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We find all post-critically finite (PCF) cubic polynomials defined over Q, up to conjugacy over PGL2(Q).
We describe normal forms that classify equivalence classes of cubic polynomials while respecting the
field of definition. Applying known bounds on the coefficients of post-critically bounded polynomials to
these normal forms simultaneously at all places of Q, we create a finite search space of cubic polynomials
over Q that may be PCF. Using a computer search of these possibly PCF cubic polynomials, we find
fifteen which are in fact PCF.

1. Introduction

Let K be a number field, and let f (z) ∈ K [z] have degree d ≥ 2. Consider iterates of f :

f n(z) := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(z), and f 0(z) := z.

The orbit of a point α ∈ K is the set O f (α)= { f n(α) | n ≥ 0}.
Rather than studying individual polynomials, we consider equivalence classes of polynomials under

conjugation by affine elements φ ∈ PGL2(K ). For φ(z)= az+ b ∈ K [z], we define

f φ = φ ◦ f ◦φ−1.

Note that f and f φ have the same dynamical behavior over K in the sense that φ maps the orbit O f (α)

to O f φ (φ(α)).
Critical points of f are the points α ∈ K such that f ′(α)= 0. Branner and Hubbard write in [6] “the

main question to ask about a rational map is: what are the orbits under iteration of the critical points?”
Of particular interest are functions for which all critical points have either a bounded or finite orbit.

Definition 1.1. A polynomial f is postcritically finite (PCF) if the orbit of each critical point is finite.
A polynomial is postcritically bounded with respect to a given absolute value if the orbit of each critical
point is bounded with respect to that absolute value.
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The study of PCF maps has a long history in complex dynamics, from Thurston’s work in the early
1980s and continuing to the present day, for example [3; 9; 10; 11; 12; 13]. In [18], Silverman describes
PCF maps as an analog of abelian varieties with complex multiplication, so these maps are of particular
interest in arithmetic dynamics as well. For example, all quadratic post-critically finite rational maps
over Q have been found in [15], and many cubic post-critically finite polynomials over Q have been
found in [14].

Theorem. There are exactly fifteen Q conjugacy classes of cubic PCF polynomials defined over Q:

(1) z3 (2) − z3
+ 1 (3) − 2z3

+ 3z2
+

1
2

(4) − 2z3
+ 3z2 (5) − z3

+
3
2 z2
+ 1 (6) 2z3

− 3z2
+ 1

(7) 2z3
− 3z2

+
1
2 (8) z3

−
3
2 z2 (9) − 3z3

+
9
2 z2

(10) − 4z3
+ 6z2

−
1
2 (11) 4z3

− 6z2
+

3
2 (12) 3z3

−
9
2 z2
+ 1

(13) − z3
+

3
2 z2
− 1 (14) − 1

4 z3
+

3
2 z+ 2 (15) − 1

28 z3
−

3
4 z+ 7

2

Of these, (1), (4), (6), (8), (10), and (11) were found by Ingram in [14]. To complete the list, we adapt
Ingram’s techniques as described below.

Let K be a number field, and let f (z) ∈ K [z] be a cubic polynomial. Critical points of f are roots of
the quadratic polynomial f ′(z) ∈ K [z], so there are three possibilities:

(a) There are two distinct critical points: γ1 6= γ2, and they are both K -rational.

(b) There are two distinct critical points γ1 6= γ2 with K (γ1)= K (γ2) a quadratic extension of K .

(c) There is exactly one critical point, γ ∈ K .

In the first two cases, we say that f is bicritical. In the third case, we say f is unicritical. In determining
a complete list of cubic PCF polynomials defined over Q[z], we treat each of these cases separately:

(1) For each of cases (a)–(c) above, find a normal form for cubic polynomials such that every cubic
polynomial over Q[z] is conjugate to a map in one of these forms, and the conjugation respects the
field of definition for the given case.

(2) For a map to be PCF, it must be post-critically bounded in each absolute value. Find archimedean
and p-adic bounds on the coefficients for maps in the normal forms to be post-critically bounded.

(3) Use the bounds in (2) to create a finite search space of possibly PCF maps.

(4) For each map in the finite search space, test if it is PCF or not.

1A. Outline. We begin in Section 2 by treating the special case of a polynomial with a unique critical
point. In Section 3, we find the normal forms needed in Step (1) of the algorithm above. Section 4
provides the coefficient bounds described in Step (2). Finally, Section 5 describes the algorithms and
provides the complete list of PCF cubic polynomials defined over Q.
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2. Unicritical PCF polynomials

We begin by considering unicritical PCF polynomials. First, we will determine a normal form for uni-
critical polynomials of arbitrary degree defined over a number field K . In [8], Buff studied unicritical
polynomials from a complex dynamics point of view, and he used that work to answer questions of Milnor
and of Baker and DeMarco. Some of his preliminary work overlaps with the work here, specifically the
normal form in Theorem 2.1 and the bound on |a| in Proposition 2.2. Because Buff was working over C,
he did not consider questions about field of definition. Therefore, we provide full proofs of these results
from a more arithmetic point of view.

Theorem 2.1. Let f (z) ∈ K [z] be a degree d unicritical polynomial. Then either f (z) is K -conjugate
to zd , or f is conjugate to a unique polynomial of the form

azd
+ 1 ∈ K [z].

Proof. Without loss of generality, we may replace f by a conjugate map where the unique critical
point γ is moved to 0. Since γ ∈ K , this does not change the field of definition. So we assume that
f (z)= bzd

+ c ∈ K [z].
If c = 0, then f (z)= bzd for b ∈ K×. Letting φ(z)= b1/(d−1)z, we have f φ(z)= zd .
Now, assume c 6= 0. Conjugating by φ(z)= z/c gives

f φ(z)= bcd−1zd
+ 1.

Since b, c ∈ K×, then bcd−1
∈ K×. Letting a = bcd−1 gives the result.

Finally, φ is the only affine map in PGL2(K ) fixing 0 and satisfying f φ(0) = 1. Therefore, f (z) is
K -conjugate to azd

+ 1 ∈ K [z] for a unique a ∈ K×. �

Theorem 2.1 implies that up to conjugacy every unicritical polynomial f ∈ K [z] is a power map or
of the form azd

+ 1. In both cases Crit( f )= {0}. If f is a power map then f (0)= 0, hence f is PCF.
Therefore, in order to completely describe all other PCF unicritical polynomials in Q[z] (of any degree),
we need only consider those of the form f (z)= azd

+ 1 for a ∈Q×.

Proposition 2.2 [8, Corllary 8]. If f (z)= azd
+ 1 ∈ K [z] is post-critically finite, then |a| ≤ 2.

Proof. Suppose |a|> 2 and |α| ≥ 1. Then

| f (α)| = |aαd
+ 1|> |α|.

Inductively, α must be a wandering point. Since Crit( f )= {0} and f (0)= 1, we see that f is not PCF.
Therefore, if f ∈ K [z] is PCF it must be that |a| ≤ 2. �

Theorem 2.3. Let f (z)= azd
+ 1 ∈Q[z] and d ≥ 2. For d even, f is PCF if and only if a ∈ {−2,−1}.

For d odd, f is PCF if and only if a =−1.

Proof. Suppose |a|p > 1 for some prime p. If |z|p ≥ 1, then | f (z)|p = |azd
+ 1|p = |azd

|p > |z|p, so α
is a wandering point if there exists n ≥ 0 such that | f n(α)|p ≥ 1. In particular, f (0)= 1, so the critical
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point 0 is a wandering point and f is not PCF. We conclude that for all primes p, |a|p ≤ 1; hence a ∈ Z.
By Proposition 2.2, |a| ≤ 2, so a ∈ {±1,±2}.

Suppose that |α|> 2. Then

| f (α)| = |aαd
+ 1|> 2d−1

|α| − 1> |α|.

Inductively, α must be a wandering point for f .
If a = 1, then f 3(0)= 2d

+ 1, so 0 must be a wandering point. If a = 2, then f 2(0)= 3, so 0 must
be a wandering point. If a =−1, then f 2(0)= 0, so f is PCF.

Finally, consider the case a = −2. If d is even then f 2(0) = f 3(0) = −1, so f is PCF. If d is odd,
then f 3(0)= 3, so 0 is a wandering point. �

3. Normal forms for bicritical polynomials

Cubic polynomials have been studied extensively in complex dynamics, e.g., [5; 4; 6; 7; 16], and in
arithmetic dynamics, e.g., [14]. All of these use the Branner–Hubbard normal form, sometimes also
called the monic centered form:

F(z)= z3
+ Az+ B with critical points ±α where α =

√
−A

3
.

This form may be preferred in complex dynamics, but it is not ideal in arithmetic dynamics because it
does not preserve the field of definition of the polynomial. For example, in [14], Ingram shows that if
K is a number field and F(z) ∈ K [z] is PCF, then the pairs (A, B) are in a finite computable set, and he
finds the set in the case F(z) ∈Q(z). However, our Table 1 shows that fewer than half of the PCF cubic
polynomials defined over Q are conjugate to some F(z) ∈Q[z] in the Branner–Hubbard form.

Example 3.1. Consider the PCF polynomial f ∈Q[z] given by f (z)= 3z3
−

9
2 z2
+ 1. Conjugating by

φ(z)=
√

3z−
√

3
2 gives f φ(z)= z3

−
9
4 z−

√
3

4 6∈Q[z].

In this section, we describe normal forms for cubic bicritical polynomials, one for the case of rational
critical points and one for the case of irrational critical points. These cases are not disjoint, but both are
necessary to exhaustively list all PCF cubic polynomials. It is a simple matter to check that our final list
of cubic polynomials contains no conjugate maps, so this is of no concern.

Example 3.2. Let

f1(z)=
z3

4
−

3z
2
, so Crit( f1)= {±

√
2}.

Moving the two critical points to 0 and 1 gives the polynomial g1(z)= 2z3
− 3z2

+ 1. These conjugate
polynomials — one with rational critical points and one with irrational critical points — are both defined
over Q.
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If f (z) ∈ K [z] has two rational critical points, we may conjugate to move them to 0 and 1 without
changing the field of definition. From [2, Proposition 2.3], we know that there is a unique conjugacy
class of bicritical polynomials of degree d ≥ 3 with fixed critical points γ1 and γ2, and with prescribed
ramification at the two critical points. Moreover, we have a formula for this polynomial when {γ1, γ2} =

{0, 1}. Call the polynomial Bd,k(z). Since the critical points are at 0 and 1 and the polynomial has degree
d , we have

B′d,k(z)= czd−k−1(z− 1)k

for some 1≤ k < d − 1 and some constant c. So d − k is the ramification index of Bd,k(z) at the critical
point 0, and k+ 1 is the ramification index at the critical point 1. Expanding with the binomial theorem,
integrating term-by-term, and requiring that the two critical points are fixed gives

Bd,k(z)=
(

1
k!

k∏
j=0

(d − j)
)

zd−k
k∑

i=0

(−1)i

(d − k+ i)

(
k
i

)
zi . (3-1)

Since we are concerned with the case d = 3, necessarily k = 1, giving the polynomial

B3,1(z)=−2z3
+ 3z2. (3-2)

Proposition 3.3. Let g ∈ K [z] be a bicritical polynomial of degree d ≥ 3 with Crit(g) = {γ1, γ2} ⊆ K .
There exists an element φ ∈ PGL2(K ) such that gφ = aBd,k + c for some k ∈ N and some a, c ∈ K .

Proof. Let g ∈ K [z] with critical points γ1, γ2 ∈ K . Choose k ∈ N such that d − k is the ramification
index of γ1 and k+1 is the ramification index of γ2. Define φ(z)= (z−γ1)/(γ2−γ1)∈ PGL2(K ), which
moves the critical points to 0 and 1, respectively.

If f (z)= gφ(z), then f has critical points at 0 and 1 and degree d , so

f ′(z)= αzd−k−1(z− 1)k = aB′d,k(z)

for some a ∈ K×.
Then f (z)= aBd,k(z)+ c, and since f = gφ where both g, φ ∈ K [z], we have a, c ∈ K . �

We now consider a normal form for cubic polynomials g ∈ K [z] with critical points in a quadratic
extension of K .

Let D ∈O×K and let d ≥ 3 be odd. We define a polynomial Pd,D(z) ∈ K [z] by the following conditions:

• P ′d,D(z)= (z
2
− D)(d−1)/2.

• Pd,D(0)= 0.

Then Pd,D(z) is a bicritical polynomial having critical points {±
√

D} each with ramification index
(d + 1)/2. Just as with the polynomials Bd,k(z), we expand the derivative P ′d,D(z) using the binomial
theorem, integrate term-by-term, and use the fact that 0 is fixed to find a formula for these polynomials:

Pd,D(z)=
(d−1)/2∑

j=0

(−D)(d−1)/2− j
(d−1

2
j

)
z2 j+1

2 j + 1
. (3-3)
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Of particular interest in the sequel is the cubic case

P3,D(z)=
z3

3
− Dz. (3-4)

Proposition 3.4. Let g(z) ∈ K [z] be a bicritical polynomial of degree d ≥ 3. Suppose that Crit(g) =
{γ1, γ2} 6⊂ K . Then g is conjugate to a map of the form aPd,D(z)+ c for some a, c ∈ K and some
D ∈O×K /O

2
K .

Proof. By definition, {γ1, γ2} are roots of the polynomial g′(z) ∈ K [z]. Since they are not in K , we must
have g′(z) = α(h(z))β where h ∈ K [z] is an irreducible quadratic polynomial. Note: In this case, d is
odd and the ramification index of each critical point is (d + 1)/2.

Therefore there are m, n ∈ K with n 6= 0 and D ∈O×K /O
2
K such that γ1=m+n

√
D and γ2=m−n

√
D.

Consider
φ(z)=

z−m
n
∈ K [z], which satisfies φ(γ1)=

√
D and φ(γ2)=−

√
D.

Define f (z) = gφ(z). Since g, φ ∈ K [z], we have f (z) ∈ K [z]. Hence f ′(z) ∈ K [z]. Furthermore,
Crit( f )=Crit(gφ)= φ(Crit(g))= {±

√
D}. Therefore, f ′(z)= a(z2

−D)(d−1)/2 for some a ∈ K , which
means that f (z)= aPd,D(z)+ c ∈ K [z]. �

4. Coefficient bounds for PCF cubic polynomials over Q

From Corollary 1.2 in [14], for any number field K there are finitely many conjugacy classes of post-
critically finite polynomial maps of degree d in K [z]. We would like to use the normal forms in Section 3
to determine a representative of each conjugacy class of PCF cubic polynomials over Q. Many of these
results can be extended to bicritical maps of arbitrary degree (see [19]).

Let f (z) = ad zd
+ ad−1zd−1

+ · · · + a1z+ a0 ∈ K [z]. Following Ingram [14], we set the following
notation:

(2d)ν =
{

1 ν is nonarchimedean,
2d ν is archimedean,

C f,ν = (2d)ν max
0≤i<d

{
1,
∣∣∣∣ ai

ad

∣∣∣∣1/(d−i)

ν

, |ad |
−1/(d−1)
ν

}
.

The following lemma show that C f,ν gives an effective ν-adic bound for preperiodic points (points
with finite orbit) of a polynomial f (z) ∈ Q[z]. Applying this bound to the critical points will, in turn,
give ν-adic bounds on the coefficients for PCF polynomials. Ingram uses C f,ν in exaclty this way in [14]
without stating and proving a lemma of this sort. We provide Lemma 4.1 and its proof for clarity and
completeness.

Lemma 4.1. Let f (z) ∈ Q[z] be a polynomial of degree d ≥ 2. For α ∈ Q, if there exists ν ∈ MQ and
n ∈ N such that

| f n(α)|ν > C f,ν,

then α must be a wandering point (have infinite orbit) for f .



CUBIC POST-CRITICALLY FINITE POLYNOMIALS DEFINED OVER Q 29

Proof. First, notice that α is a wandering point if and only if f n(α) is a wandering point for all n ∈ N,
so without loss of generality, assume |α|ν > C f,ν for some ν ∈ MK . We will show that α is a wandering
point by proving that whenever |α|ν > C f,ν , we must have | f (α)|ν > |α|ν .

If ν is nonarchimedean, then |α|ν > |ai/ad |
1/(d−i)
ν guarantees that |adα

d
|ν > |aiα

i
|ν for all i < d, so

we have

| f (α)|ν =
∣∣∣∣ d∑

i=0

aiα
i
∣∣∣∣
ν

= |adα
d
|ν > |α|ν .

The inequality above comes from the fact that |α|ν > C f,ν ≥ |ad |
−1/(d−1)
ν .

If ν is archimedean, then starting with |α|ν > 2d|ai/ad |
1/(d−i)
ν , we see that

|adα
d
|ν > max

0≤i<d
{(2d)d−i

|aiα
i
|ν} ≥ 2d max

0≤i<d
{|aiα

i
|ν},

and so we have

| f (α)|ν =
∣∣∣∣ d∑

i=0

aiα
i
∣∣∣∣
ν

≥ |adα
d
|ν − d max

0≤i<d
|aiα

i
|ν >

1
2 |adα

d
|ν .

Finally, it follows from |α|ν > 2d|ad |
−1/(d−1)
ν that

1
2 |adα

d
|ν >

1
2(2d)d−1

|α|ν > |α|ν,

as desired. �

4A. PCF cubics with rational critical points. We begin by specializing Lemma 4.1 to bicritical cubic
polynomials with rational critical points, using the normal form in Proposition 3.3.

Lemma 4.2. Let

f (z)= aB3,1+ c = a(−2z3
+ 3z2)+ c ∈Q[z]

be a bicritical polynomial and let α ∈Q. If there exist ν ∈ MQ and n ∈ N such that

| f n(α)|ν > C f,ν = (6)ν max
{
1,
∣∣3

2

∣∣
ν
, | 1

2a |
1/2
ν , | c

2a |
1/3
ν

}
,

then α is a wandering point for f .

Proof. The result follows immediately from applying the definition of C f,ν and Lemma 4.1 to the coef-
ficients of f (z). �

Remark 4.3. Let f (z)= a(−2z3
+ 3z2)+ c ∈Q[z], so Crit( f )= {0, 1}. If f is PCF then every element

in the orbits of 0 and 1 must be bounded by C f,ν . In particular,

| f (1)|ν = |a+ c|ν ≤ C f,ν and | f (0)|ν = |c|ν ≤ C f,ν .

Thus if f is PCF, then max{|c|ν, |a+ c|ν} ≤ C f,ν for all ν ∈ MQ. For every nonarchimedean place ν, this
means max{|a|ν, |c|ν} ≤ C f,ν .
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Using the bound given above, we can find bounds on the absolute values of the parameters a and c of
a PCF polynomial of the form f (z)= a(−2z3

+ 3z2)+ c ∈Q[z]. We begin with an archimedean bound
on the parameter a.

Lemma 4.4. Let f (z)= a(−2z3
+ 3z2)+ c ∈Q[z]. If f is PCF, then |a|< 4.

Proof. Suppose |a| ≥ 4 and |α| ≥max{|c|, 2}. Then

| f (α)| = |aαd−1(−(d − 1)α+ d)+ c|,

and a straightforward calculation shows that | f (α)|> |α|. If |c| ≥ 2, then 0 must be a wandering point.
If |c|< 2, then

|a+ c| ≥ |a| − |c|> 2,

so 1 must be a wandering point. Thus, if f is PCF, we must have |a|< 4. �

The following lemmas give p-adic bounds on the parameters a and c when f is PCF.

Lemma 4.5. If f (z)= a(−2z3
+ 3z2)+ c ∈Q[z] is PCF then for nonarchimedean ν ∈ MQ

C f,ν =max
{
1,
∣∣ 3

2

∣∣
ν
,
∣∣ 1

2a

∣∣1/2
ν

}
.

Proof. Let f (z)= a(−2z3
+ 3z2)+ c ∈Q[z] and ν ∈ MQ be nonarchimedean. From Lemma 4.2,

C f,ν =max
{
1,
∣∣ 3

2

∣∣
ν
,
∣∣ 1

2a

∣∣1/2
ν
,
∣∣ c

2a

∣∣1/3
ν

}
.

Suppose
C f,ν =

∣∣ c
2a

∣∣1/3
ν
>
∣∣ 1

2a

∣∣1/2
ν
; then |c|2ν >

∣∣ 1
2a

∣∣
ν
.

However, since f is PCF,

|c|ν ≤ C f,ν =
∣∣ c

2a

∣∣1/3
ν
, so |c|2ν ≤

∣∣ 1
2a

∣∣
ν
,

giving a contradiction. �

Notice that the statement above holds for a, c ∈ K and ν ∈ MK for any number field K and the proof
is identical.

Lemma 4.6. Let f (z) = a(−2z3
+ 3z2)+ c ∈ Q[z] be PCF, let p be an odd prime, and let |·|p be the

p-adic absolute value. Then |a|p ≤ 1 and |c|2p ≤ |a|
−1
p .

Proof. From Lemma 4.5,

C f,p =max
{
1,
∣∣ 3

2

∣∣
p,
∣∣ 1

2a

∣∣1/2
p

}
=max{1, |3|p, |a|−1/2

p } =max{1, |a|−1/2
p }.

There are two distinct cases

(1) C f,p = 1, or

(2) C f,p = |a|
−1/2
p > 1.
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First, suppose C f,p = 1≥ |a|−1/2
p . Then |a|p ≥ 1. However, since f is PCF,

|a|p, |c|p ≤ C f,p = 1.

Therefore |a|p = 1, |a|−1
p = 1, and |c|2p ≤ 1= |a|−1

p .

Now, suppose C f,p = |a|
−1/2
p > 1. Then |a|p < 1, as desired. Furthermore, since f is PCF,

|c|p ≤ C f,p = |a|−1/2
p . �

Lemma 4.7. Let f (z)= a(−2z3
+ 3z2)+ c ∈Q[z] be PCF. Then

|2a|2 ≤ 1 and |2c|2 ≤ 1.

In fact, 2a ∈ Z.

Proof. From Lemma 4.6, we have |2a|p ≤ 1 for all odd primes p, so 2a ∈ Z will follow immediately
once we know that |2a|2 ≤ 1.

From Lemma 4.5,
C f,2 =max

{
1,
∣∣ 3

2

∣∣
2,
∣∣ 1

2a

∣∣1/2
2

}
=max

{
2,
∣∣ 1

2a

∣∣1/2
2

}
. (4-1)

Suppose C f,2 = 2: Since f is PCF, both |a|2 and |c|2 ≤ 2. Therefore, both |2a|2 and |2c|2 ≤ 1 as
desired.

Suppose C f,2 = |1/(2a)|1/22 > 2: Then

|2a|2 < 1
4 < 1. (4-2)

By Lemma 4.4, |a|< 4, so since 2a ∈ Z, we must have

a ∈
{ n

2 : 1≤ |n|< 8
}
. (4-3)

However, all of these possible a-values fail to satisfy equation (4-2), so the case C f,2 =
∣∣ 1

2a

∣∣1/2
2 > 2 does

not happen. Therefore, if f is PCF then C f,2 = 2, and both |2a|2 and |2c|2 ≤ 1 as desired. �

Proposition 4.8. If f is a cubic PCF polynomial of the form aBd,k(z)+ c ∈Q[z], then

±a ∈
{1

2 , 1, 3
2 , 2, 5

2 , 3, 7
2

}
and ± c ∈

{
0, 1, 1

2 ,
3
2 , 2

}
.

Proof. The result for a follows from equation (4-3) and Lemma 4.7.
Given the list for a, we see that |a|p = 1 for any prime p 6∈ {2, 3, 5, 7}. For p ∈ {3, 5, 7}, we have
|a|p ≥ 1

p , so |a|−1
p ≤ p. Using Lemma 4.6, we conclude that |c|p ≤ 1 in both cases. Combining this with

the fact that |2c|2 ≤ 1 from Lemma 4.7, we see that |2c|p ≤ 1 for all primes p. That is, 2c ∈ Z.
We will show that |c|< 5

2 . Suppose that a is contained in the above list and |α| ≥ |c| ≥ 5
2 . Then

| f (α)| ≥ |a||α|2|−2α+ 3| − |c|,

and this implies | f (α)|> |α|. Hence α is a wandering point for f . Then c = f (0) must be a wandering
point for f , in which case f would not be PCF. The result for c follows. �
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4B. PCF cubics with irrational critical points. As in Section 4A, we can use the bound C f,ν to find
bounds on the (archimedean and nonarchimedean) absolute values of the parameters a, c and D of a
PCF polynomial of the form f (z)= aP3,D + c ∈Q[z]. Unlike in Section 4A, the bounds are not given
explicitly. Instead, we will determine restrictions on the relationships between the three parameters. In
Theorem 5.2, we use these relationships to implement an algorithm that determines a finite set of triples
(D, a, c) for which the polynomial f (z)= aP3,D + c ∈Q[z] is possibly PCF.

Proposition 4.9. Let f (z)= a(z3/3− Dz)+ c ∈Q[z]. If f is PCF, then

±aD ∈
{3

4 ,
3
2 ,

9
4 , 3, 15

4 ,
9
2 ,

21
4

}
.

Proof. Let φ(z)= (z−
√

D)/(−2
√

D). Then

f φ(z)=
−2
3

aD(−2z3
+ 3z2)+

aD
3
−

c−
√

D

2
√

D
.

None of the bounds on a in the previous section depended on the fact that c ∈Q, so we may apply them
to f φ . From Proposition 4.8, we have that

±
2
3aD ∈

{ 1
2 , 1, 3

2 , 2, 5
2 , 3, 7

2

}
. �

Lemma 4.10. Let f (z)= a(z3/3− Dz)+ c ∈Q[z] with ±aD ∈
{ 3

4 ,
3
2 ,

9
4 , 3, 15

4 ,
9
2 ,

21
4

}
. If f is postcriti-

cally finite, then |c|2 < 11|D|.

Proof. Crit( f )= {±
√

D} and

f (±
√

D)=∓ 2
3aD3/2

+ c.

A calculation shows that if |c|2 ≥ 11|D| and α ∈ C with |α|> |c|, then | f (α)|> |α|. Since a 6= 0 then
at least one of the critical points γ must satisfy | f (γ )|> |c|. �

Lemma 4.11. Let f (z)= a(z3/3− Dz)+ c ∈Q[z]. If f is p-adically post-critically bounded, then

|c
√

a|p ≤


1 if p ≥ 5,
3−1/2 if p = 3,
23 if p = 2.

Proof. Let g = f φ for some φ ∈ PGL2(Q) so that f φ is monic and has a fixed point at 0. Then g is of
the form

g(z)= z3
+ 3αz2

+ (3α2
− aD)z (4-4)

where α is a root of the polynomial

z3
− (aD+ 1)z+ c

√
a
3
. (4-5)

The critical points for g are now −α±
√

aD/3.
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From [1, Theorems 1.2 and 4.1], we know that if g is p-adically post-critically bounded, the critical
points must satisfy ∣∣∣∣−α±

√
aD
3

∣∣∣∣
p
≤

{
1 if p > 2,
2 if p = 2.

First consider p ≥ 3. Add the critical points to see that

|−2α|p ≤ 1, so |α|p ≤ 1.

Therefore, the polynomial in equation (4-5) is monic and all three roots lie in the p-adic unit disk. A
Newton polygon argument says that the coefficients of that polynomial must also lie in the p-adic unit
disk: if any coefficient had negative valuation, some segment of the Newton polygon would have positive
slope, which would imply that the polynomial has a root of absolute value greater than one.

Since the constant term lies in the p-adic unit disk,∣∣∣∣c√a
3

∣∣∣∣
p
≤ 1.

That gives the following bounds for p 6= 2:

|c
√

a|p ≤
{

1 if p ≥ 5,
3−1/2 if p = 3.

Now consider the case p = 2. We have∣∣∣∣−α±
√

aD
3

∣∣∣∣
2
≤ 2. (4-6)

Using the list of possible aD values from Proposition 4.9, we see that∣∣∣∣
√

aD
3

∣∣∣∣
2
≤ 2.

Applying the ultrametric triangle inequality to equation (4-6) yields |−α|2 ≤ 2. Therefore the Newton
polygon for that polynomial at p = 2 can have a segment of slope at most 1. Since the polynomial in
equation (4-5) is cubic, that means the constant term must satisfy

v2

(
c
√

a
3

)
≥−3.

So |c
√

a|2 ≤ 23, which completes the proof. �

5. The algorithms

This section presents algorithms for finding all bicritical cubic PCF polynomials over Q[z]; the algorithms
depend on normal forms found in Section 3 and coefficient bounds proven in Section 4.
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5A. Case 1: Rational critical points. Results in Section 4 give a finite set of coefficients to test, so the
first algorithm is straightforward.

Theorem 5.1. If f (z) ∈ Q[z] is a cubic bicritical PCF polynomial with rational critical points, then
f (z) is conjugate to fa,c(z)= a(−2z3

+ 3z2)+ c where

(a, c) ∈
{
(1, 0),

(
±1, 1

2

)
,
(1

2 ,±1
)
,
(
2,− 1

2

)
,
(3

2 , 0
)
, (−1, 1),

(
−2, 3

2

)
,
(
−

3
2 , 1

)
,
(
−

1
2 , 0

)}
.

Proof. From Proposition 3.3, we know that every cubic polynomial in Q[z] with rational critical points
is conjugate to a map of the form fa,c(z)= a(−2z3

+ 3z2)+ c for some a, c ∈Q.
From Proposition 4.8, if fa,c is post-critically bounded in every place, then

±a ∈
{ 1

2 , 1, 3
2 , 2, 5

2 , 3, 7
2

}
and ± c ∈

{
0, 1, 1

2 ,
3
2 , 2

}
.

This gives 126 possibilities for (a, c). The authors used built-in Sage [17] functionality to test all such
pairs.1 �

5B. Case 3: Irrational critical points. This case is more delicate. Results in Section 4 give relationships
between absolute values of the coefficients for cubic PCF maps. We must disentangle these relationships
to build a finite search space.

Theorem 5.2. If f (z) ∈Q[z] is a cubic bicritical PCF polynomial that is not conjugate to a polynomial
with rational critical points, then f (z) is conjugate to fD,a,c(z)= a( z3

3 − Dz)+ c where

(D, a, c) ∈
{(

2,− 3
4 , 2

)
,
(
−7,− 3

28 ,
7
2

)}
.

Proof. From Proposition 3.4, we know that every cubic polynomial in Q[z] with irrational critical points
is conjugate to a map of the form

fD,a,c(z)= a(z3/3− Dz)+ c

for some a, c ∈Q and a squarefree integer D.
Note that if c = 0, then fD,a,c(z) is conjugate to a cubic polynomial with rational critical points via

conjugation by φ(z) = (a −
√

D)/(−z
√

D). Furthermore, fD,a,−c(z) is conjugate to fD,a,c(z), so we
may assume that c > 0. Therefore, we build a list of triples (D, a, c) with D, a, c > 0, and each triple
corresponds to four possibly PCF polynomials (varying the signs of D and a). We split the algorithm
into two cases corresponding to D even and D odd.

Step 1: Loop over possible aD values. From Proposition 4.9, if fD,a,c is PCF then:

±aD ∈
{3

4 ,
3
2 ,

9
4 , 3, 15

4 ,
9
2 ,

21
4

}
.

1Sage code is available with the arXiv distribution of this article.
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Step 2: Compute |a|2. We use the value of aD in Step 1 and the parity of D.

Step 3: Find an upper bound for |c|p for each prime p. From Lemma 4.11, we know that if fD,a,c(z) is
p-adically post-critically bounded, then

|c
√

a|p ≤


1 if p ≥ 5,
3−1/2 if p = 3,
23 if p = 2.

(5-1)

So from Step 2 we can find e ≤ 3 such that |c|2 ≤ 2e. Also using the list in Step 1, we conclude
that |c|p ≤ 1 for each prime p ≥ 3.

Step 4: Factor D and c. Write D=m P or D= 2m P , where m and P are relatively prime odd squarefree
integers such that m divides the numerator of aD and P divides the denominator of a. By
equation (5-1), P must also divide the numerator of c. Thus, c = Pk

2e for some positive integer k.
Note: For a fixed aD from the list above, m comes from a finite set, but for now P and k can be
arbitrarily large.

Step 5: Bound the factors of D and c. From Lemma 4.10, we know that if fD,a,c(z) is post-critically
bounded at the archimedean place, then |c|2 < 11|D|. Depending on the parity of D, this gives

P2k2

22e < 11m P or
P2k2

22e < 22m P.

So Pk2 < B where B = 11m · 22e when D is odd, and B = 11m · 22e+1 when D is even. We
know e from Step 3, so for each m we have an explicit value for the upper bound B.

Step 6: Loop over P values. For all odd, squarefree integers P < B, we determine the set of possible k
values such that Pk2 < B.

Step 7: Create the triple. Each triple (m, P, k) yields a triple (D, a, c) = (m P, aD/(m P), Pk/2e) or
(D, a, c)= (2m P, aD/(2m P), Pk/2e). Finally, check that 3 | ac to verify that the triple satisfies
the 3-adic condition in equation (5-1). If so, add (D, a, c) to the list of possible PCF triples.

This algorithm yields a list of 5,957 triples corresponding to 23,828 possibly PCF polynomials. The
authors used built-in Sage [17] functionality to test all such triples. Only the two listed in the theorem
statement above are actually PCF and are not conjugate to a polynomial already found in Theorem 5.1.

�

Combining the results in Theorems 2.3, 5.1, and 5.2 yields a total of 15 conjugacy classes of PCF
cubic polynomials over Q[z], and this list is exhaustive. In the table below, we provide one representative
of each conjugacy class along with the critical portrait for the polynomial. In the portrait, the critical
points are given by γ and other points in the post-critical set are denoted •. The monic centered form is
given when it is defined over Q[z]; these appeared in [14].
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PCF polynomial Critical portrait Monic centered form

z3
γ1

z3

−z3
+ 1 γ1 •

−2z3
+ 3z2

+
1
2

γ1

γ2

•

•

−z3
+

3
2 z2
+ 1 γ1 γ2 •

−2z3
+ 3z2

γ1 γ2
z3
+

3
2 z

−3z3
+

9
2 z2

γ1γ2 •

−z3
+

3
2 z2
− 1 γ1 • • γ2 •

−4z3
+ 6z2

−
1
2

γ1 • • γ2 z3
+ 3z

2z3
− 3z2

+ 1 γ1 γ2 z3
−

3
2 z

4z3
− 6z2

+
3
2 γ1 • γ2 •

z3
− 3z

2z3
− 3z2

+
1
2 γ1 • γ2 •

3z3
−

9
2 z2
+ 1

γ1 γ2 •

z3
−

3
2 z2

γ1 γ2 •

z3
−

3
4 z+ 3

4 and z3
−

3
4 z− 3

4

−
1
4 z3
+

3
2 z+ 2 γ1 • • γ2 • •

−
1

28 z3
−

3
4 z+ 7

2
γ1 • γ2 •

Table 1. Critical Portraits of Cubic PCF Polynomials over Q
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