyr21 + (s2 — 1)y22z2 + (53 — 1)y323]G2]" 257 257 (3.11a)
n; = 3(si—1+si11— i) —1>0,

Vs1 50,55 = Y1 Y2 Y3 21" 252 25, n; = %(si_l +8i41—8;i—1)=0. (3.11b)

The expressions (3.11a) and (3.11b) describe unique cubic vertices for even and odd
sum of spins respectively. Note that (3.11a) involves minimal coupling to gravity discussed
for particular cases earlier in [58, 64, 65]. These vertices exist only if the spin values satisfy

triangle inequalities s; < s;41 + S;_1.

4 Parity-odd Vertices for Massless Bosons

In order to construct parity-odd vertices of massless fields in three dimensions, one needs
to add to the building blocks of the parity-even vertices, i.e. y; and z;, all elementary scalar
contraction operators that involve the invariant tensor €, of the Lorentz algebra. These

are:
U =" 0000200, Vi =" oy ayioy, W= aua, oy, (4.1)
where the V’s satisfy (discarding total derivative terms)

DV =0, (4.2)

while the W’s are a choice of basis for nine different structures with two derivatives related
to each other up to total derivatives. Therefore the independent set of parity-odd variables
is spanned by ten scalar operators U, V;(i # j), W;. It is straightforward to check that:

[U,a; - 05] = Vij, [Viit1,ai- 0] =0, [Viit1,a5 - 0i+1] =0, (4.3)
[Viit1, aig1 - Oiz1] = —Wixr,  [Viis1, ait1 - diz1] = £ Wiz, (4.4)
Viit1,aix1 - 0] = =Wiz1,  [Viie1, aig1 - 0] = Wisa, (4.5)
(Wi a;- 0] =0, (4.6)
up to total derivatives.
The operator D; (3.8) takes the following form for parity-odd vertices:

Di =yi 102, — Yi4102_, — Wis10v, ;o — Wig10vi_,,,

—Vii—10u — Viit10uU - (4.7)



The elementary parity-odd Schouten identities are given by (with arbitrary 4, j, & and no
summation over repeating indices assumed):

Viciizigr + Vigrizicr = 0, Uy + Vignic1zic1 — (Vie + Victis1)zis1 = 0, (4.8a)
Wivizit1 — Wizi = Viicwy; = Veicaye s, Wizier = Vienyi,  Wizior = —Vicyi, (4.8b)
Wiyi+1 =0, (4.8¢)

where identities are grouped into one, two and three derivative ones. From these we derive
other useful identities:

Viit1(Yizi + Yiz12i71) =0, (4.9)
Wiyizi = Vi1 yi = Vi1 yl, Vigysyje1 =0, Wizl = ~Uyiyays3, (4.10)
Viie1y?yiz1i =0, Vijyryeys =0, Wiylz2=0. (4.11)

A consequence of the Schouten identities is that all parity-odd terms with more than one
derivative can be written in terms of W, y;, z; operators only as long as the spins satisfy
triangle inequalities s; < s;41 + s;—1. This property will be useful in the following. The
terms that cannot be written only in terms of the variables mentioned above are of the
following form:

Vis1yie 22y # >, O(We). (4.12)
k

We assume without loss of generality s; > sy > s3. Then, all the terms of the type (4.12)
are given as:

V23 yilfsszSZS:’,*lZ?S)z , ‘/'32 yflfszfs;:, Z;g Z;gfl ’ (4‘13)
and exist only for s; = so + s3. We also note that any expression written in terms of W;
and non-vanishing up to identities (4.8c) and (4.11) cannot be converted to V;; expressions
that vanish. This is due to the fact that terms involving W} with different k give rise to
Vi; with different j that cannot sum up to zero through identities (4.8a) and (4.8b). This
simple technical observation suggests that working solely with Wj-s wherever possible will
not miss any information about terms that may conspire to sum up to zero. Since W;-s are
also commuting with all gauge variations, it makes them the preferred choice of variables
in expressions with more than one derivative that we will study in the following.

We now proceed with the derivation of parity-odd cubic vertices for massless bosons
in three dimensions. We will need to discuss separately different cases and simplify each
ansatz maximally, to save virtual trees that get cut in order to supply us with Mathematica
notebooks.

4.1 Vertices with Scalars

The simplest example is a vertex with two scalar fields involved: (s,0,0). In this case the
only candidate vertex operator is:

V]TOO,O = Wiy, (4.14)

S




and defines a gauge invariant vertex of current interaction type:
‘CS,O,O htt- MSJ,LH s ) (4'15)

where the current

Tt opss = €up(u O J” (4.16)

2. fhs) )

is roughly the curl of the parity-even conserved current J,, ,, of spin s. Next we look at
the possible vertices with s; = s9 > 1 and s3 = 0. The general ansatz for (s, s9,0) vertex
can be written as:

Vars00 = (aVa1 + BVa)yjt 7225271 (4.17)
The variation of (4.17) with respect to the gauge symmetry of the spin s; field gives:
D1V, 500 = (52 — 1)(aVa1 + Vi) 45 %2 yg 2522 — B yit %2 25271 (4.18)
The variation of (4.17) with respect to the symmetry of the spin s9 field gives:

DoV, 500 = —aWiyit 75225271 (59 — 1)(aVay + BVag)ys 521125272
= —sga Wiy #2237 Ly (sg — 1) B Vaayi'™ 52+1z§2 2, (4.19)

Vanishing of this variation is compatible with a non-zero vertex only for so = 1, a = 0.
Therefore, there is a unique vertex:

Vs,l,O Vaayi™t, (4.20)

which is invariant with respect to the gauge transformation of the second (Maxwell) field
(D VIO 10 = 0), while the gauge variation of the spin s field,

DIy = —Wayi ™, (4.21)

vanishes due to (4.8¢c) iff s = 2. Therefore, the vertex of type (s, 1,0) exists for any s > 2.
For s > 2, the variation (4.19) can be rewritten as:

D V31,32,0 = (82 a Vi) + (52 — 1) I5] VgQ) s 82252 2, (4.22)

and allows for gauge invariance only for trivial solution a = 8 = 0.
Similar to the parity-even case, there are no couplings of the type (si,s2,0) with
81 = so = 2. Thus we found all the vertices involving scalar fields.

4.2 Vertices with Maxwell Fields

From the Schouten identity (4.8¢c), it follows immediately that there is a vertex of the type
(s,s,1) with two derivatives:

VFo

s,s,1 —

= Ws 2. (4.23)




It is a parity-odd two-derivative coupling to spin one which requires charged spin-s fields.
For s = 1, (4.23) reproduces the spin one vertex found by Anco in [66]. There is another
vertex of the type (s,1,1) that may be guessed immediately:

VIt =Wyt e (4.24)

which involves s + 1 derivatives. For s = 1, (4.24) coincides with (4.23) up to relabelling
of the fields. We will come back to this vertex shortly.

It remains to check other possibilities of interactions s; = s9 = s3 = 1 with Maxwell
field. It is straightforward to see that the number of derivatives cannot be less than s; — s
simply because there are no candidate scalar expressions. The upper bound on derivatives
is a bit more subtle to define. An obvious upper bound is s1 + ss, since all vertex monomials
with s; + so + 2 derivatives vanish due to (4.8c) for any s1, sy and there are no candidate
expressions with derivatives more than s; + so + 2. Nevertheless, it can be easily shown
that for s; > s >> 1 the upper bound is much lower than s; +s3 due to (3.10c) and (4.8c).
In fact, careful examination taking into account all Schouten identities shows that there
are no non-trivial vertex candidates for the number of derivatives more than s; — s9 + 2.
Therefore we are left with two candidate values for number of derivatives in the vertex:
s1 — sg and s; — sg + 2. We will consider these cases separately.

(s1 —s2+2)— derivative vertex. With the help of some elementary algebra and making
use of Schouten identities, a general ansatz for an s; —so+2 derivative vertex can be written
in the form:

Vir.sod = [11Wiz1 + 72Wazg + 13 Wazgyst 5225271 (4.25)

where ~y; are arbitrary constants.

For simplicity, we discuss separately the cases of sy = 1, s1 = s9 and s1 > s9 = 2.
e For so = 1, we have a general ansatz

Vi1 = [mWiz + 12 Waze + 13Wazslyi . (4.26)

For s = 1, we have:

Vf1o,1 =n1Wiz1 +2Waze + 13Ws23, (4.27)

with arbitrary ;. Each of the three terms in this expression is separately gauge
invariant and defines a vertex of the type (4.23). We have three inequivalent vertices,
defined for any triple of Maxwell fields. As opposed to the Yang-Mills vertex, which
is fully antisymmetric in all the three fields involved, the term W;z; is antisymmetric
only in two fields Ai:—rl and can even define a cubic vertex for only two distinct
Maxwell fields (e.g. taking value in the two-generator Lie algebra of infinitesimal
affine transformations of a real line). This vertex has been studied in [66]. One can
write it in explicit form:

£1,1,1 = fabceuy)\AﬁFBF)?a Fﬁ = EuupayAap7 fabc = _facb . (428)

,10,



For s = 2, we have:
Vei1 = nWizyi ', (4.29)

This is the (s,1,1) vertex (4.24) where, for odd s, non-trivial interaction requires
charged Maxwell fields.

e For s1 = s9 = s > 1, the general ansatz with s; — s9 + 2 = 2 derivatives is:
Vssi = [1Wiz1 + 12 Waze + 73 Wszs]25 (4.30)

and is gauge invariant iff 73y = 79 = 0. Therefore, we end up with the unique
possibility of the vertex (4.23).

e For s; > sy > 2, the general ansatz (4.25) reduces to:
Ver,s1 = 1iWazypt 2252, (4.31)
which is not gauge invariant under the variation of the second field with spin ss.

Therefore we find that all the vertices for s1 = s9 > s3 = 1 with s7 — s9 + 2 derivatives
are covered by (4.23), (4.24) and (4.27).

(s1 — s2)— derivative vertex. A general ansatz with s; — sy derivatives can be written
for s; = s9 = s in the form (without derivatives since s; — s3 = 0):

Vs,s,l = Uzgs,il . (432)

It is elementary to check that this expression is not gauge invariant. We will assume in the
following that s; > so, in which case the general ansatz takes the form:

V51782,1 = (Ochng + BVor23 + "nggZQ)yfl_SQ_lZ?_l , (4.33)

and it is easy to check that the equation D1V, s, 1 = 0 have only vanishing solutions for the
coefficients o, 3,y unless s = 1, 8 = 0, v = —a. The only candidate expression V11 =
(Vagzs — Vggzg)y‘f_Q is however not invariant with respect to the gauge transformations of
Maxwell fields.

We conclude that all the parity-odd vertices with Maxwell fields are given by (4.23),
(4.24) and (4.27).

4.3 Gravitational Interactions

Making use of the Schouten identity (4.8c), one can easily show that there is a three-
derivative parity-odd (s, s,2) coupling to massless spin two:

VPO, — Ways 25 . (4.34)

$,8,2 T

This vertex is symmetric with respect to the exchange of spin s fields and therefore does
not require charged fields. For s = 2, the expression (4.34) reproduces the vertex found by
Boulanger and Gualtieri in [67].
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Any (s,s,2) type of parity-odd vertex requires an odd number of derivatives. We will
see in the following that there are no parity-odd vertices with one derivative or with more
than four derivatives. Therefore, (4.34) is the unique parity-odd coupling to gravity for
given spin s.

We conclude that the parity-odd minimal coupling to gravity is given by a three-
derivative vertex. Let us recall that the parity-even gravitational coupling has two deriva-
tives. This is in contrast to spin one (Maxwell) minimal couplings, where the parity-odd
coupling (4.23) has two derivatives while the parity-even coupling has three derivatives [1].

It remains to see what the other options of s; > s9 > s3 = 2 couplings are. These
vertices will be classified in the following where we will consider the more general case of
couplings between fields with arbitrary spin values.

4.4 General Case

It is elementary to verify, by making use of Schouten identity (4.8c), that the expression
Wiyl 2" is gauge invariant for any n,m and therefore forms a vertex. These type of
vertices are all exhausted by (4.14), (4.23), (4.24) and (4.34). There are no vertices of the
aforementioned type with n,m > 2 due to (4.11).

After the examples with low spins, we now start studying more general cases of cubic
interactions.
4.4.1 Couplings without Derivatives
It is straightforward to show that there are no vertices without derivatives. In order to do
so, one just needs to gauge variate the most general ansatz,

V31752753 UZl 22 Z3 , Si=mni—1+niy1+1, (4.35)

and compare to the linear combination of one-derivative Schouten identities with arbitrary
coefficients. One will thus verify that there is no such linear combination and therefore no
vertex without derivatives.

4.4.2 One-derivative Vertices

It is straightforward to show that any one-derivative parity-odd vertex with three massless
fields of spins s; = s9 = s3 = 2 could be written in the following form:

ny  n2 ., n3

3
Vis1,52,83 Z (iViigr + BiViie1)zit12io 121 %9723, (4.36)

which can be further simplified in case if the spins satisfy triangle inequalities s; < so + s3
to

Vsl,SQ,s;a, = (041V122223 + Oé2V232321 + 043‘/312122)21 1232253 , (437)
and, if they saturate triangle inequality s; = s9 + s3, to

Vsi,s0,55 = (Vazzg + BVa222)25% 25 . (4.38)
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In both cases, even though there are solutions for each of the equations D;Vs, s, 55 = 0,

there is no non-zero intersection between these solutions®

. It is also easy to verify that
there are no candidate expressions for one-derivative vertices if s; > s9 + s3.
We conclude that there are no parity-odd vertices with one derivative for any spins

81 = 82 =53 = 0.

4.4.3 Two-derivative Vertices

Now we turn to studying two derivative parity-odd interactions. This corresponds to odd
values of the sum s; + s3 + s3 and therefore the triangle inequality cannot be saturated:
s1 # so + s3. We discuss separately the case when the spins satisfy triangle inequalities

and when they do not.

Triangle inequalities are satisfied. Taking into account that for s;1 > s9 > s3> 1
and s1 < so + s3, any vertex monomial with two derivatives can be brought to the form
where the only parity-odd operators are W;. We end up with a simple ansatz:

ni _na _ns

Vsi 50,55 = [0W121 + fWazg + yWaz3] 21" 257 25% . ny < ngy < ns. (4.39)

Making use of (4.8¢) and (4.10), one can show that the gauge invariance conditions,

ny _n2—1_nz—1

D1 Vs, 5055 = [—Bn3 Ways 23 + yne Ways 23] 211 25% ' 23
= (Bng —yne) Uyiyays 20262120371 = 0, (4.40a)

2 21 .n1—1_n2 _n3—1
DoV, 6055 = [—yn1 W3 yz 25 + ans Wiy 27 217 252 23°

= (yn1—ang) Uy yays 2" 1222071 =, 4.40b
1 27 %3
D3Vs, sp55 = [—ana Wiy1 27 + By Waya 23] 2701252283
= (ang — Bn1) Uy yay3 grilyne=lons _ g 4.40c
1 2 3
imply:
Bng—yng=7v9n1—angy=any—Fny =0. (4.41)

The solution to these equations fixes the vertex uniquely up to an overall constant”:

VPO = [’I’L1 Wiz1 + ng Wazo + ng W323] 21111 21212 Zgg ,  Si=mNipr1+n;—1+ 1. (4.42)

$1,52,53

This vertex exists for any triples of spins with odd sum satisfying strict triangle inequalities.
For s1 = sy = s3 = 3, the expression (4.42) reproduces the vertex found by Boulanger,
Leclerq and Cnockaert in [68]. To our best knowledge, the latter is the only example known
in literature of parity-odd cubic vertices of HS fields in three dimensions.

This result is similar to parity-even case, where the two-derivative vertex (3.11a) exists

for every triple of spins, with even sum, satisfying strict triangle inequalities. One important

5This observation may be useful in classification of couplings with massless and massive fields (since
massive fields are not constrained by gauge invariance), which is out of the scope of this work.

"The vertex is not unique only when nq = n2 = ng = 0. In this case, the equations (4.41) are trivialised
and there are no restrictions on «, 8,7. This case corresponds to the vertex given by the equation (4.27).
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difference is that if there are two fields with the same spins in the vertex the parity-even
vertex with two derivatives, (3.11a), is symmetric with respect to exchange of these fields
while parity-odd one, (4.42), is antisymmetric (we assume at least one of the spins is greater
than one). We will come back to the relation of the parity-even and parity-odd vertices in
the following.

Triangle inequalities are violated. It is elementary to show that for s; > so+s3+1
there are no vertex monomials with two derivatives. The only allowed case is s1 = so+s3+1,
with an ansatz involving expressions of the type (4.13):

VPO = (aVazzz + BVagza)yr 2531 252 AWy 258 252 (4.43)

$1,52,53

This expression is invariant with respect to the spin s; field’s gauge variation, D1V = 0,
if ase + Bs3 = 0, and with respect to the second field’s gauge variation, D5V = 0, if
asy =0=L(s2—1), vse = 0, while for the invariance with respect to the third field we
get: a(s3—1) =0 = fs3, vs3 =0. The only non-trivial solutions for this class of vertices
are given by (4.14) with s = 1 and (4.20) with s = 2.

We conclude that, similarly to parity-even vertices with two derivatives, there is only
one parity-odd vertex (4.42) with two derivatives for each triple of spins s1 = s = s3 > 2
satisfying triangle inequalities s1 < s3 + s3 and with odd sum s; + so + s3.

4.4.4 Three-derivative Vertices

For vertices with three derivatives, we consider separately three cases depending on the
values of spins. This corresponds to even sum of the spins.

Triangle inequalities are satisfied. In this case, the general ansatz for the vertex
is given by (the overall arbitrary coefficient is dropped):

VPO = Wy, ziZ At 2y 28t = Uyiyoys 21t 297 23°, S = ni—1 + g1 + 2. (4.44)

$1,52,53

Remarkably, this vertex is gauge invariant with respect to all three variations due to (3.10c¢)
and (4.11).

This result is similar to the parity-even case (3.11), where every triple of spins with
odd sum defined a unique vertex (3.11b) proportional to y1 2 y3 . One notable difference
is that in case if there are two fields with identical spin, due to the factor U, the vertex is
symmetric with respect to permutations of these fields, as opposed to the vertex (3.11b),
which would be antisymmetric. For s; = so = s3 = 2 the vertex (4.44) reproduces the
symmetric d = 3 vertex of [67].

Triangle inequalities are saturated. In this case, there are no non-trivial vertex
monomials with three derivatives.

8Except for (1,1,1) Yang-Mills fields, for which there were two vertices — with one derivative and three
derivatives.
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Triangle inequalities are violated. This case allows for non-trivial vertex ansatz
iff s1 = s9 4+ s3 + 2. The most general ansatz is given by:
VPO

51,582,583

s3—1 _so—1

= (a Vogzs + B Vaa z2)y% 25 23 + YW1y 253 Z§2 . (4.45)

The analysis of this case is similar to the two-derivative one performed above. The only
non-trivial solutions have been covered by (4.14) with s = 2 and (4.20) with s = 3.

It is a straightforward algebraic exercise to show that there are no non-trivial vertices
with more than three derivatives for s1 > s9 = s3 = 2. This completes the classification of
parity-odd cubic vertices of massless bosonic fields in three space-time dimensions.

4.5 Relations between Parity-Odd and Parity-Even Vertices

There is a remarkable universality in the formulas of the vertices (3.11a), (4.42), (3.11b)
and (4.44). In order to show it, we first notice the following relation (as always in this
work, we neglect trace terms):

U2 =-2 Z1 %292 %3 . (4.46)

Now, we can formally define the following operator
12 1/2 1/2 {
2y "2y T2yt = —=U. 4.47
1?2 %3 2 (4.47)
Now, let us shift the integers n; in the (4.42) by half: n;, — n; + % Then the sum of the
spins becomes even and the equation (4.42) can be formally rewritten as:
1 1 1 1
Vs 52,85 = E[(Tn + 5) Wiz + (ng + 5) Wazg + (n3 + 5) Wgzg] U 21" 252 23°
1
= —[(s1 — Dy1z1 + (s2 — )yaza + (53 — 1)y3z3] G 21" 25 25% ,  (4.48)

V2

where s; = n;.1 + n;_1 + 2. Here we used the identities:
WZ‘ U = yl(G — Yi ZZ') s (4.49)

and (3.10a). The equation (4.48) exactly reproduces the parity-even vertex (3.11a) up
to an overall constant. It is elementary to show, that the same relation holds between
three-derivative parity-odd (4.44) and parity-even (3.11b) vertices.

Another curiosity related to parity-even vertices is discussed in Appendix A.

This universality in formulas may have a deeper meaning in terms of certain dualities
between fields that is yet to be uncovered. For example, it may be related to the Chern-
Simons formulation where each HS field has two connections analogous to dreibein and spin
connection of gravity. When switching to the Fronsdal formulation, the “spin connection”
is solved in terms of the “frame field” and the solution contains one derivative and a Levi-
Civita tensor. Replacing one “frame field” with a “spin connection” partner may result in
switching the interactions between parity-odd and parity-even ones (it changes the parity
and the number of derivatives by one). This is a speculation but can be checked by explicit
computations. It is also tempting to speculate about the existence of a more fundamental
formulation of any HS theory in terms of spinors, analogous to [2, 3], that treat the parity-
even and parity-odd vertices on the same footing. We leave more thorough investigations
of this aspect to a future work.
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5 Vertices with Chern-Simons Vector Fields

So far we have been studying TT vertices of Fierz-type fields including the Maxwell field
for s = 1 that is given by the free Lagrangian:
1
Qﬂz—fhﬂﬂ F = 0,A, —0,A,, (5.1)
with field equation 0*F),, = 0, i.e. both Fronsdal equation [8] and Maxwell-like HS equation

[62] for s = 1. In three dimensions one can also consider Chern-Simons (CS) vector fields

with free Lagrangian:
1

Qﬂ=?WMﬁﬂm (5.2)
and free field equation F),, = 0. It is common to call CS field “spin one” or “vector” field,
but one has to be careful to not confuse it with the Maxwell field. We will mostly use the
terms CS or Maxwell for the corresponding fields in the following. Since this field appears
naturally in the context of HS gravity theories [3, 65|, we study its interactions with other
massless fields for completeness of our analysis.

Note that due to the difference in the free-field equations, the equivalence class that is
defined for field redefinitions and gauge variations of vertices is different for CS fields. Any
term that is proportional to free Maxwell field equations is obviously also on-shell trivial
for CS fields. The opposite, however, is not true. The on-shell trivial cubic terms for a CS
field (i—th field in the vertex) that are not trivial for Fierz (i.e. Fronsdal and Maxwell-like)
fields are given by the expressions:

G—viz=0, %y+x1=0, Wi=0, Viz1;,=0, Wiizigz1 = Wisizi.  (5.3)

Together with Fierz equations and Schouten identities, these terms define an equivalence
class for cubic vertex monomials. Cubic vertices with CS fields should have trivial gauge
variations in this class while not being trivial themselves. There are three possible cases
depending on the number of CS fields in the cubic vertex.

Vertices with one CS field. A general ansatz for parity-even vertices with one CS field
and two Fierz fields with spins s1, so can be written in the form:

V =y T2 ayi s+ yys ) (5.4)
Note that y9 2o term is absent as it can be replaced by y; 21 due to identity (5.3): y1 21 +
y2 zo = 0. This vertex is gauge invariant with respect to all three gauge transformations
for = 0 and is not trivial only for s; = s9. It therefore defines a unique cubic vertex of
two massless fields of spin s and a CS field:

5

It is straightforward to see that this interaction corresponds to minimal coupling to vector
gauge field obtained by replacing in the free action of a spin-s field 0 — V = 0 + A, i.e.
making use of covariant derivatives. This coupling has appeared for example in [65] and is
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obviously not applicable to Maxwell fields. The free action of a spin s field, supplemented
with covariant derivatives, is gauge invariant up to commutators of covariant derivatives
which are proportional to the curvature of the vector field. This curvature terms are
equations of motions for CS fields and can therefore be compensated by deformations of
transformations for CS fields. This is not true for Maxwell fields though. The absence
of minimal coupling to the electromagnetic field is known as the Velo-Zwanziger problem
[69] and is analogous to the Aragone-Deser problem for minimal coupling to gravity. In
three dimensions, the minimal coupling to gravity exists which is related to the fact that
the Riemann curvature of gravity is proportional to Einstein equations in three dimen-
sions and therefore the problematic terms can be compensated with deformations of gauge
transformations of the metric (analogously to the Rarita-Schwinger coupling that leads to
Supergravity). Even though the mechanisms are slightly different for spin one and spin
two, in both cases the fact that the curvature tensor is on-shell trivial allows for minimal
coupling. The on-shell triviality of the curvature tensor is, on the other hand, related to
the absence of dynamical degrees of freedom in the bulk and opens the possibility for CS
formulation.

Parity-odd CS vertices are also severely restricted. Given that the third field in the
vertex is a CS field, it can for example be shown that W7 y; 21 = 0 = Ws ys z5. After some
algebra, it is straightforward to show that, for two Fierz fields with spins s; = s9 = s, there
is a two-derivative coupling to CS field with the vertex operator given by:

_ N -
VestO =Wy 2 23 ' = W 29 23 t= §U’yly22§ 2. (5.6)

We skip the details of the computations here since they are elementary algebraic manipu-
lations by straightforward application of the Schouten identities, Fierz equations and (5.3).

Vertices with two CS fields. In this case, the extra identities include (we assume the
second and third fields are CS):

yiijO(Z‘ij), G—ygzgzO:G—ygzg, Woy=W3=0, Wiz =0. (5.7)

Using these equalities, one can easily show that there are no vertices of interactions between
a massless field with spin s and two CS fields if s > 2. Instead, there is a vertex of
interactions of a Maxwell field and two CS fields:

VMCcsS = Y121 = —Y2 22 = —Y323 . (5.8)

For this vertex to be non-zero, the two CS fields should be charged.
There are no parity-odd vertices with two CS fields and a massless field with spin s.

Vertices with three CS fields. In this case we have:
WZ‘IO, VZ“ZO, yiyjzo, iniIO. (5.9)

The only non-trivial contraction between the three fields is given by a parity-odd expression,

VES =U, (5.10)
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which is gauge invariant and is the well-known interaction term of CS fields. For this
interaction to be non-trivial, CS fields should carry non-abelian charges.

These results fit into the picture of our findings for HS fields. There are no cubic
interactions between massless fields where spins do not satisfy triangle inequalities.

6 Discussion

In this work, we completed the program initiated in [1] providing an exhaustive classifi-
cation of covariant cubic interactions for massless bosonic fields in three dimensions. We
found that the parity-odd cubic vertices for interactions of massless fields in three dimen-
sions are in one-to-one correspondence with parity-even vertices. For each collection of
massless fields satisfying strict triangle inequalities, there is a unique parity-odd vertex on
top of the unique parity-even one ?. For triplet of spins not satisfying triangle inequalities,
the only cubic vertices are of “current-interaction” type, involving two matter fields of spin
s = 0 or 1. For the triplets, that contain at least two spins greater than one, all the vertices
have either two or three derivatives.

Our results should match the CFT three-point functions, as argued, e.g., in [70]. The
uniqueness of the vertex for given triplet is in agreement with the two-dimensional CFT.
The three-point functions of quasi-primaries in 2d CF'T have two free parameters for every
triple of spins. In our classification, for each triple we get one parity-even and one parity-
odd vertex therefore match the number of independent structures. The only intriguing
aspect is the missing vertices, which translate into selection rules in 2d CFT. Similarly to
the parity-even case [1], in the parity-odd case, missing vertices are all those containing
at least two fields with spin greater than one and violating strict triangle inequalities.
Therefore, for quasi-primaries of spin values s1 = sy = s3 > 2, all the three point functions
for values s1 > so+s3 are expected to be zero. This property is observed in known examples
of 2d CFT’s (see, e.g. [71]), but we are not aware of a general proof.

The only massless fields that carry propagating degrees of freedom in three dimensions
are scalar and Maxwell fields which are related by duality. Nevertheless, there are slight
differences in vertices containing scalars and Maxwell fields observed in our classification.
When we compare these vertices, one can take into account exact relation of duality between
a Maxwell field A, and a scalar ¢, given by the relation:

Fl = 0, A, — 0, A, = €u0¢. (6.1)

If a vertex involves the curvature of the Maxwell field, one can simply replace it with the
right hand side of the equation (6.1) and get a vertex for a scalar, which has opposite parity.
Similarly, if the vertex contains derivative of the scalar, one can replace it with the dual of
the curvature of the Maxwell field. Instead, for the vertices where one has a naked vector
potential A, this dualization is not applicable since the curl operation is not invertible and

9The only exception is the cubic interaction between three Maxwell fields in both parity-even and parity-
odd cases. In parity-even case there are two vertices for collection of Maxwell fields — Yang-Mills vertex
and F? vertex, both requiring fully antisymmetric Chan-Paton factors. For the parity-odd case, there are
three free parameters in the two-derivative vertex (4.27), which has no definite symmetry.
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the field A, cannot be expressed through ¢ locally. Let us start with parity-even vertices
with Maxwell fields. There is an (s,1,0) vertex, which contains s + 1 derivatives, and in
which one can dualize the Maxwell field to get parity-odd (s,0,0) vertex (4.14) with s + 1
derivatives. Alternatively, one can dualize the scalar to get the parity-odd (s, 1,1) vertex
(4.24) with s + 1 derivatives. Therefore, we established duality relations:

Ve < V10 < Voo (6.2)

This duality works for any s > 1.

Next, there is a parity-even vertex V(1) = yfﬁlG with s derivatives. Dualization
of one Maxwell field leads to a vertex V(IZ 70170) with s derivatives given by (4.20). We can
further dualize the second Maxwell field and get a parity-even vertex V() = yi with s
derivatives:

Vis1,1) < V(Zg,()) < V(50,0 - (6.3)

These dualities work for s > 2, since there is no parity-odd vertex for spin configuration
(1,1,0), which leaves out the Yang-Mills vertex from dualization procedure. The dual-
ization of the other cubic vertex of three Maxwell fields, F'® vertex, leads to a trivial TT
expression and therefore does not have a parity-odd (1,1,0) dual either.

The (A)dS cubic vertices in any dimensions can be understood as deformations of
flat space cubic vertices and therefore the first step towards (A)dS vertices lies in the
classification of their flat counterparts. In fact, all known Lagrangian theories with HS
spectrum in three dimensions allow for flat space limit. Therefore, one may expect that
the Lagrangian formulation for Prokushkin-Vasiliev theory, if existing, may also allow for a
flat limit. Even more, three-dimensional Minkowski vertices can be extended to arbitrary
Einstein backgrounds due to the same reason as the absence of Aragone-Deser problem
in 3d — the obstructing terms are given by Weyl tensors and therefore vanish in three
dimensions. One can even work with full non-linear gravity while constructing the action
perturbatively in powers of HS fields (see [65] for such expansions of full non-linear theories).
In that case, one needs to take care of the backreaction to the Einstein equations involving
HS fields, which contribute to the construction of quartic and higher order vertices.

The full classification of cubic vertices is the first step towards construction of a La-
grangian for the HS theories accommodating propagating degrees of freedom which are not
covered by Chern-Simons actions. Our classification is performed for the three-dimensional
Minkowski background while the (A)dS extension can be considered straightforwardly.
Since the main technical difficulty of (A)dS extensions is related to the non-trivial com-
mutators of covariant derivatives, it is natural to expect that those vertices that contain
many derivatives will be the most challenging. As we have seen, in three dimensions the
only vertices that contain more than three derivatives are current interactions containing
scalar and Maxwell fields. The AdS extensions for these vertices have already been studied
in higher dimensions in [19, 20, 26]. The scalar coupling in three dimensions was studied
in [72-75].

The main technical novelty of the three-dimensional classification provided in this work

and in [1] compared to earlier work on cubic vertices in arbitrary dimensions is related to the
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systematic implementation of Schouten identities in three dimensions. When considering
quartic interactions of massless symmetric fields, there are relevant Schouten identities
in dimensions d < 7. Therefore, the analysis of quartic order of interactions becomes
more involved. We plan to address that problem both in three-dimensional and higher-
dimensional contexts in the future.

We delegate some more technical discussion to appendices. In Appendix A, we elab-
orate on the possibility of writing parity-even vertices as ratios which are by themselves
meaningless expressions, but can be defined and motivated only in three dimensions due
to their equivalence to vertices of [1] via Schouten identities. We study two-dimensional
vertices in Appendix B. There, the restrictions imposed by Schouten identities are much
more severe and eventually allow for only vertices of the type (s, s,1) and (s,s,0).
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A Vertices as Ratios

In generic dimension, the (s, s2, s3) cubic interactions can be written in the basis of cubic

vertices of the form!

min(s1,$2,83)

Vsi,s2,53 = Z gn Y1yt "y TGT (A.3)

n=0

where g,, are undetermined constants. The n—th term in the sum has s;+s9+s3—2n deriva-
tives. Therefore, the term with the minimal number of derivatives is n = min(sy, $2, S3)
while n = 0 contains the maximal number of derivatives. These two bounds are commonly

referred to as the lower and upper Metsaev bound respectively.

%0ne easily checks that s; corresponds to the spins of the field ¢; by rewriting each term in Vs, 5,55 as

Ui TR Y Capy (1120) (y222)° (ys2s)? (A1)
a+pB+y=n

where cq,g,~ are the trinomial coefficients. Counting the powers of say a: then gives

s1—n+ a + + =s1. A2
asnr e v B+ o == (A2)
g1 n (y121)*~y§ (yzZQ)ﬁ~25 (y323)7 ~2]

4,20 _



For a given dimension, one may be able to construct vertices which violate these
bounds due to the presence of Schouten identities. As an example, one can construct
vertices corresponding to minimal (s, s,2) coupling to gravity in three dimensions. These
vertices only involve two derivatives and therefore violate the lower Metsaev bound for
s > 2. One may try to express these vertices in the form of (A.3)%!

We start from

GS

s—27
Y3

V= (A.4)
which by itself is of course a nonsensical expression. However, as we will see shortly, one
can make sense of it only in three dimensions using Schouten identities. Note that this
vertex only contains two derivatives and obviously fulfills D;V = 0. By using the definition

of GG one obtains

EJ; _ Zs: (Z) (G*y:szs)kgyszzs)

Y3 = Y3
s—2 k. s—k+2
_ s\ (G —y323)"2
— (O )+ G- 3 () S
v,:m A k=0 -~ 3 _
R

The last term however vanishes due to the Schouten Identity (3.10a). Therefore, we have
constructed a gauge invariant (s,s,2) TT vertex involving only two derivatives as can be

seen as follows
0=D;V =D, (szn + A x R) = DiVmin + DZ(A) x R+ A x DZ(R) (A5)

Since D;(Schouten Identities) — Schouten Identities, it then follows that D; V., = 0.
This procedure can fail in subtle ways. To illustrate this, let us consider one-derivative
minimal coupling to Maxwell field which is defined, similarly to (A.4), through a ratio:

s * (s — y323)F (y323)5~
§122<k> (G — y323) Ey:s 3)° (A.6)

Y3 P Y3
5—2 s—k+2
- 1 s\ (G —yzz)" 23
= 25ys + s(G — S (G- 2 — L (AT
23ys + 5( 5 ysz3) 23+ ( 3323) v & <k+2) b (A7)
Vimin A ~ ~-
R
In this case,
5—=2 s—k+2
1 s\ (G —ys23)Fz;
A= (G- 2 R=— : A8
(G~ 132) 52 () (A8)
it follows for example that
1522 s (G—y;»,z;g)’k“'zs_]“r2
DQA X R~ G—ygzgygygx— ( > 3 s A9
(@)% R~ (G =z x o 3 (5 - (4.9)

"Similar attempt has been made for four-dimensional vertices in [38].
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and due to the pole in y3 the first term in the sum is no longer proportional to a Schouten
identity after canceling terms common to the denominator and numerator. Note that such
a pole would not arise for the case of minimal coupling to gravity (A.4). It is interesting
to notice that the same ratio (A.7) defines a minimal coupling to Chern-Simons field given
in (5.5):

Vimin = Y3 23 . (A.10)

This is due to first identity of (5.3) which allows to replace (6.1) by

s—1 k. s—k+2
S (G — y323) <3
Y3 23 ) kz_:(] (k‘ + 1> k )

(A.11)
Y3

and extending the argument given for spin two minimal coupling to this case. As we have
seen, the schematic way of writing the vertex as ratios works consistently only for vertices
that are otherwise shown to exist in covariant formulation due to Schouten identities. We
conclude that this rewriting is just a curiosity and does not provide with any new insights.

B d=2

In two dimensions the Schouten identities can be used to eliminate the d’Alambertian term
in the Fronsdal action for s > 2 in favour of trace and divergence terms, which renders
the free theory to be trivial for TT fields. For example, the spin two Fronsdal equation
itself is proportional to Schouten identity. This is a ‘linearization’ of the statement that
Einstein-Hilbert action is topological and there are no Einstein equations of motion for
the metric in 2d. For s > 2, the massless equation (2.2a) is a consequence of the two
other equations (2.2b) and (2.2c). One may study massless HS fields in fully reducible
Maxwell-like formulation in d = 2. There, each even rank field carries a single scalar mode.

HS theories in 2d are making use of BF-type actions [76]. Nevertheless, if one insists
on Fronsdal formulation and tries to derive T'T cubic couplings, following observations are
in order. Some of the Schouten identities that can be derived in this case are:

y1y2y3:07 yzQy]:O7 y’ly]Z]:O7 G2207 (Bl)
Z3 (G - yiilziil) = 0, 21 %2 23 = 0. (B2)

These identities imply that any term with more than two derivatives is TT trivial and
there are no candidate TT expressions for s; > s9 = s3 = 2. The only parity-even TT
vertices that can be written down, necessarily have scalar or Maxwell fields involved and
are given by (s, s,0) vertex V(s 50) = ylygz?f*l, (s,8,1) vertex V(s 51) = y3235 (s = 2, s = 0)
and usual Yang-Mills (1,1, 1) vertex V,1,1) = G. These observations may be useful in the
attempts to construct HS gravity theories in two dimensions.
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