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CUBIC NORMS REPRESENTED BY QUADRATIC SEQUENCES
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JACEK P O M Y K A  L A (WARSZAWA)

1. Introduction. Let A be a given sequence of positive integers and
K be a Galois extension of the rational numbers of degree l. By Na we
denote the norm of an integral ideal a ⊂ K. We are interested in whether
the equation

(1) Na = a

has arbitrarily many solutions in a ⊂ K, a ∈ A.

For the sequences

A = {n2 + 1 : n a positive integer, n < x} ,
A = {N −Nb : b ⊂ K,Nb < N}

the corresponding problems have been considered in the literature (see [3],
[4], [7]).

For the first sequence and l = 2 the existence of solutions of (1) was ob-
tained by an application of the 1

2 -dimensional sieve (see [3]). The analogous
application of the sieve of dimension κ = 1− l−1 with l = 3 is not sufficient
since the limit of the 2

3 -dimensional sieve is equal to

(2) β0 = 1.2242 . . .

(see [5]) and it is too large in relation to the value of the distribution level
for A.

Therefore the article deals with the more artificial problem

(3) Na = n2 + b2 with b prime, b < nΘ+ε

(ε an arbitrary positive constant, 0 < Θ ≤ 1).

The smaller Θ, the closer we are to the solution of the original problem.
Due to an extra variable b in (3), the resulting distribution level can be
greater than xβ0 . The crucial point is the application of the new estimates
for the exponential sums obtained in [2]. In this direction cf. also [6] and [8].
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The method presented here works for rather general sequences of the type
{n2 + b2 : n ∈ N, n < x, b ∈ B}. However, to avoid the technical difficulties
we shall assume that B is a set of primes. As an application we obtain

Theorem. Let K be a cubic normal extension of the rational numbers

and B be a set of primes such that for x→ ∞ we have

♯{b ∈ B : b ≤ x, b ≡ 1 (mod λ)} ≥ xγ

(γ a constant , γ > 3(β0 − 1), λ an integer depending only on K). Then the

equation

Na = n2 + b2

where n ∈ N, b ∈ B, n < x, b < xΘ+ε is solvable provided

(4) Θ = Θ(γ, β0) =
6β0 − 7

2γ − 1
.

As a consequence we deduce for instance that n2 + b2 = Na for infinitely
many pairs (n, b) with b prime, b < n0.35.

2. Notation. Technical preparations

• x— a sufficiently large parameter (x→ ∞).

• Θ, γ — fixed positive parameters (0 < Θ ≤ 1, 0 < γ ≤ 1).

• N — the set of positive integers,

N(x) = {n ∈ N : n < x} .
• B — any set of primes greater than λ, with λ a positive integer to be

chosen later,

B(x) = {b ∈ B : b < x}.
• P — any set of primes.

• 〈d〉— the integrer part of d.

• τ(d) — the divisor function, i.e., τ(d) =
∑
d1d2=d 1.

• Ω(d) — the number of prime divisors of d.

• e(t) — the additive character e2πit.

• f̂ — the Fourier transform of f , i.e., f̂(t) =
∫ ∞
−∞ f(ξ)e(ξt) dξ.

• ≪— the Vinogradov symbol, i.e.,

f ≪ g ⇔ f = O(g) .

• (m,n) — the greatest common divisor of m and n.

• m ≡ a (d) means m ≡ a (mod d).

• m ∼M means M ≤ m < 4M .

• ‖f‖, ‖f‖1, ‖f‖∞ are L2, L1, L∞ norms of f respectively.
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• S(a, b, c) is the Kloosterman sum
∑

m (modc)
(m,c)=1

e((am+ bm)/c)

where m is defined by the congruence condition mm ≡ 1 (c).
• ε—any sufficiently small, positive constant, not necessarily the same

at each occurrence.

Lemma 1. There exists a function ϕ ∈ C∞(R) (with the graph drawn

below) such that

ϕ(t) =

{
0 for t ≤ 0 ,
1 for t ≥ 1 ,

with derivatives satisfying

|ϕ(q)(t)| ≤ (22qq!)2, q = 0, 1, 2, . . .

Fig. 1

The proof follows immediately from Lemma 9 of [1]. Using the substi-
tutions t→ t/2j we obtain

Lemma 2 (Smooth partitions of unity). There exists a sequence of func-

tions wj(t) such that
∑

j∈Z

wj(t) = 1 for t > 0, suppwj ⊂ [2j , 2j+2] ,

|w(q)
j (t)| ≤ (22qq!)2 · 2−jq, q = 0, 1, 2, . . .

Lemma 3 (Truncated Poisson formula for arithmetic progressions). Let

f be a smooth function with compact support in [y, 4y], where y > 0, such

that

f (q)(t) ≪ y−q, q = 0, 1, 2, . . . ,

with the constant implied in the symbol ≪ depending on q only. Then
∑

m≡a (d)

f(m) = d−1
∑

|h|≤d1+εy−1

f̂(h/d)e(−ah/d) +O(d−1) .

The proof follows immediately by integration by parts 〈2/ε〉 + 2 times.
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We define the sequence

A = {(λn)2 + b2 : n ∈ N(x), b ∈ B(xΘ), (λn, b) = 1} .
For technical reasons we introduce smooth functions drawn below with
derivatives satisfying

g(q)(t) ≪ t−q, B(q)(t) ≪ t−q, q = 0, 1, 2, . . .

Fig. 2

Here B = xΘ.
In the sequel we shall use the abbreviated notation |B| for the number

of elements in the set B(B).
For a given P and z ≥ 2 define

P (z) =
∏

p∈P,p<z
p .

We define the sifting function (modified by the weight functions g(t), B(t))
as follows:

S(A,P , z) =
∑

(λn,b)=1

((λn)2+b2,P (z))=1

B(b)g(n)

where the double summation is taken over b ∈ B and n ∈ N.
Next we shall need some results of algebraic character.

Lemma 4 (see [4]). There exists a ∆ divisible by all ramified primes, and

only by them, such that a prime p splits completely in K if and only if

p (mod ∆) ∈ H
where H is the subgroup of index 3 in the group Z

∗
∆ of residue classes modulo

∆, coprime with ∆.

By Lemma 4 it follows that if a positive integer m satisfies

p |m⇒ p (mod ∆) ∈ H
then m is represented by the norm of an ideal a ⊂ K. We take as B the set of
primes congruent to 1 (mod 4∆). Letting φ be the natural homomorphism

φ : Z
∗
4∆ → Z

∗
∆ (φ : a (mod 4∆) → a (mod ∆))
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we set H′ = φ−1(H). Then we have

Lemma 5. Let G be the subgroup of Z
∗
4∆ defined by

G = {g ∈ Z
∗
4∆ : g ≡ 1 (4)} .

Then (H′ : H′ ∩G) = 2.

P r o o f. The natural epimorphism φ1 : Z
∗
4∆ → Z

∗
4 maps H′ onto Z

∗
4 since

otherwise H′ = φ−1
1 (1) would have an even index in Z

∗
4∆, which contradicts

the assumption (Z∗
4∆ : H′) = 3. Therefore (H′ : H′∩G) = |H′/H′∩kerφ1| =

2 as required.

3. The sieving problem and the estimate of the main term. We
start this section by the remark that the proof of the Theorem reduces to
the nontrivial lower bound for the sifting function S(A,P, z), where

P = {p prime : (p, λ) = 1, p (mod λ) 6∈ H′} ,
z = (λ+ 1)x, λ = 4∆ .

Let a ∈ A. We observe that if a prime p such that p | a is in H′ then by
Lemma 4 it is of the form Na for some a ⊂ K.

Since H′ is a subgroup of Z
∗
λ we see from the congruence condition

a = (λn)2 + b2 ≡ 1 (mod λ)

that a ∈ H′. Moreover, the group structure of H′ ensures that a = (λn)2+b2

cannot have exactly one prime factor outside H′. Therefore it is sufficient
to sift the sequence A by the primes p 6∈ H not exceeding the value (λ2x2 +
x2)1/2 < (λ+ 1)x.

To complete the proof of the Theorem it remains to estimate (from
below) the sifting function S(A,P , z). We shall use the results obtained
in [5].

Let D > 1. By µ−
d = µ−

d (D) we denote the Rosser weights of the lower
2
3
-dimensional sieve (|µ−

d | ≤ 1). In view of Lemma 1 of [5] we have

S(A,P , z) =
∑

(λn,b)=1

∑
B(b)g(n)

∑

d|(λn)2+b2

d|P (z)

µ(d)

≥
∑

(λn,b)=1

∑
B(b)g(n)

∑

d|(λn)2+b2

d|P (z)

µ−
d

=
∑

d|P (z)

µ−
d

∑

(λn,b)=1

(λn)2+b2≡0(d)

B(b)g(n) =
∑

d|P (z)

µ−
d |Ad|
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where µ(d) is the Möbius function and

|Ad| =
∑

(b,λd)=1

B(b)
∑

(n,b)=1

(λn)2+b2≡0(d)

g(n)

=
∑

(b,d)=1

B(b)
{ ∑

n∈N

(λn)2+b2≡0(d)

g(n) −
∑

n≡0(b)

(λn)2+b2≡0(d)

g(n)
}

=
∑

(b,d)=1

B(b)
∑

ϑ (mod d)

{ ∑

n≡ϑb (d)
g(n) −

∑

n≡ϑ (d)

g(nb)
}
.

Here ϑ (mod d) runs over the solutions of the congruence λ2t2 + 1 ≡ 0 (d).
Letting ̺(d) stand for the number of such solutions we obtain, by Lemma 3,

|Ad| =
∑

(b,d)=1

B(b)
∑

ϑ (mod d)

d−1

{ ∑

|h|<d1+ε/x

ĝ

(
h

d

)
e

(
− ϑb

h

d

)

+
∑

|h|<d1+εB/x

b−1ĝ

(
h

bd

)
e

(
− ϑ

h

d

)}
+O(|B|̺(d)d−1)

=
̺(d)

d
ĝ(0)

∑

b∈B
B(b)

(
1 +

1

b

)
+ r′(A, d)

=
̺(d)

d
ĝ(0)

∑

b∈B
B(b) + r(A, d)

where

r(A, d) = r1(A, d) + r2(A, d)(5)

+O

(
̺(d)

d

(
ĝ(0)

∑

(b,d)>1

(1 +B(b)) + |B|
))

,

r1(A, d) =
∑

(b,d)=1

∑

ϑ

d−1
∑

h 6=0

h<d1+ε/x

ĝ

(
h

d

)
e

(
− ϑb

h

d

)
,

(6)

r2(A, d) =
∑

(b,d)=1

∑

ϑ

(bd)−1
∑

h 6=0

h<Bd1+ε/x

ĝ

(
h

bd

)
e

(
ϑ
h

d

)
.

Therefore

S(A,P , z) ≥
∑

d|P (z)

µ−
d |Ad| = ĝ(0)

∑

b∈B
B(b)

∑

d|P (z)

µ−
d

̺(d)

d
+

∑

d|P (z)

µ−
d r(A, d)

= main term + remainder term.
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In the next section we shall prove the following estimate for the remain-
der term:

(7)
∑

d<D

|r(A, d)| ≤ |B|x1−ε

provided D = xα0−19ε, where

(7′) α0 = α0(γ,Θ) = min

{
1 + γΘ,

4

3
− Θ(1 − γ)

3
,
7

6
+
Θ

6
(2γ − 1)

}
.

Obviously, if Θ is defined by (4) and γ > 3(β0 − 1) then

α0(γ,Θ) = β0 .

The main term will be evaluated by means of the following result
(see [5]).

Lemma 6. Let ω(d) be any multiplicative function satisfying

(i) 0 ≤ ω(p) < p for p ∈ P,

(ii) there exists a constant C ≥ 2 such that for all z > w ≥ 2,

∏

p∈P,w≤p<z
(1 − ω(p)/p)−1 ≤

(
log z

logw

)2/3{
1 +

C

logw

}
.

Then
∑

d|P (z)

ω(d)d−1µ−
d (D) ≥

∏

p|P (z)

(1 − ω(p)/p){f(s) +O[e
√
C−s(logD)−1/3]}

where s = logD/ log z and f(s) is positive provided s > β0.

To complete the proof of the Theorem we notice that for

ω(p) = ̺(p) =

{
2 if p ∈ P, p ≡ 1 (4) ,
0 if p ∈ P, p ≡ 3 (4) ,

the Mertens prime number theory and Lemmas 4 and 5 imply the inequality

∏

p∈P
w≤p<z

(1 − ̺(p)p−1)−1 ≤
(

log z

logw

)2/3{
1 +

C

logw

}

with some constant C = C(λ). Hence by Lemma 6 with ω(d) = ̺(d), (7)
and (7′) we conclude that S(A,P , z) is positive provided α0(γ,Θ) > β0.
This completes the proof of the Theorem.

4. Estimate of the remainder term. Applying the smooth partitions
of unity {wj1(h)}j1∈Z, {wj2(d)}j2∈Z in the right-hand side of (6) we conclude
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that the estimate (7) reduces to

(8)
∑

d∼D

∑

ϑ (mod d)

∣∣∣∣
∑

b∈B
(b,d)=1

∑

h∼H
wj1(h)wj2(d)B(b)ĝ(e)

(
h

d

)
e

(
− hb1−e

ϑ

d

)∣∣∣∣

+ (x+ |B|)
∑

d<D

̺(d)Ω(d) ≪ |B|Dx1−2ε ,

where

H ≤ Dx−1Bexε/2, ĝ(e)

(
h

d

)
=
∫
g(beη)e

(
η
h

d

)
dη ,

e = 0 or 1 and D = xα0−19ε .

Moreover, the condition (b, d) = 1 in the first term of (8), and the second
term in (8), may be omitted, since for (b, d) > 1 the suitable contribution
to the left-hand side of (8) is bounded by

≪ DHĝ(e)(0)xε ≤ D2x2ε ≤ |B|Dx1−2ε

(since α0 ≤ 1+γΘ by (7′)), while the second term contributes Dx1+ε, which
is ≪ |B|Dx1−2ε since γΘ > 0.

Now the application of Cauchy’s inequality reduces our problem to the
proof of the inequality

∑

b1,b2∈B

∑

h1,h2∼H

∑

d∼D

∑

ϑ (mod d)

wj1(h)e

(
(h1b

1−e
1 −h2b

1−e
2 )

ϑ

d

)
G(d, b1, b2, h1, h2)

≪ D|B|2B2ex−5ε

where

G(d, b1, b2, h1, h2)

= wj1(h1)wj1(h2)wj2(d)B(b1)B(b2)e

(
(h1 − h2)

η

d

)
g(be1η)g(b

e
2η) .

Let k = h1b
1−e
1 − h2b

1−e
2 . The diagonal k = 0 provides an admissible

contribution since

• if e = 0 it is

≪ Dxε
∑

b1,h1

1 ≪ D|B|Hxε ≪ D2+ε|B|x−1+εBe ≪ D|B|2B2ex−5ε ,

• if e = 1 it is

≪ D|B|2Hxε ≪ |B|2D2xε−1B ≪ |B|2DB2x−5ε

(in view of the condition α0 ≤ 1 +Θ, see (7′)).
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Now we consider k ∼ K with 1 ≤ K ≤ HB1−e ≤ D1+εx−1B and
investigate the exponential sum

Te(x,B,D) =
∑

(k)

∑

d∼D

∑

ϑ (mod d)

e

(
k
ϑ

d

)
G(d, b1, b2, h1, h2)

where
∑

(k) denotes the summation over the variables b1, b2, h1, h2 such that

h1b
1−e
1 − h2b

1−e
2 ∼ K. Our aim is to show that

(9) Te(x,B,D) ≪ D|B|2B2ex−6ε

provided D = xα0−19ε.

4.1. Application of Gaussian theory of binary quadratic forms. The
following result can be inferred from the article 86 of [9].

Lemma 7 (see [3]). Let f(y) = ay2 + by+ c be a polynomial with integer

coefficients (a > 0) and discriminant ∂ = b2 − 4ac < −4. Select one form

(α, β, γ) from each class of primitive definite forms of determinant ∂ (1).
There exists a one-to-one correspondence between the roots of

f(ϑ) ≡ 0 (mod d)

and the pairs ±(r, s) of proper representations of 4ad by the given forms,
such that

(10) αr + (β + b)s ≡ 0 (2a).

This correspondence is given by

(11)
ϑ

d
= 2

(
r

s
− αr + (β + b)s

s(αr2 + 2βrs+ γs2)

)

where

rr ≡ 1 (s) .

R e m a r k. Since we may choose the forms (α, β, γ) satisfying (αβ, 2a) =
1, the conditions (r, s) = 1 and αr+2βrs+γs2 = 4ad imply that (s, 2a) = 1,
hence s 6= 0 and thus the right-hand side of (11) is well defined.

We apply Lemma 7 to

∂ = −4λ2, a = λ2, b = 0, c = 1 .

Denoting by F = F(∂) the system of representing forms ψ = (α, β, γ) we
have

(12) Te(x,B,D)

=
1

2

∑

ψ∈F

∑

(k)

∑

(r,s)=1

αr+βs≡0(2λ2)

e

(
2k
r

s

)
G

(
ψ(r, s)

4λ2
, b1, b2, h1, h2

)
e

(
−2k

αr + βs

sψ(r, s)

)
.

(1) Following Gauss’ notation we denote by (α, β, γ) the form with coefficients α, 2β, γ.
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Since (αβ, 2λ) = 1 we may split the summation over r, s above into a double
sum over s such that (s, 2λ) = 1 and over r coprime with s such that r ≡
−βαs (2λ2), with αα ≡ 1 (2λ2). Moreover, applying the smooth partitions
of unity {wj3(r)}j3∈Z, {wj4(s)}j4∈Z we obtain

Te(x,B,D) ≪ xε max
R,S

∑

(k)

∑

(s,2λ)=1
s∼S

∑

r∼R,(r,s)=1

r≡−βᾱs (2λ2)

e

(
2k
r

s

)
G1(r)

where α, β are fixed numbers that depend only on λ and the maximum is
taken over

1 ≤ R,S ≤ CλD
1/2 ,

with some constant Cλ depending only on λ. The function G1(r) has the
form

G1(r) = G

(
ψ(r, s)

4λ2
, b1, b2, h1, h2

)
e

(
− 2k

αr + βs

sψ(r, s)

)
wj3(r)wj4(s) .

By Lemma 3 the innermost sum over r ∼ R in the right-hand side of (12)
is equal to

(13)
∑

r≡βᾱs (2λ2)

G1(r)e

(
2k
r

s

)
r

=
∑

ν (mod s)
(ν,s)=1

e

(
2k
ν

s

) ∑

r≡ν (s)

r≡βαs (2λ2)

G1(r)

=
∑

ν (mod s)
(ν,s)=1

e

(
2k
ν

s

)
(2λ2s)−1

×
( ∑

|m|≤S1+ε/R

e

(
− m

2λ2s
(2λ2ν2λ2 − βαs)

)
Ĝ1

(
m

2λ2s

)
+O(1)

)

=
∑

|m|≤S1+ε/R

e

(
− βα

2λ2
m

)

×
∑

ν (mod s)
(ν,s)=1

e

(
ν2k − ν2λ2m

s

)
Ĝ1

(
m

2λ2s

)
(2λ2s)−1 +O(1)

=
∑

|m|≤S1+ε/R

e

(
− βα

2λ2
m

)
S(2k,−2λ2m, s)Ĝ1

(
m

2λ2s

)
(2λ2s)−1 +O(1) .
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Here S(k,−2λ2m, s) is the Kloosterman sum. The error O(1) contributes
to Te(x,B,D) a quantity less than

xε max
R,S

∑

(k)

∑

s∼S
1 ≪ x2εH2|B|2S ≪ x4εD5/2x−2B2e|B|2

≪ D|B|2B2ex−6ε, since D ≤ x4/3 by (7′) .

In view of (9) this proves that the above error is admissible. In the case
m = 0 the Kloosterman sum reduces to a Ramanujan sum, hence by the well
known estimate we find that the corresponding contribution to Te(x,B,D)
does not exceed

max
R,S

∑

(k)

∑

s∼S
S(2k, 0, s)RS−1xε ≪ x2εD1/2H2|B|2 ≪ D|B|2B2ex−6ε

as above. Therefore we shall assume in the sequel that m 6= 0, which
implies that S1+ε ≥ R. In view of Lemma 7 we have (S1+ε)2 + S2 ≫ D,
hence D1/2−ε ≤ S ≤ CλD

1/2. Applying the smooth partition of unity
{wj5(m)}j5∈Z we have, by (12) and (13),

(14) Te(x,B,D) ≪ x8ε max
H,K,S,M

E(H,K,S,M) + admissible error term

where

E(H,K,S,M) = R
∑

(k)

∑

m∼M
e

(−βα
2λ2

m

)
(15)

×
∑

(s,2λ)=1

s−1S(2k,−2λ2m, s)G2(m, b1, b2, h1, h2, s)

and the maximum is taken over

(16)

1 ≤ H ≤ Dx−1Bexε/2 ,

1 ≤ K ≤ HB1−e ≤ DBx−1+ε/2 ,

D1/2−ε ≤ S ≤ CλD
1/2 ,

1 ≤M ≤ SR−1xε, R ≤ Sxε .

Here G2 is defined as follows:

G2(m, b1, b2, h1, h2, s)

= G

(
ψ(ξ, s)

4λ2
, b1, b2, h1, h2

)

× e

(
− 2k

αξ + βs

sψ(ξ, s)

)
e

(
mξ

2λ2s

)
wj3(ξ)wj4(s)wj5(m)x−6ε

where ξ is a fixed parameter (R ≤ ξ ≤ 4R).
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Letting x = (x1, . . . , x5) ∈ R
5 we see by the definition of G that

(17)
∂q1+...+q5

∂xq11 · · · ∂xq55
G2(x, s) ≪

5∏

j=1

x
−qj

j (0 ≤ qj ≤ 2, j = 1, . . . , 5) .

For the s-derivatives, one obtains

∂ν

∂sν
G2(x, s) ≪ s−ν(1 +KD−1)νx−2ε(18)

≪ s−ν , ν = 0, 1, 2 (since Θ ≤ 1) .

4.2. Estimate for sum of Kloosterman sums. In this section we apply
the method developed by Deshouillers and Iwaniec in [2] for the group Γ =
Γ0(v), with v = 2λ2. We start from the separation of variables in G2(x, s).
Let

u =
4π

√
x1k

s
√
v

where

k = k(x) = x4x
1−e
2 − x5x

1−e
3 .

Then

(19) G2(x, s) =
∫

R
5

ψt(u)e(t x) dt

where t = (t1, . . . , t5) and by the inversion formula

ψt(u) =
∫

R
5

G2

(
x,

4π
√
x1k

u
√
v

)
e(−x t) dx .

For t1, . . . , t5 6= 0 integrating by parts qj times with respect to xj (j =
1, . . . , 5) and then differentiating ν times with respect to u we obtain, by (17)
and (18),

(20)
∂ν

∂uν
ψt(u) =

5∏

j=1

(2πtj)
−qj

×
∫

R
5

∂q1+...+q5+ν

∂xq11 . . . ∂xq55 ∂u
ν
G2

(
x,

4π
√
x1k

u
√
v

)
e(−x t) dx

≪ (t1M)−q1(t2B)−q2(t3B)−q3(t4H)−q4(t5H)−q5(
√
MK/S)−νMB2H2

where 0 ≤ qj ≤ 2, 0 ≤ ν ≤ 2, j = 1, . . . , 5.
In view of (15) and (19) we have

(21) E(H,K,S,M) = R
∑

(k)

∑

m∼M
e

(
βα

2λ2
m

) ∑

(s,2λ)=1
s∼S

s−1S(2k, 2λ2m, s)
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×
∫

R\{0}
. . .
∫

R\{0}
ψt(u)e(t1m)e(t2b1)e(t3b2)e(t4h1)e(t5h2) dt1 . . . dt5

since the remaining set of integration has measure 0 in R
5.

For any t 6= 0 the function ψt(u) satisfies

suppψt ⊂ [X, 16X] with X =
π
√
MK

S
√
v

,

ψt(u) ≪ (t1M)−q1(T2B)−q2(t3B)−q3(t4H)−q4(t5H)−q5MB2H2 .

Therefore there exists δ > 0 such that the function

Φt(u) = δ(t1M)q1(t2P )q2(t3P )q3(t4H)q4(t5H)q5(MB2H2)−1ψt(u)

satisfies

suppΦt ⊂ [X, 16X], ‖Φt‖∞ ≤ 1 ,

‖Φ′
t
‖1 =

16X∫

X

∣∣∣∣
∂

∂u
Φt(u)

∣∣∣∣ du ≤
√
v

16π

16X∫

X

(√
MK

S

)−1

du ≤ 1 ,

‖Φ′′
t
‖ =

16X∫

X

∣∣∣∣
∂2

∂u2
Φt(u)

∣∣∣∣ du ≤ v

16π2

16X∫

X

(√
MK

S

)−2

du ≤ X−1 .

The required bound for E(H,K,S,M) is due to the following

Lemma 8. Let Φ(u) be a smooth function satisfying

suppΦ ⊂ [X, 16X] ,

‖Φ‖∞ ≤ 1, ‖Φ′‖1 ≤ 1, ‖Φ′′‖1 ≤ X−1 .

Then

(22)
∑

(s,v)=1
s∼S

s−1
∑

k∼K
bk

∑

m∼M
amS(2k, vm, s)Φ

(
4π

√
mk

s
√
v

)

≪
[
1 +

1 +X−1/2

1 +X
(1 +X +

√
M)(1 +X +

√
K)‖am‖ ‖bk‖

]
(MKS)ε .

P r o o f. Follows from [2], Theorem 8, p. 234, by the observation that
0 ≤ Θq ≤ 1/2, µ(a) ≪ 1, µ(b) ≪ 1.

In view of (21) and (22) we have

E(H,K,S,M)

≪ R
∫

R\{0}
. . .
∫

R\{0}

[
1 +

1 +X−1/2

1 +X
(1 +X +

√
M)(1 +X +

√
K)‖am‖ ‖bk‖

]

×(MKS)εMB2H2(t1M)−q1 . . . (t5H)−q5 dt1 . . . dt5
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where

‖am‖2 =
∑

m∼M

∣∣∣∣e
(−βα

v
m

)
e(t1m)

∣∣∣∣
2

≤ 4M ,

‖bk‖2 =
∑

k∼K

∣∣∣
∑

h1,b1,h2,b2
h1b1−h2b2=k

e(t1m)e(t2b1)e(t3b2)e(t4h1)e(t5h2)
∣∣∣
2

≤
∑

k∼K

∑

h2,b2

τ(h2b2 + k)
( ∑

h1,b1,h2,b2
h1b1−h2b2=k

1
)

≤ (HB +K)εH|B|
∑

h1,b1

∑

h2,b2

1 ≪ H3|B|3x3ε .

In order to estimate the 5-dimensional integral in question we consider for
instance the integral

∞∫

−∞
(t5H)−q5 dt5 .

Let q5 = 0 if |t5| ≤ 1/H and q5 = 2 otherwise. Then it contributes the
quantity ∫

|t5|≤H−1

1 dt5 +
∫

|t5|>H−1

(t5H)−2 dt5 ≤ 3

H
.

Following the same arguments for the remaining qi, i = 1, . . . , 4, we obtain

E(H,K,S,M)

≪ RM1/2(H|B|)3/2[1 + (1 +X−1)1/2(X +
√
M)(X +

√
K)]x2ε

≪ RM1/2(H|B|)3/2
{(

1+
S√
MK

)1/2√
MK

(
1+

√
M

S2

)(
1+

√
K

S2

)}
x2ε

≪ RM1/2(H|B|)3/2
(

1+
S√
MK

)1/2√
MKx3ε

since in view of (16), M ≤ S2 and K ≤ S2x2ε. Therefore by (14) and (16)
we obtain

Te(x,B,D) ≪ max
H,K,S

(H|B|)3/2{S
√
K(1 + S/

√
K)1/2}x11ε .

Splitting the right-hand expression into two terms coming from the two
terms of the sum 1 + S/

√
K shows that Te(x,B,D) ≪ T1 + T2 where

T1 ≪ max
H,K,S

(H|B|)3/2S
√
Kx11ε , T2 ≪ max

H,K,S
(H|B|)3/2S3/2K1/4x11ε .

Hence by (16) we obtain

T1 ≪ (Dx−1|B|)3/2[D(DB/x)]1/2B3e/2x14ε
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≪ D|B|2B2e[D3/2|B|−1/2B1/2x−2]x14ε ,

which is admissible since

D ≤ x4/3(|B|/B)1/3x−14ε .

Finally,

T2 ≪ max
S

(Dx−1|B|)3/2S3/2(DB/x)1/4B3e/2x15ε

≪ (Dx−1|B|)3/2D3/4(DB/x)1/4B3e/2x15ε

≪ D|B|2B2e{D3/2x−7/4|B|−1/2B1/4}x15ε ,

this being also admissible since

D ≤ x7/6(|B|2/B)1/6x−19ε .

This completes the proof of (9) and hence the proof of the Theorem.
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