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Abstract

For every integer ℓ, we construct a cubic 3-vertex-connected planar bipartite graph G with O(ℓ3)

vertices such that there is no planar straight-line drawing of G whose vertices all lie on ℓ lines.

This strengthens previous results on graphs that cannot be drawn on few lines, which constructed

significantly larger maximal planar graphs. We also find apex-trees and cubic bipartite series-parallel

graphs that cannot be drawn on a bounded number of lines.
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1 Introduction

A number of works in graph drawing and network visualization have considered drawing

graphs with line segments as edges and with the vertices placed on few lines, or on a minimal

number of lines. Even very strong constraints, such as restricting the vertices of a drawing

to only two lines, allow many graphs to be drawn [16]: every weakly leveled graph drawing

(a planar drawing on any number of parallel lines with every edge connecting two vertices on

the same or adjacent lines) can be converted into a drawing on two crossing lines that spirals

around the crossing. This conversion allows, for instance, all trees, all outerplanar graphs,

all Halin graphs, all squaregraphs (graphs in which all bounded faces have exactly four sides

and all vertices not on the unbounded face have at least four neighbors) and all grid graphs

(Figure 1) to be drawn on two lines [1, 2, 15].

Additional past results in this area include:

Fixed-parameter tractable algorithms for drawing planar graphs without crossings with

all vertices on ℓ parallel lines, based on the fact that a graph with such a drawing must

have pathwidth O(ℓ) [8].

NP-hardness of crossing minimization for graphs drawn with vertices on two parallel lines

(with a fixed assignment of vertices to lines but variable placement of each vertex along

each line) and of finding large crossing-free subgraphs [12,13].

NP-hardness of recognizing the graphs that can be drawn without crossing with all vertices

on three parallel but non-coplanar lines in three-dimensional space, or on three rays in the

plane with a common apex and bounding three wedges with angles less than π [2]. More

generally, the number of parallel three-dimensional lines (in sufficiently general position)

needed for a crossing-free drawing of a graph is the track number of the graph [10, 11]. It

is closely related to the volume of three-dimensional grid drawings, and can be bounded

by the pathwidth of the graph [9].

∃R-completeness and fixed-parameter tractability of deciding whether a given graph can

be drawn without crossing with all edges on ℓ lines (not required to be parallel) in two or

three dimensions [4].
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32:2 Cubic Planar Graphs That Cannot Be Drawn On Few Lines

Figure 1 Spiraling around the central crossing allows every weakly leveled drawing (in this case,

a drawing of a grid graph) to be converted to a drawing with all vertices on two lines.

Implementation of a tester for drawing graphs without crossings on two lines using integer

linear programming and SAT solvers, and an examination of the subclasses of planar

graphs that can be drawn without crossings with all vertices on two lines [16].

The existence of families of planar graphs that cannot be drawn without crossings on any

fixed number of lines, no matter how the lines are arranged in the plane [5, 14,19].

In this paper we strengthen the final result of this listing, the existence of families of

planar graphs that cannot be drawn on any fixed number of lines, in two ways.

First, we greatly improve the size bounds for these difficult-to-draw graphs. The previous

bounds of Ravsky, Chaplick, et al. [5, 19] are based on the observation that, in a maximal

planar graph, a line through q vertices implies the existence of a path in the dual graph of

length Ω(q). However, there exist n-vertex maximal planar graphs for which the longest

dual path has length O(nc) for some constant c < 1 called the shortness exponent. In these

graphs, at most O(nc) vertices can lie on one line, so the number of lines needed to cover the

vertices of any drawing of such a graph is Ω(n1−c). Based on this reasoning, they showed

the existence of n-vertex graphs requiring O(n0.01) lines to cover the vertices of any drawing.

Inverting this relationship, graphs that cannot be drawn on ℓ lines can have a number of

vertices that is only polynomial in ℓ, but that polynomial is roughly ℓ100. Alternatively, it

can be proven by a straightforward induction that a special class of maximal planar graphs,

the planar 3-trees, cannot be drawn on a constant number of lines, but the proof only shows

that the required number of lines for these graphs is at least logarithmic [14]. Inverting this

relationship, the graphs of this type that cannot be drawn on ℓ lines have size exponential

in ℓ. In this paper, we prove polynomial bounds with a much smaller exponent than 100.

Second, we show that the property of requiring many lines extends to a broader class

of graphs. Both classes of counterexamples discussed above involve maximal planar graphs,

graphs in which every face of the embedding is a triangle. Maximality seems a necessary part

of the proofs based on the shortness exponent, as the connection between numbers of vertices

on a single line and lengths of dual paths does not necessarily hold for other classes of planar

graphs. In contrast, based on computational experiments, Firman et al. [16] conjectured

that cubic (that is, 3-regular) planar graphs can always be drawn without crossings on only
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Figure 2 A cubic planar graph that cannot be drawn on two lines, giving a counterexample

to a conjecture of Firman et al. [16]. Its inability to be drawn on two lines has been verified

computationally by Firman et al.

two lines. The cubic graphs are distinct from the known examples of graphs that require

their vertices to lie on many lines, as a maximal planar graph larger than K4 cannot be

cubic. Their conjecture inspired the present work, and a counterexample to it found by the

author (Figure 2) led to our main results. In this work, we provide examples of graphs that

require many lines but are cubic, providing stronger counterexamples to the conjecture of

Firman et al. Moreover these graphs do not contain any triangles, showing that the presence

of triangles is not a necessary component of graphs that require many lines.

More specifically, we prove:

◮ Theorem 1. For every ℓ there exists a graph Gℓ that is cubic, 3-vertex-connected, planar,

and bipartite, with O(ℓ3) vertices, such that every straight-line planar drawing of Gℓ requires

more than ℓ lines to cover all vertices of the drawing.

Additionally, we can construct Gℓ in such a way that it is drawable with its vertices on

O(ℓ) lines, or such that it has bounded pathwidth. In particular, this proves that the relation

between pathwidth and number of lines proven by Dujmović et al. [8] is not bidirectional.

Every graph that can be drawn without crossings on a given number of parallel lines has

pathwidth bounded linearly in the number of lines, but the number of lines needed to draw

a planar graph cannot be bounded by a function of its pathwidth, regardless of whether we

constrain the lines to be parallel.

Using similar methods, we also prove:

◮ Theorem 2. For every ℓ there exists a subcubic series-parallel graph that cannot be drawn

with its vertices on ℓ lines, and an apex-tree (a graph formed by adding one vertex to a tree)

that cannot be drawn with its vertices on ℓ lines.

Theorem 2 stands in contrast to the fact that all trees and all outerplanar graphs can be

drawn on only two crossed lines. In Theorem 2, both the series-parallel graph and apex-tree

can be made to be bipartite, and the apex-tree can be made subcubic at all tree vertices.

These results lower the treewidth of the known graphs that cannot be drawn on a constant

number of lines from three [14] to two, and they show that adding one vertex to a graph can

change the number of lines needed to draw it from two to any larger number. The apex-tree

graphs are also central to recent research characterizing the minor-closed families of bounded

layered pathwidth [7]. However, for Theorem 2 we do not have a polynomial size bound on

the graphs that we construct; instead, they are exponential in size. At least in the case of

apex-trees, this exponential size blowup is necessary, as we finally prove:

SoCG 2019
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Figure 3 The overall construction plan of our graph: O(ℓ2) copies of a subgraph formed from

O(ℓ) nested hexagons.

◮ Theorem 3. Every apex-tree with n vertices has a planar embedding that can be drawn

with its vertices on O(log n) parallel lines.

2 Counterexamples of cubic size

2.1 Overview

The overall strategy of our construction for graphs of size O(ℓ3) that cannot be drawn on ℓ

lines is illustrated in Figure 3. As can be seen in the figure, the graph consists of a number of

subunits, each formed by a set of nested hexagons, connected to each other by triples of edges.

These subunits resemble the nested triangles graph frequently used as a counterexample in

graph drawing [6, 17], but are based on hexagons rather than triangles.

The figure shows faces of three types: triples of quadrilaterals at the center of each set of

nested hexagons, non-convex L-shaped hexagonal faces between pairs of hexagons in each set

of nested hexagons, and Y-shaped dodecagonal faces between triples of subunits. Because the

graph is planar and each bounded face has an even number of sides, the graph is also bipartite.

It is straightforward to add a small number of additional vertices surrounding the sets of

nested hexagons (as shown) to complete the graph to one that is cubic, 3-vertex-connected,
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and still bipartite. Because it is 3-vertex-connected, it has a unique planar embedding, the

one shown, up to the choice of which face of the embedding is the outer face. With at most

one exception (the subunit that includes the outer face), all subunits must be drawn as

shown in the figure (topologically but not geometrically), within disjoint hexagonal regions

of the plane.

The drawing also shows that each subunit can be drawn using only three lines. Indeed,

the number of lines needed to cover all of the vertices in Figure 3 (and in similar figures

with more subunits) is proportional only to the square root of the number of subunits.

Nevertheless, we shall show that, if there are enough subunits relative to the number of lines,

then at least one of the subunits will be difficult to draw on few lines. More specifically, for

a given parameter ℓ (a number of lines that should be too small to cover all vertices of the

drawing) we will choose the number of subunits to be at least
(

ℓ
2

)

+ 2, two more than the

largest possible number of crossing points that ℓ lines can have. In this way, there will be

at least one subunit that does not include the outer face of the embedding, and does not

surround any crossing points of the lines.

We will show that, for subunits formed from a sufficiently large number of nested hexagons

(linear in ℓ), it is not possible to draw the subunit on ℓ lines without surrounding any crossing

points. Because, nevertheless, one of the subunits must fail to surround any crossing points,

it cannot be drawn on ℓ lines. It follows that the whole graph also cannot be drawn on ℓ lines.

2.2 Nested polygons with no surrounded crossings

To formalize the subunits of the drawing of Figure 3, we define a (p, r)-nest, for positive

integers p and r, to be a collection of r disjoint simple p-gons (not necessarily convex),

together with one additional point (the egg), such that each p-gon contains the egg. Because

the p-gons are disjoint and all contain the egg, it is necessarily the case (by the Jordan curve

theorem) that each two of the p-gons are nested, one inside the other. Then the subunits of

Figure 3 form a (6, r)-nest, for some r, together with some additional graph edges between

consecutive cycles that force the cycles to be nested within each other but play no additional

role in our analysis.

In Figure 3, each (6, r)-nest is drawn with all hexagon vertices on three lines that cross

at the egg of the nest. More generally, whenever p is even, a (p, r)-nest can be drawn on

only two crossing lines, with the egg at the crossing point; when p is odd, three lines suffice.

However, in all of these drawings, a crossing point of the lines is contained within at least

one polygon of the nest. We will show that, when this does not happen, nests require Ω(r/p)

lines to cover all of their points.

◮ Lemma 4. Let p be a positive integer, let P be a simple p-gon, and let L be a line. Then

L intersects the interior of P in at most ⌊p/2⌋ open line segments.

Proof. Each line segment begins and ends at points where L intersects P either at a vertex

or at an interior point of one of the sides of P . If the segment endpoint is at a crossing of L

with an interior point of a side of P , then that point is the endpoint of only one segment

of L, and is the only point of intersection of L with that side. If the segment endpoint is a

vertex of P , then it may be the endpoint of of two segments of L, but in that case it is the

only point of intersection of L with both sides incident to the vertex. So in either case each

endpoint of a segment of L uses up at least one side of P . As P has p sides, the number of

segments is at most ⌊p/2⌋. ◭
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◮ Corollary 5. Let A be an arrangement of ℓ lines, and let P be a simple p-gon whose

interior is disjoint from the crossings of A. Then the lines of A intersect the interior of P

in at most ℓ · ⌊p/2⌋ open line segments.

◮ Lemma 6. Let A be an arrangement of lines and P be a simple polygon that does not

contain any crossing point of A. Then the lines of A partition the interior of P into regions

in such a way that the graph of regions and their adjacencies forms a tree.

Proof. To show that the graph of regions and adjacencies is connected, consider any two

regions Ri and Rj , and choose a curve C within the interior of P connecting any point in Ri

to any point in Rj . Then the sequence of regions crossed by C forms a walk in the region

adjacency graph connecting Ri to Rj .

To show that the graph of regions and adjacencies has no simple cycle, assume for a

contradiction that there is such a cycle. Then by choosing a representative point within

each region of the cycle, and connecting these points by curves that pass between adjacent

regions without crossing any other regions, we can form a simple closed curve C in the plane

that crosses the lines of A in exactly the order given by the cycle. By the Jordan curve

theorem, each line that crosses into the interior of C must cross out of C at another point.

Two crossings of C by the same line cannot be adjacent in the cyclic order of crossings, for

then the graph cycle corresponding to C would not be simple. Therefore, C is crossed by at

least two lines, in alternating order. But this can happen only when C contains the crossing

point of these lines, an impossibility as C is entirely contained in P which we assumed to

enclose no crossings. This contradiction shows that a simple cycle does not exist.

As a connected graph with no simple cycles, the graph of regions and adjacencies must

be a tree. ◭

◮ Lemma 7. Let A be an arrangement of lines and P be a simple polygon that does not

contain any crossing point of A. Let S be the system of disjoint open line segments formed

by intersecting the lines of A with the interior of P , and let Q be another simple polygon,

disjoint from P , such that each vertex of Q lies on a segment of S. Then at least two segments

of S are disjoint from the interior of Q.

Proof. Because the graph of regions and adjacencies formed in P by A is a tree (Lemma 6),

it has at least two leaves. Let s be either of the two segments of S separating one of these

leaf regions from the rest of P . Then no edge of Q can enter the interior of this leaf region,

because there is no other segment available to be the endpoint of this edge. Therefore, Q

remains entirely on one side of s, and s is disjoint from the interior of Q. As there were

at least two choices for s, there are at least two segments of S that are disjoint from the

interior of Q. ◭

Putting these observations together, we have:

◮ Lemma 8. Let A be an arrangement of ℓ lines, let p and r be positive integers, and suppose

that 2(r − 1) > ℓ · ⌊p/2⌋. Then it is not possible to draw a (p, r)-nest in such a way that the

polygon vertices of the nest and its egg all lie on lines of A.

Proof. Suppose for a contradiction that we have drawn a (p, r)-nest with all points on lines

of A. Let S be the system of disjoint open line segments formed by intersecting the lines of

A with the outer polygon of the nest. Then |S| ≤ ℓ · ⌊p/2⌋ by Corollary 5, and each of the

r − 1 remaining polygons of the nest use up at least two of the segments of S by Lemma 7.

Therefore, if 2(r − 1) > ℓ · ⌊p/2⌋ (as we supposed in the statement of the lemma), there

will be no segments remaining for the egg to lie on. Therefore, a drawing meeting these

conditions is impossible. ◭



D. Eppstein 32:7

Figure 4 An arrangement of ℓ lines can support ⌊3(ℓ − 1)/2 − 1⌋ nested hexagons surrounding a

central point, with the point and the hexagon vertices all on the lines, and all arrangement crossings

exterior to all hexagons.

In the particular case of a (6, r)-nest (as used in Figure 3), Lemma 8 states that a drawing

that does not contain an arrangement crossing cannot exist for r ≥ 3ℓ/2 + 2. This is close to

tight: Figure 4 shows how to draw a (6, r)-nest with all polygon vertices and the egg on ℓ

lines, for r = 3ℓ/2 − O(1).

2.3 The main result

Proof of Theorem 1. We wish to show the existence of a planar cubic bipartite graph that

cannot be drawn on ℓ lines, for a given parameter ℓ. Consider a cubic bipartite 3-vertex-

connected planar graph formed, as in Figure 3, by at least
(

l
2

)

+ 2 subunits, each of which

must be drawn as a (6, r)-nest, for r = ⌈3ℓ/2⌉ + 2. Because there are O(ℓ2) subunits, each

of size O(ℓ), and O(ℓ) vertices surrounding the subunits, the total size of the resulting

graph is O(ℓ3).

To argue that the resulting graph cannot be drawn on ℓ lines, we consider an arbitrary

arrangement A with ℓ lines, and prove that the graph cannot be drawn with all of its vertices

on A. Among the graph’s
(

l
2

)

+ 2 subunits, one subunit (the one from which the outer face

was chosen) can surround all the others, but the rest must be drawn in disjoint regions of

the plane. Because there are more remaining subunits than the number of crossing points of

A (which is at most
(

ℓ
2

)

), at least one subunit must be drawn in such a way that it does not

contain any of the crossing points of A. However, by Lemma 8, this is impossible. ◭

When the subunits of the graph are arranged as in Figure 3, into a compact hexagonal

grid in the plane, then (as the figure shows) the vertices of the whole graph can be covered

by O(ℓ) lines, even though we have proved that there is no cover by ℓ lines. Alternatively,

SoCG 2019
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Figure 5 Zigzag pattern of subunits (shown schematically as hexagons) used to construct a graph

of pathwidth O(1) that cannot be drawn on few lines.

it is possible to arrange the subunits into a linear zig-zag pattern (Figure 5), preserving

the 3-vertex-connectedness of the resulting graph and still requiring only O(ℓ2) vertices to

surround the subunits. When the subunits are arranged in this way, the resulting graph

might require a larger number of lines to cover its vertices (i.e., we do not have tight bounds

on the number of lines needed for a graph of this form), but it has pathwidth O(1).

3 Series-parallel graphs

A two-terminal series-parallel graph (series-parallel graph, for short) is a graph with two

distinct designated terminal vertices s and t formed recursively from smaller graphs of the

same type (starting from a single edge) by two operations:

Series composition: given two series-parallel graphs G1 and G2 with terminals s1, t1, s2,

and t2, form their disjoint union, and then merge vertices s2 and t1 into a single vertex.

Let the terminals of the resulting merged graph be the unmerged terminals of the given

graphs, s1 and t2. Series composition forms an associative binary operation on these

graphs (if we perform series compositions on a sequence of more than two graphs, the

order in which we perform the compositions does not affect the result).

Parallel composition: given two series-parallel graphs G1 and G2 with terminals s1, t1,

s2, and t2, form their disjoint union, merge vertices s1 and s2 into a single vertex, and

similarly merge t1 and t2 into a single vertex. Let the terminals of the resulting merged

graph be the resulting merged vertices. Parallel composition forms an associative and

commutative binary operation on these graphs (if we perform series compositions on a

set of more than two graphs, neither the order of the two graphs in each composition nor

the order in which we perform the compositions affects the result).

These graphs have treewidth two, and every graph of treewidth two is a subgraph of a series-

parallel graph. They are automatically planar, and they include every outerplanar graph.

We will recursively construct two families of series-parallel graphs Ai and Bi that cannot

be drawn on a bounded number of lines. Figure 6 shows the graph B5 from this family. To

construct these graphs, let A1 be a series-parallel graph with one edge and two terminal

vertices. Then:

For each i ≥ 1, let Bi be the graph formed as the parallel composition of two subgraphs,

each of which is the series composition of an edge, Ai, and another edge (Figure 7, right).

For each i > 1, let Ai be the graph formed as the parallel composition of two subgraphs,

one of which is a single edge and the other of which is the series composition of an edge,

Bi−1, and another edge (Figure 7, left).

It follows by induction that these graphs are subcubic, with degree two at their two

terminals, and that they are bipartite, with a 2-coloring (shown in the figure) in which the

two terminals have different colors. In the figure, the upper blue and lower yellow vertices

are the terminals of a graph Bi at some level of the construction, while the upper yellow and

lower blue vertices are the terminals of a graph Ai at some level of the construction.
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Figure 6 A subcubic bipartite series-parallel graph that cannot be drawn on few lines.

Ai

Ai Bi

AiBi – 1

Figure 7 Recursive construction of Ai (left) and Bi (right).

Because they are 2-vertex-connected but not 3-vertex-connected, these graphs have many

planar embeddings. The planar embeddings of any 2-connected graph may be understood in

terms of its SPQR tree [18], which in the case of a series-parallel graph is more or less the

same as the expression tree of series and parallel compositions from which it was formed

(associating consecutive compositions of the same type into a single multi-operand operation).

Because of this equivalence, the embeddings of the graphs Ai and Bi may be generated

from the embedding shown in the figure by two types of change: any collection of subgraphs

connecting two opposite terminals of the graph may be flipped, giving a mirror-image

embedding of that subgraph within the larger graph, and any face of the resulting embedding

may be chosen as the outer face. We will show that these embeddings always contain large

nested sets of hexagons; this property forms the basis for our argument about drawings on

few lines.

◮ Lemma 9. Every planar embedding of Ai in which the two terminals belong to the outer

face contains a (6, i − 1)-nest.

Proof. For i = 1, a (6, i − 1)-nest consists of a single point (the egg), and the result follows

trivially. Otherwise, let s and t be the two terminals of the Bi−1 subgraph from which the

given Ai graph is formed (Figure 8). Then, in the Ai graph, there are three length-three

paths from s to t: one through the two terminals of the Ai graph, and one through each of

the two Ai−1 subgraphs from which the Bi−1 subgraph is formed.

SoCG 2019
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Ai
Bi – 1

Ai – 1 Ai – 1

s

t

Bi – 2 Bi – 2

Figure 8 Illustration for Lemma 9. No matter how Ai is embedded, it will contain a 6-cycle (red)

surrounding one of the copies of Ai−1 from which it is formed.

By the assumption that the two terminals of Ai belong to the outer face, there is a six-

vertex cycle combining two of these three length-three paths, one through the two terminals

of Ai and one through one of the copies of Ai−1, that surrounds the other copy of Ai−1. By

induction, this surrounded copy contains a (6, i − 2)-nest, which together with the cycle that

surrounds it forms a (6, i − 1)-nest. ◭

◮ Lemma 10. Let j ≤ i be two positive integers. Then every planar embedding of Bi contains

at least 2j − 1 disjointly-embedded (6, i − j)-nests.

Proof. Bj is recursively constructed from 2j copies of Ai−j+1. At most one of these copies

can contain the outer face of the embedding, so at least 2j − 1 copies are embedded with

their two terminals outermost. The result follows from Lemma 9. ◭

Proof of Theorem 2, series-parallel case. The theorem claims that there exists a cubic

bipartite series-parallel graph that cannot be drawn on ℓ lines. To prove this, choose j such

that 2j ≥
(

ℓ
2

)

+ 2 and choose i such that i − j ≥ 3ℓ/2 + 2. We claim that, for this case, Bi

has the required properties. By Lemma 10, it contains at least
(

ℓ
2

)

+ 1 disjointly embedded

(6, i − j)-nests, enough to ensure that at least one of them does not contain any crossing

points of any given arrangement of ℓ lines. By Lemma 8, a nest of this depth that does not

contain any crossing points cannot be drawn with its vertices on ℓ lines. ◭

4 Apex-tree graphs

4.1 Apex-tree graphs requiring many lines

Figure 9 depicts a graph in the form of a tree (blue and yellow vertices) plus one additional

vertex (red); such a graph has been called an apex-tree, and the additional vertex is the apex

The tree in the figure can be constructed from the series-parallel graph B4 of the previous

section by contracting half of the vertices (one vertex from each pair of terminals) into a

single supervertex. Alternatively, it can be constructed from a complete binary tree by

subdividing every non-leaf edge and then connecting each subdivision vertex and each leaf

vertex to the apex. These graphs are subcubic except at the apex, and bipartite.
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Figure 9 An apex-tree graph, subcubic except at the apex, that cannot be drawn on few lines.

As with the earlier series-parallel graphs, we will prove that these graphs cannot be drawn

on a sublogarithmic number of lines. An obstacle to the proof, however, is that they contain

no (p, r)-nests for r > 1, nor can any such nest exist in any apex-tree. The reason is that,

in an apex-tree, all cycles contain the apex. Therefore, there can be no two disjoint cycles,

and no nests of two or more disjoint cycles. Nevertheless, these graphs do contain nest-like

structures. We define a (p, r)-near nest in an embedded plane graph to be a collection of p

r-cycles, plus one additional vertex (the egg), such that all cycles contain the egg in their

interior, the cycles are edge-disjoint, and any two of them share at most one vertex with each

other. Then the following lemma is an analogue of Lemma 8 for near-nests:

◮ Lemma 11. Let A be an arrangement of ℓ lines, let p and r be positive integers, and

suppose that r − 1 > ℓ · ⌊p/2⌋. Then it is not possible to draw a (p, r)-near-nest in such a

way that the polygon vertices of the nest and its egg all lie on lines of A.

Proof. Suppose for a contradiction that we have drawn a (p, r)-near-nest with all points

on lines of A. Let S be the system of disjoint open line segments formed by intersecting

the lines of A with the outer polygon of the nest. Then |S| ≤ ℓ · ⌊p/2⌋ by Corollary 5, and

each of the r − 1 remaining polygons of the nest use up at least one of the segments of S by

Lemma 7 and by the fact that at most one of the two extreme segments of the polygon can

be shared with other polygons interior to it. Therefore, if r − 1 > ℓ · ⌊p/2⌋ (as we supposed

in the statement of the lemma), there will be no segments remaining for the egg to lie on.

Therefore, a drawing meeting these conditions is impossible. ◭

Analogously to Lemma 9 and Lemma 10, we have:

SoCG 2019
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◮ Lemma 12. For every planar embedding of a graph like the one of Figure 9 formed from

a complete binary tree of height i, and for every j ≤ i, the embedding contains 2j − 1 disjoint

(4, i − j)-near-nests.

Proof. This result follows immediately from Lemma 10, which proves the existence of a

(6, i − j)-nest in the corresponding series-parallel graphs, together with the observations that

every planar embedding of our apex-trees can be expanded to a planar embedding of the

corresponding series-parallel graphs, and that every 6-cycle of a (6, i−j)-nest in the expanded

series-parallel graph has three of its vertices contracted into the apex of the apex-tree graph.

Alternatively, one could prove the result by repeating the proof of Lemma 10 with minor

modifications. ◭

Proof of Theorem 2, apex-tree case. The theorem claims that there exists a bipartite apex-

tree graph, subcubic except at its apex, that cannot be drawn on ℓ lines. To prove this,

choose j such that 2j ≥
(

ℓ
2

)

+ 2 and choose i such that i − j − 1 > 2ℓ. Form an apex-tree

graph as above from a complete binary tree of height i. We claim that, for this case, the

resulting apex-tree graph has the required properties. For, by Lemma 12, it contains at least
(

ℓ
2

)

+ 1 disjointly embedded (4, i − j)-near-nests, enough to ensure that at least one of them

does not contain any crossing points of any given arrangement of ℓ-lines. By Lemma 11, a

nest of this depth that does not contain any crossing points of the ℓ lines cannot be drawn

with its vertices on the lines. ◭

4.2 Drawing apex-tree graphs on few lines

Recall that Theorem 3 states that we can draw any apex-tree graph planarly on O(log n)

parallel lines. To do so, we adapt a standard tool from tree drawing, the heavy path

decomposition [20], to draw any tree with its vertices on the points of a grid of height log2 n

and width n (in particular, on O(log n) horizontal lines) in such a way that the resulting

drawing can be extended to a drawing of an apex-tree, by adding one more vertex adjacent

to any subset of the tree vertices.

The heavy path decomposition of a tree is obtained by choosing one heavy edge for each

non-leaf vertex of the tree, an edge connecting it to the subtree with the largest number of

vertices (breaking ties arbitrarily). The connected components of the subgraph formed by

the heavy edges are heavy paths, including as a special case length-zero paths for leaf vertices

that were not chosen by their parent. The heavy paths partition the vertices of the tree. By

induction, a vertex v that can reach a leaf by a path that includes i non-heavy edges must be

the root of a subtree containing at least 2i+1 − 1 vertices (including v itself). Therefore, in a

tree with n > 1 vertices, every root-to-leaf path contains at most log2 n − 1 non-heavy edges.

Proof of Theorem 3. To draw the given tree on a grid, we traverse the tree in preorder,

ordering the children at each vertex so that the heavy edge is last. We let the x-coordinate

of each vertex be its position in this preorder listing, and we let the y-coordinate be the

number of non-heavy edges on the path from the vertex to the root. These choices give

unique coordinates for each vertex on a grid of height log2 n and width n, as claimed. Each

tree edge either connects two consecutive vertices on the same level of the grid (on the same

heavy path), or it connects vertices on consecutive levels (a parent and child not connected

by a heavy edge) whose x-coordinates both are less than the next vertex on the same level

as the parent. Therefore, the drawing has no crossings.

All edges of this tree drawing have slope in the interval [0, 1]. The traversal ordering

ensures that, for each vertex v, and each vertex w with a higher y-coordinate than v, one of

the following is true: w has smaller x-coordinate than v, w is a descendant of v, or w is a
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Figure 10 Drawing an apex-tree on a grid. The thick horizontal black lines depict the heavy path

decomposition of the given tree. Note that although the grid size is approximately (n + log
2

n) × n,

only the bottom log
2

n horizontal grid lines and the top horizontal grid line are occupied by vertices.

descendant of a vertex that is placed below and to the right of v. In all three cases, neither w

nor any edge incident to w can block the visibility from v upwards and to the right through

lines of slope greater than one. Therefore, if we place the apex n + 1 units above the upper

right corner of the grid, it will be visible to all tree vertices by unobstructed lines of sight and

we can complete the drawing of any apex-tree consisting of the given tree and one apex. ◭

The construction is depicted in Figure 10.

5 Conclusions and open problems

We have found planar 3-regular bipartite graphs of size cubic in ℓ that cannot be drawn on ℓ

lines, cubic bipartite series-parallel graphs of size exponential in ℓ that cannot be drawn on ℓ

lines, and apex-trees of size exponential in ℓ that cannot be drawn on ℓ lines. For apex-trees

the exponential size bound is necessary, although there may still be room for tightening the

gap between the exponential upper and lower bounds. For the other two classes of graphs, we

do not know whether our results are tight. Stefan Felsner and Alexander Wolff have recently

proven that every 4-vertex-connected maximal planar graph of size at most quadratic in ℓ

may be drawn on ℓ pseudolines, and that it is NP-hard to find drawings on two lines [3].

Do there exist planar graphs of subcubic size that cannot be drawn on ℓ lines? Do there

exist series-parallel graphs of polynomial size that cannot be drawn on ℓ lines? How well

can the optimal number of lines be approximated? We leave these problems as open for

future research.
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