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Abstract

This paper generalizes the classical cubic spline with the construction of the cubic spline coa-
lescence hidden variable fractal interpolation function (CHFIF) through its moments, i.e. its
second derivative at the mesh points. The second derivative of a cubic spline CHFIF is a typ-
ical fractal function that is self-affine or non-self-affine depending on the parameters of the
generalized iterated function system. The convergence results and effects of hidden variables

are discussed for cubic spline CHFIFs.
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1. INTRODUCTION

Fractals represent powerful techniques to approx-
imate natural objects such as trees, clouds, land-
scapes, glaciers, and waves that cannot be described
by using classical geometry. With the introduction

of the term fractals by Mandelbrot,! the fractal
geometry has been successfully used in various
domains such as economics,? physics,® graphics,*
life sciences,” signal processing,® image processing,”
etc. Fractal interpolation function (FIF) is
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introduced by Barnsley®? through the iterated
function system (IFS) to model a large class of
self-affine or self-similar objects. The construction
of a FIF is based on the fixed point of the Read-
Bajraktarevi¢ operator that preserves self-affinity or
self-similarity.

The term “hidden variable” has been introduced
by Barnsley et al.'® and Massopust.'! The hidden
variable FIF (HFIF) is more diverse, appealing and
irregular than FIF for the same set of interpolation
data since the values of hidden variable FIF con-
tinuously depend on all parameters which define it.
Since the HFIF is the projection of a vector val-
ued function, it is usually non-self-affine in nature.
However, in practical applications of FIF's, the inter-
polation data might be generated simultaneously
from self-affine or non-self-affine functions.'? To
approximate self-affine or non-self-affine functions
simultaneously, the coalescence hidden variable FIF
(CHFIF) is introduced (see for instance Refs. 13
and 14).

The existence of a differentiable FIF or spline FIF
(SFIF) is introduced by Barnsley and Harrington.!?
However, the construction of SFIFs with only a
fixed type of boundary conditions is allowed in their
construction. The construction of SFIFs with any
type of boundary conditions is given in Refs. 14,
16 to 18. The derivative of a SFIF is a typical
fractal that is self-affine in nature. CHFIFs can be
integrated successively in order to get more diverse
and appealing spline CHFIFs, where hidden vari-
ables play significant role in their shapes. Such type
of splines are useful in practical applications since
their derivatives can be either of self-affine or non-
self-affine fractal functions. The construction and
convergence analysis of cubic spline CHFIFs have
practical importance in view of significant appli-
cations of cubic splines in science and engineering
problems. %20

In the present paper, the construction of cubic
spline CHFIF fi(z) on a mesh A is developed
through moments M} = fl/l (p),m=0,1,2,..., N,
with any type of boundary conditions as in the
classical cubic spline. The advantage of such a
construction is that, for a prescribed data and
boundary conditions, one can have infinite number
of cubic spline CHFIF's that are self-affine or non-
self-affine, depending on choice of hidden variables
and boundary conditions of the associated cubic
spline fractal functions. The convergence results of
cubic spline CHFIFs on two classes of sequence
of uniform or non-uniform meshes are proved for

the data generating function ®(x), where ® €
C"xg, xn], for r = 2,3, or 4.

The organization of this paper is as follows.
In Sec. 2, we discuss the construction of cubic
spline CHFIF's through its moments. Our construc-
tion admits all types of boundary conditions as in
classical cubic splines. The convergence results of
cubic spline CHFIFs are described on two classes of
sequence of meshes in Sec. 3. Finally, effects of hid-
den variables on the cubic spline CHFIF's are illus-
trated through suitably chosen examples in Sec. 4.

2. CUBIC SPLINE HFIF

First, we discuss in Sec. 2.1 the basics of
CHFIFs. The construction of cubic spline CHFIF's
is described in Sec. 2.2.

2.1. Basics of CHFIFs

Let zg < 1 < --+ < xn be a partition of an interval
I =[zo,zy] CRand {(xp,yn) € I xR :n=0,1,2,
..., N} be a set of data points. This data set is
extended to a generalized set of data {(zy, yn, 2n) €
R3:n=0,1,2,..., N} with real parameters z,, n
=0,1,2,...,N. Set, g1 = Min, yn, g2 = Max,, yn,
hi = Min,, z,, hy = Max, z,, and K = I x D,
where D = Jy x J3, J1 and Jo are suitable com-
pact sets in R such that [§1,g2] C J1, [h1, ha] C Jo.
Let Ly, : I — I, = [xy,—1,2y] be a contraction map
satisfying

Ln(l‘o) = Tp—1, Ln(xN) = Tn. (2.1)

Let F, :
satisfying

K — D be a vector valued function

Fu(w0,90,20) = (Yn—1, 2n—1),
Fn(.’EN, YN, ZN) - (yna ZTL))
d(Fn(-Tv Y, Z), Fn(x*a y*a Z*))
< SdE((ya 2)7 (y*a Z*))?
forn =1,2,...,N, where (z,y,2), (z*,y*,2") € K,
0 < s <1, dis the sup. metric on K, and dg is the
Euclidean metric on R?. In order to define the
CHFIF, functions L,, and F,, are chosen such that
L,(z) = apz + b, and
Fu(®,y,2) = An(y,2)" + (pn(@), gn(2))"
= (Fé (SU, Y, Z)v F’Ig (xv Z))T7

(2.2)

(2.3)

where A, is an upper triangular matrix (D‘O" f:)

and p,(z), gn(z) are continuous functions hav-
ing two free parameters. These parameters can be



determined by using Eq. (2.2). We choose «, as free
variable with |a,| < 1 and (3, as constrained free
variable with respect to 7, such that |3, |+|v,| < 1.
The generalized IFS that is needed for construction
of a CHFIF corresponding to the data {(z,, yn, 2n) :
n=0,1,..., N} is now defined as

{R3; wn(x, Y, Z) = (Ln($)7 Fn(x7 Y, Z)),

n=1,2,...,N}. (24

It is known'? that the IFS defined in Eq. (2.4) asso-
ciated with the data {(zy,yn,2n) : n=0,1,...,N}
is hyperbolic with respect to a metric 7 that is
equivalent to the Euclidean metric on R®. Hence,
there exists a unique non-empty compact set G C
R3, called as attractor of the IFS (2.4), such that
G = UZ]\L L wi(@). This attractor G provides the exis-
tence of a unique vector valued interpolant f in the
following proposition.

Proposition 2.1.'% The attractor G of the IFS de-
fined by Eq. (2.4) is the graph of the continuous vec-
tor valued function f : I — D such that f(z,) =
(Yn, 2n) for alln =1,2,... N, i.e., G = {(z,y,2) :
v € 1 and f(z) = (y(2), 2(2)}

Proposition 2.1 gives that the graph of the vector
valued function f(z) = (fi(x), fa(x)) is the attrac-
tor of the IFS {R3; w,(z,y,2),n = 1,2,...,N} if
and only if the fixed point f of Read-Bajraktarevié¢
operator 1" on the space of continuous vector valued
functions from [ to D satisfies

Tf({B) - f(.’B) - Fn(Lgl(x),f(Lgl(x))),

xel,, n=12,...,N. (2.5)

The image T'f of the vector valued function f can
be written component wise as (73 f1,T>f2), where
Ty and T, are component wise Read-Bajraktarevié
operators from I to R. The function fi(z) in the
projection {(z, fi(z)) : = € I} of the attractor
G on R?, is called coalescence FIF or coalescence
hidden variable FIF (CHFIF) for the given data
{(xn,yn) : n=0,1,...,N}. It is easily seen that
CHFTF's satisfy the following functional equation for
x el

Ty fi(Ln(z)) = f1(Ln(x))

= F(x, fi(x), f2(x))

= anf1(x) + Bnf2(x) + pu(z).
Similarly, the function fo(x) in the projection

{(z, fo(x)) : @ € I} of the attractor G is a self-
affine fractal function that interpolates the data

(2.6)
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{(zn,2n) : n=0,1,...,N} and satisfies the fol-
lowing functional equation.

Ta fo(Ln(z)) = fa(Ln(2))
= F(z, [2(x))
- ’Ynf?(x) + Q’n(x)a

Since the projection of the attractor is not always
union of affine transformations of itself, HFIFs are
generally non-self-affine by nature. By choosing
Yn = zn and ap+ B, = Y, CHFIF f1(x) obtained as
the projection on R? of the attractor of the IFS (2.4)
coincides with a self-affine fractal function fo(z)
for the same interpolation data. Hence, the CHFIF
is self-affine or self-similar in this case. This type
of CHFIFs can be used to approximate the ran-
dom steps of Gaussian, increments of the fractional
Brownian function and wave-height functions.?

xel. (2.7)

2.2. Construction of Cubic Spline
CHFIF's

A function S(x) is said to be a cubic spline on a
grid zy < x; < --- < xy if it satisfies (i) S(x)
is a polynomial of degree 3 on each subinterval
[€n—1,2,] and (ii) S™(x) is continuous on [rg, x|
for r = 0,1,2. The following proposition provides
the existence of a SFIF.

Proposition 2.2.'6 Let {(2,,9,):n =0,1,2,..., N}
be the interpolation data with To < x1 < x9 < ... <
xn. Let L,(z) = apx + by, that satisfies Eq. (2.1)
and Fy(z,y) = any + qu(x) for n = 1,2,..., N.
Suppose for some integer v > 0, |a,| < a),, and
qn € C"[xg,zN]);n =1,2,...,N. Let

(k)

any +q
Fn,k(xuy): = ak = 5
n
k
¢V (@0)
o,k = L )
a; —ap
(k)
$N7k:7q,iv (xN), k=1,2,...,r
ay, —an

If Fooik(z,y)(@n,yng) = Foip(To, Yor) for n =
2,3,....,N and k = 1,2,...,r, then {(L,(x),
Fo(x,y))}N_, determines a FIF f € C"[zg,7N]
and f(k)7 k=1,2,...,r is the FIF determined by

{(Ln (IL’), Fn,k (SC, y))}{l\le
Based on the Proposition 2.2, we define the cubic

spline CHFIF f; through moments, M, = fi (n),
n=20,1,2,..., N, as follows.
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Definition 2.1. A function fi(z) (or fi1(Y;x)) is
called a cubic spline CHFIF interpolating to the
data set {(zn,yn) : n = 0,1,..., N} with mesh
Acxg < x1 < 29 < -0 < zxpy, if 1) f1 €
C2%[xo,zn], (ii)f1 satisfies the interpolation con-
ditions fi(xn) = yp,m = 0,1,..., N, and (iii)
the graph of f; is the projection of the attrac-
tor of a IFS, {R%w,(z,9,2),n = 1,2,...,N}
to R?, where for n = 1,2,...,N, wy(z,y) =
(Lp(z), Fy(x,y,2)), Lnp(x) 1is defined as in Eq.
(2.1), Fu(z,y,2) (ap(any + Bnz + pulx)),
a%(VnZ+Qn(x)))a 0 <lan| <1,0<[Bn|+ |7nl <1,
and p,(z), gn(z) are suitable cubic polynomials.

(M;: — OanX/ — 6nMN)(x — x0)3

Denote moments of self-affine fractal function
as M, = fg//(xn) for n = 0,1,2,...,N. The
moments M} and M,; n = 0,1,2,...,N, are
used to determine the polynomials p,(x) and
gn(z) (see Appendix). Thus, the desired IFS for
the construction of the cubic spline CHFIF f; is
given by

{Rg; wn(z,y, 2) = (Lp(z), Fy(x,y, 2)

= (Fu(2,y,2), F; (x,2))),

n=1,2...,N}, (28)

where L, () = apx + by,

E)(z,y,2) = ai{any + Bnz +

(ay —2)%

6(xn — x0)
(M, — an Mg — BnMo)(xn — x0)(zN — T)

+ (M*fl - O‘nMg - ﬂnMO)

n

6(1‘]\7 —.’B()) 6

6

IN — X)X — X —1
X ( )( ) + (yZQ — Qnlyo — ﬁn20>

n

and

(M — v My)(z — 20)*

- (M; — oMy — ﬁnMN)

INTT L (Y T~ %o
TN — X0 a?

AnYN — ﬁnZN>

boeo

IN — X0

. (Mp—1 — M) (zn — z)3

F2(e,2) = a2 {W i

6(xN — w0) 6(zN — 20)
- (Mp—1 — M) (zn —xo)(an —x)  (My — mMn)(xN — 20) (¥ — T0)
6 6
Zn— IN — T z r—XT
+ < - ’Yn20> 4 <—§ - ’YnZN) 70}- (2.10)
ap, IN — X ap, IN — X0

The projection of the attractor G of the IFS given
by Eq. (2.8), i.e. {(z, fi(x)) | € I} is the graph
of the required cubic spline CHFIF that may be
self-affine or non-self-affine depending on the hid-
den variables. Suppose that the data {(x,,y,) : n =
0,1,2,...,N} is generated by a continuous func-
tion ® that is approximated by the cubic spline
CHFIF f;. Then f; is called (i) the complete cubic
spline CHFIF if it has boundary conditions of Type-
L ie. fitzo) = ®(ro), filen) = ¥'(xw); (i) the
natural cubic spline CHFIF with Mg My
O”if it has boundary condit}lons of Type-II, i.e.
fi(zo) = ®"(x0) = Mg, fi(an) = @ (an) =
M3;; and (iii) the periodic cubic spline CHFIF if it
has boundary conditions of Type-III, i.e. fi(xg) =
fien), filzo) = fizn), fi (wo) = f1 (xn).

Remark 2.1. (1) If free variables «,, = 0 and con-
strained free variables 6, = 0; n = 1,2,..., N,
Fl(z,y,2) reduces to a cubic polynomial in each
sub-interval of 1. Hence, the IFS (2.8) generates the

classical cubic spline S(z) as a special case of the
cubic spline CHFIF.

(2) In general, a cubic spline CHFIF is not self-
affine as it is the projection of attractor of a non-
diagonal IFS. But, if y, = z,, n = 0,1,2,..., N,
an + Bp = v, for n = 1,2,...,N, and f1 , fo
have the same boundary conditions, the cubic spline
CHFIF is self-affine in nature, i.e. second derivative
of the cubic spline CHFIF is a typical self-affine
fractal function.

(3) If fy is periodic, the necessary condition for the
existence of the periodic cubic spline CHFIF for pre-
scribed moments M, is given by

N
Z[(hn + hn+1)M:{ - 2anhnM]).\<[ - 2anﬂn(f2,(l’N)
n=1
— 2! (20)) = Buhn (Mo + My)] =0.  (2.11)
With @, = 0 and 8, = 0 for n = 1,2,...,N,

Eq. (2.11) reduces to the necessary condition for



the existence of the periodic classical cubic spline
associated with M,,.2! Also, for 8, = 0 for n =
1,2,...,N, Eq. (2.11) reduces to the necessary con-
dition for the existence of the periodic SFIF associ-
ated with M.10

3. CONVERGENCE OF CUBIC
SPLINE CHFIFs

Let g* = {f € 02(IaR2) : f(xn) = (yn7zn)7 n =
0,1,2,..., N}, where I = [zg,zn]. Let f1 and fo
be the components of the vector valued function f
such that f = (f1, f2). From Egs. (2.6) and (2.9),
the cubic spline CHFIF satisfies the implicit relation

fi(Ln(2)) = ag(anfi(z) + Bufo(z) + pa()),

xel (3.1)

and from Egs. (2.7) and (2.10), the self-affine
cubic spline fractal function satisfies the functional
relation

fa(Ln(z)) =

where p,(x) and g,(z) are cubic polynomials for
n =1,2,..., N. In this section, we assume that for
n=12,...,N; |8+ || <s<land |a,| <s* <
1, where s and s* are some fixed real numbers. In
view of Egs. (2.9) and (2.10), denote py,(an, Bn, z) =
pn(x) and qn(vn,z) = qu(x) for n = 1,2,..., N.

a2 (Y fo(x) + qu(x)),z €I, (3.2)

Further, let for x € I,, n = 1,2,..., N, q,(x)
satisfies
Mg (T, )
— 2 V<LK, 3.3
0y, 0" - (3:3)

where |7,| € (0,sal) and K, is a positive constant.
We need the following lemma to prove our main
convergence Theorems 3.1 to 3.3.

Lemma 3.1. Let f1(z) be the cubic spline CHFIF
through generalized interpolation data and S(z) be
the classical cubic spline with respect to the mesh
A:xg < <...<zxp, interpolating {yo,y1,. ..,
yn} at the mesh points with same type of boundary
conditions. Suppose, there exist positive constants
Ky Ky, r=0,1,2 such that

81+Tpn (fm Bn, SU)
0o, 0x™

aH—Tpn (Oén, Tins x)
93,027

< K7,

< K
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Jor [&n] € (0,5%ay), [m| € (0,sa7), x € I, n =
1,2,...,N, and r =0,1,2. Then,

110 =50l
maxfan| (15 loe + K7)
+ max Bl (12 oo + )
< AP ’
T2~ = IAJP max o
1<n
r=0,1, 2, (3.5)

where |I| is the length of the interval I.

Proof. Denote By = (®7]:[:1[—s*a2, s*ap]; ®7]:/:1
(—say, say)) for r = 0,1, 2. Since the proof is anal-
ogous for any value of r, we prove it for r = 0 as fol-
lows. Let (o, B) = (a1, a9, ...,an; 51,062, ..., 0Nn) €
B;. For a given self-affine cubic spline fractal func-
tion fo and given boundary conditions, cubic spline
CHFIF f; is unique for an element (o, ) in Bg.
So, using Eq. (3.1), the component wise Read-
Bajraktarevi¢ operator Tl)(ka*,ﬁ*) of T* : G — G*,

can be written as for x € I,, and n=1,2,..., N,
Tl 1" (@) = a3 fon fi* (L' (2)
+ B2 (L (2))
+ pn(m, B, Ly, (2))]. - (3.6)

Suppose fi is the fixed point of le‘a 4y where

(a; B) € B such that o, # 0 and 3, # 0 for some n
and m. Also, if (a*, 5*) = (0,0,...,0; 0,0,...,0) €
Bg, then the classical cubic spline S is the fixed
point of Ti{,. 5.y with the prescribed boundary

conditions. Hence, by Eq. (3.6), for x € I,,, n =

1,2,...,N,
1T (a,0)f1() = Ti(,5)S(2)]
= lapan fi(Ly ' (2)) + Bufo(Ly, (x))
+pn(n, Bn, Ly, ' (2))]
—aplanS(Ly " () + Bufo(Ly ' ()
+pn(an, Bn, Ly, ()]
= ap|anl| fi(Ly, ' (x)) — S(L

2 lap?
\IP 1< 3L<X1\f’06"‘ Il =

n (@)

Soo-

The above inequality gives

||T1?a”g)f1 - leka,g)SHoo

2
L T

|1]2 1EnEN Flee-

(3.7)
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Now, using the mean value theorem and Eq. (3.5), for z € I,,, n=1,2,--- N,

\Tlfa”@)S(x) — Tlfa*ﬁ*)S(x)\

= laplanS(Ly () + Bafo(Ly (%)) + Palom, Bn, Ly (2)) = pa(0,0, Ly ()]

8pn(§na Bn, Lﬁl(w))

(0,1, Lyt (z))

<ay, {\anHSHoo +1Bulll falloo + |an]

1A
172

It follows that
_ lage
IR

”Tl)(ka7ﬁ)5 - Tl)(ka*,ﬁ*)SHOO

Using inequalities (3.7) and (3.8) in
11 =Sl =

{ o181+ 53) + s 18,11l + 55) .

\ 18]

}

dan 9fn

* ko
{ s onl(I8lle + £5) + max 18,11l + 55}

(3.8)

HTlfaﬁ)fl - Tl?a*,g*)s”oo

< 1 Tifaspt = TifaySlloe + [T = Tifar 5y Sllo

resulted into

max [ |([|S]|oc + Kg)

%k
+ [0l + KG)

|2 1<n<N

11 = Slloe < [|A]

Hence, Lemma 3.1 is proved for » = 0. The proof is
similar to r = 1, 2, and thus omitted. O

Remark 3.1. By assuming 3, = 0 and replacing
ay, by v, and inequality (3.4) by inequality (3.3) in
Lemma 3.1, the self-affine cubic spline fractal func-
tion fo satisfies the following estimate:

1527 = 5o
[A[*"s
= TP = A
when fo and S are constructed with the same

boundary conditions.
Let A be a sequences of meshes on [zg, zy] as

1S loo + K7),  (3.9)

Ap :xg =Tro < T < - <TgN, =TN.

max
1<n, <N,

Class A. {{Ak} :
Class B.

For the function ® in C?[z¢,xy] generating the
interpolation data, the convergence result of cubic
spline CHFIFs are given in the following theorem
if cubic spline fractal functions f2n, satisfy any
boundary conditions of Type-I, Type-II, or Type-
III on a sequence of meshes.

Theorem 3.1. Let ® € C?%[xg, zn] and cubic spline
CHFIFs fia, (v) satisfy any boundary conditions of

1117 = A7 max [on]
<n<N

Denote, hin, = ZTgpn, — Thn,—1 and [|[Agx]| =
mMaxi<n, <N, Rkn,. We prove that the sequence of
cubic spline CHFIFs { f1 o, ()} with boundary con-
ditions of Type-I, Type-II, or Type-III converge to
the data generating function ®(x) on a sequences
of meshes {A.} at the rate of ||Ax||?, when the
corresponding self-affine cubic spline fractal func-
tion faa, (%) is constructed with any one of the
boundary conditions of Type-I, Type-1I, or Type-
ITI, where ® € C"(I), r = 2,3, or 4. In view of
Lemma 3.1, we define two types of sequences of
meshes {Ar} on [z, zy]| for study of the conver-
gence of cubic spline CHFIFs to a data generating
function, depending upon free variables ay, ,, and
constrained free variables 3 ,, .

(ol Vom [} < 841 < 1 for cach k}
k

H{AR} ¢ o] > ||Ag|| or |8k ;| > || Al for some 4, 5,1 < 4,5 < Nj and for each k} .

Type-1, Type-1I or Type-11I on a sequence of meshes
{Ar} on [zo,zn] with limg_ [|Ag]] = 0. If {Agx}
s in Class A, then

120 =A%)l = o(IAF7), 7 =012 (310)
and if {Ag} is in Class B, then

|27 =118) oo = OUAPT), r=0,1,2. (3.11)
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Proof. By Lemma 3.1, with the same boundary conditions, f1,, and Sa, satisfies the following relation
on each element of the sequence {Ay} for r =0,1,2.

0k (ISK Nl + 55) + | max (B, (124 lloo + 57)

2—r _ 2—r
TP = TAP _max, Tarn,|

max
1<nK <Nk

1A% = 50 oo < 12K (3.12)

From Ref. 21, pp. 28, classical cubic splines with
boundary conditions of Type-I, Type-II or Type-III
satisfy,

H(I,(r) _

From inequality (3.9), with the same boundary con-
ditions, foa, and Sa, satisfy

S lloo < BIALIPTw(@0); | Ak,
r=0,1,2, (3.13)

where w(®; z) is the modulus of continuity of ®(z).
Inequality (3.13) gives

150 oo < 1D Jloo + Bl AL|Z 7w (@

H ||Ak||2_7"5
Fallee = 2" — | Ag]*"s

1f2%) —

< (159 1o + 7).

AR

Using inequality (3.14), ||f2XZHoo exists as k — o0
(3.14)

for r = 0,1, 2. Inequalities (3.12) to (3.14) together
| with inequality (3.9) gives

120 — A1 lloo < 1AK% ’”{&u( ™) | Akll) +

1<ny, <Ny,
2= =[[Ag]*~7 _max

<np <N, |ak:nk‘

max  {lak,ng 1B, [FUSK) lloot 1£28) oo+ K +K")
(3.15)

By the assumptions ® € C*(I) and maxi<p,<n, {|%%n.|, [Ben |} < HAkH < 1, the right hand side of
inequality (3.15) tends to zero as k — oco. Hence, the convergence result (3.10) for the Class A follows from
inequality (3.15). Since maxj<p,<n, |, | < s* < 1 and maxi<p, <n, |On,| < s, inequality (3.15) reduces to

max{s*, s}(ISX oo + [l /2 lloo + K7 + K;¥)
T2 — | Ag?7s*

120 — A1 floo < 1A% {5w (@ | Akl +

Finally, the convergence result (3.11) for Class B | —
follows from the above inequality. O If {Ax} is in Class A or Class B, then respec-

tively for r = 0,1, 2, H‘P(T) — leiHoo = o([|Ag[|*™)

The convergence results of cubic spline CHFIF's ") )
or @) — fi5; oo = O(IAK]*7).

to the function ® in C3[zg,zy] are given in the

following if cubic spline fractal functions fa4, sat-
isfy any boundary conditions of Type-I, Type-II, or
Type-1III on a sequence of meshes.

Theorem 3.2. Let ® € C3[xg, zn] and cubic spline
CHFIFs fia,(x) satisfy boundary conditions of
Type-1, Type-1I or Type-I1I on a sequence of meshes
{Ag} on [zo,xN] with

| Al

- <0< oo.
ming <n, <Ny, Nk yny

1imk_,oo ||AkH =0 and

120 — A1 lloo < 12K

5 _
< S1Ak)3 + R)w(@!

Proof. It is known (Ref. 21, pp. 32) that classical
cubic splines with boundary conditions of Type-I,
Type-11 or Type-III, satisfy
5 _ _

120 = S8 loe < SIAP (3 + K)w(@®; A,

r=0,1,2, (3.16)
where K = 86%(1 + 20)(1 + 36). From inequali-
ties (3.9) and (3.16), it is clear that HS(ATiHOO and

1/ 22 |co are bounded. Thus, the following error
estimate holds for cubic spline CHFIF's with bound-
ary conditions of Type-I, Type-II or Type-III:

VillAwl)

max_ {|agm, s 1Bk IS oo + [1£25) [loo + K + K77)

1<n, < Np,

2= — [[Ag|>™" max [agn,]
k

1<nL<N,
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The above estimate gives the convergence results
of Theorem 3.2 depending on the sequence mesh of
Class A or Class B. |

The convergence results of cubic spline CHFIF's
to the function ® in C*4[z, x| are given in the fol-
lowing if cubic spline fractal functions foa, satisfy
any boundary conditions of Type-I or Type-II on a
sequence of meshes.

Theorem 3.3. Let ® € CHzg,zy] and cubic
spline CHFIFs fia, (%) satisfy boundary conditions
of Type-I or Type-II on a sequence of meshes
{A} on [xo,zn] with limg_ |[|Ak] = 0 and

[A] < n < oo. If {Ag} is in Class

mini<n, <Ny Pkyny
|

) — A0 Jloo < [ ARIZ" L[ @D oo | Ak

1<n, <Ng

Koo + 1f250 lloo + K7 +

A or Class B, then respectively for r = 0,1,2,
1) = A% lloo = o(AK[27) or 00 = AL o0 =
OlAx]*).

Proof. It is known?? that, classical cubic splines
with boundary conditions of Type-I or Type-II,
satisfy

120 = 58 llso < Lell@® el AR

r=20,1,2,3, (3.17)
where Lo = 5/384, Ly = 1/24, Ly = 3/8, and
L3 = (n+n~1)/2. From inequalities (3.9) and (3.17)
it follows that HSX,zHoo and || fQ(AT])C”OO are bounded.
Hence, the error estimate in this case for cubic
spline CHFIFs with boundary conditions of Type-I
or Type-I1, is given by

K

III2 T—IIAkIIQ "omax [o | ’

Thus, the above inequality gives the convergence
results of Theorem 3.3. |

Remark 3.2. The spline CHFIF f; uniformly
converge in the C'! norm to the data generating func-
tion @ if {Ay} is in Class B. If there exists a positive
number u such that maxi<pn, <z, {|®kn, | |Bkne |} <
|Ag||* for all & = 0,1,2,..., then f; converge uni-
formly to ® in the C norm on I.

4. EXAMPLES OF CUBIC
SPLINE CHFIFs

In this section, we construct examples of cubic
spline CHFIFs as the fixed point of the IFS
given by Eq. (2.8). Suppose that {(0,0),(%,1),

(%,—1),(1,2)} is the given interpolation data for

r=20,1,2.
1<n, <Ny

cubic spline CHFIFs. Chose free variables o, = 0.8,
n = 1,2,3; hidden variables zg = 3, 21 = 2, 29 =
8, z3 =5, v = 0.3, 72 = 0.35, v3 = 0.4; and con-
strained free variables 6y = 0.4, G5 = 0.6, (3 =
0.5. Using Eq. (2 1), each IFS has Li(z) = %x,
Lo(x) = 0x+5, and L3(z) = iz + 2. For the
first two examples, we compute F2(x,z) for the
self-affine cubic spline fractal function fo with a
boundary condition fo'(zo) = 10 and fo/(z3) = 1.
The moments are evaluated (Table 1) by using
the system of equations (see Appendix). These
moments are used in Eq. (2.10) for the construction
of F2(z,z) (Table 2). For constructing an example
of the cubic spline CHFIF with boundary conditions
of Type-I, we choose fi'(zg) = 2 and fi'(z3) = 5.
Equations (A.3) are solved with these choices to get

Table 1 Derivatives Used for IFSs of CHFIF's.

Fig. f2'(wo) Mo M, Mo Ms  f2'(z3) fi'(zo) Mg My M3 M3 fi'(x3)
1 10 —209.49 236.76 —235.69 388.58 1 2 —0.66 —90.65 156.63 —131.82 5
2 10 —209.49 236.76 —235.69 388.58 1 2 201.38 —123.87 113.56 —50.32 5
3 10 —418.8 923.6 —836.1 1933.1 1 2 921.8 1420.3 1614.3 1646.2 5
4 —13.43 10 122.47 —171.90 1 —21.64 2 —95.98 —289.22 —29.01 —-383.10 5
5 10 —146.01 125.51 —197.81 202.07 1 2 —67.79 —235.24 21.97 —316.34 5
6 2 —77.87 —=331.38 —59.68 —462.54 5 2 —77.87 —331.38 —59.68 —462.54 5
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(T — ZT608°€ + TLTR0°0 + (T6066'0 — 2600 ‘T — TT608'E + ZZLIS00 + ¢T6066°0 — ZETE0°0 + AL8T0°0) = (2 “fi‘T) &y
(T + 22GCH'T + LZEISHIT — (TEYTT + 28600 ‘T + TGGGH'G + LTEISHIT — (@ESTT + 26700 + fi6r00) = (2 A x)e 9 Sig

(TG0 + ;TIFTT — (ZOFF'T + 28C1°0 ‘TFFC 0 + ;Z9FG T — TIFF T + 28F0°0 + fig0°0) = (2 i ‘w) T
(G20°8 + TTEGG'0 — 89008 — (L6STY'G + 26200~ ‘8E60'T — TFOFH'T + ,2€99F + (T6G9T'E — Z€160°0 + fi50°0) = (2 “Ai‘x)Eq
(8688'T + TTE]TF + TGOLE OT + (TTEEL'S — ZLIE0'0 ‘G6LL°0 + TFEIY'T — LTLOTL'G — (LTLVO'G + 2G6L0°0 + fig60°0) = (2 fi‘ )8y ¢ S
(F2'€ + T8F + ,4TTG LT — ¢TTYYTT + Z80°0— ‘T6ET'0 — L960°0 — ;L6LRGE + ¢TGLY'T — 2F90°0 + Ai8ZT0) = (‘i ‘w) Ly
(626°L + TLYGG0 + ;LTHOT'SG — (ZT66GT + 2G20°0 ‘8E60'T — TLEVL'T + ;TLIEET + (Z68FC T — 2€1€0°0 + Aig0°0) = (2 ‘fi‘x) &
(FILYT + TT9LOF + ;ZLESL L + ¢TITG6'S — Z6TF0°0 ‘G6LL0 + TLETE'0 + ,LTOLE'ET — (PGTIT0T + 2G6L0°0 + i860°0) = (2 fi‘x)ey 3 -Sig
(998°C + TEE0T — ZITGL0 — (L6689°C + Z8V0°0 ‘TOT'0 — TGEOY T + ,T8EGR'T — LTRI0'T + 2$90°0 + figg1°0 = (2 “fi‘w) Ly
(GLT'6 + TEETT'GT — LZVI68°0C — ¢TLEVO'6T + 2620°0 ‘€I8L°0 — T66G0'ET — T8YY6'EE + (LIEGE LT — ZETE0°0 + fic0°0) = (2 fi‘x) €y
(66696 — T69TT'9 + LTLIVGGY + (LLTELTS — Z6TF0°0 ‘GPIGT + TGLGYTT — TPLIT LS + (AFTRY'9E — 2GEL0°0 + fiR60°0) = (z“i‘w)ey ¢ S
(1999 — T2G€ + LAFVCY €T — LFERE'9T + 28F0°0 ‘SPF°0 + T960°0 — ;LE0ST 8T + (TEIFE LT — 2790°0 + figg1°0) = (2 fi‘w) Ly
(G26°L + TIPIE'T — ZZRIPLY — (L60T0F + 2620 ‘GLEO'T — TRING'E + ,ZTILT0 — (LLGG8'0 — ZGT10°0 + iG0°0) = (2 ‘fi‘z) €
(PIL8T + TEIPR'0 + LTLT66']T + (L8GT6ET — 262700 ‘G0TE T + TEEIR'Y + TLECT ST — (IFERT 9T + 26€L0°0 — i860°0) = (2 fi‘z)ay g Sig
(968°C + TG + TGIELTT — (ZEGTT'L + Z28F70°0 ‘88T°0 + TFOCT + ,ZGEEY'Y — TGGIT'9 + 2960°0 — figZT0) = (2 /i ‘x) Ty
(926°L + TIVTIET — LA8IVLT — (L60TOT + 2G20°0 ‘8E60'T — TGOTE'0 — L8YST'8 + (T8IT0'G — 2€T1€0°0 + Aig00) = (2 /i ‘x) &
(PILRT + TEIPR'0 + ,LLT66'8T + (TE16°ET — Z6870°0 ‘8E60'T — TGOTE'0 — LP8YRT'® + L8IT0'G — Z€1L0°0 + fico'0) = (2 fi‘x)ay 1 Sig
(9682 + 22 e + TCIELTT — (TGGTT'L + 2870°0 ‘T6T'0 — LI0F0'E — TCGLE'G + (T6]ILT — 2F90°0 + figg1°0) = (2 “fi‘w) Ly

SATAHD oullds aiqn) 10§ ((z ‘@) g ‘(z‘Ai‘x)Yq) = (zAi‘T)¥q g 9lqeL
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the values of moments Mg, M, My, M3 (Table 1).
These moments are now used in Eq. (2.9) for the
construction of F!(x,y,z) (Table 2). Iterations of
the IFS code (2.8) generates the desired cubic spline
CHFIF (Fig. 1). To illustrate the effect of con-
strained free variables on the shape of the cubic
spline CHFIF in comparison with Fig. 1, we take
01 = B2 = —0.6, and B3 = 0.2. Using the computed
values of moments Mg, M, M5, M3 (Table 1), we
evaluate F}(z,y,2), n = 1,2,3 (Table 2). Iterations
of the IFS code (2.8) generates the desired cubic
spline CHFIF (Fig. 2). Similarly, perturbations in
the free variables «,, would affect the shape of the
cubic spline CHFITF.

The effect of change in hidden variables, i.e.
parameter z,, boundary conditions of fractal func-
tion fo and free variables ~,, on the shape of the
cubic spline CHFIF are illustrated in Figs. 3, 4 and
5, respectively by comparing these with Fig. 1. In
Fig. 3, we only modify free parameters as zg = —7,
z1 = —10,290 = 9,23 = —8. In Fig. 4, we choose
boundary conditions for self-affine fractal function
fo as My = 10, M3 = 1 instead of f{(x¢) = 10,

6 T T
"z"u1:2

5 “input'u1:2 e
4
3
2 ]
1
0
-1
-2
3 ] ] ] ]

0 0.2 0.4 0.6 0.8 1

Fig. 3 Cubic spline CHFIF with boundary conditions of

Type-I and different zy,.

2 T T T
"c1s2"u 1:2

1.5 | “input'u1:2 e |
1 - -
0.5 i
0 -
-0.5 -
-1+ .

_15 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Fig. 4 Cubic spline CHFIF with boundary conditions of
Type-I and different boundary conditions for self-affine cubic
spline fractal function.

2 T T T T
"t1"u1:2

15 + “input*u1:2 e E
1 - -
05 _
0¢ -
-0.5 - b
-1+ -

15 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Fig. 1 Cubic spline CHFIF

Type-1.

with boundary conditions of

2 T T T T
"gama" u 1:2

1.5 | “input'ut12 e /|
1 - -
05 —
0 T
-0.5 | —
-1+ -

_15 1 1 1 1
0 0.2 0.4 0.6 0.8 1

2
1.5
1
0.5

0«

-0.5
-1
-1.5
-2

Fig. 2 Cubic spline CHFIF with boundary conditions of
Type-I and different G,.

"beti’:l“ ut:2
"input" u 1:2

0 0.2

0.4

0.6

0.8

1

Fig. 5 Cubic spline CHFIF with boundary conditions of
Type-1 and different vy,

f4(z3) = 1. In Fig. 5, we change only free vari-
ables vy = —0.5, 72 = 0.3 and 3 = —04.
Depending on changes in hidden variables, moments
of the self-affine cubic spline fractal function and
cubic spline CHFIF are calculated (Table 1). These
are used to determine F),(z,y,z) (Table 2) for
the IFS code (2.8). Finally, we assume y, = z,
for n = 0,1,2,3, an + Bn = Yn, le. a =
ﬂg = 057 Qg = ﬂz = 0.4 and a3 = ﬂl = 0.5
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Fig. 6 Self-affine cubic spline CHFIF.

with the same boundary conditions. In this case, the
projection of the attractor generates the self-affine
cubic spline CHFIF (Fig. 6). Hence, our approach
offers more flexibility and diversity in the choice
of self-affine or non-self-affine cubic spline CHFIF's
to an experimenter depending on the need of the
problem.

5. CONCLUSION

The construction of the cubic spline CHFIF through
moments is initiated for the first time to approxi-
mate non-self-affine smooth objects. This construc-
tion allows admissibility of any kind of boundary
conditions and generalizes results of the classical
cubic spline.

For a data generating function ® € C"[zg,x,],
r = 2,3, or 4, it is proved that, cubic spline
CHFIFs converge to ® with arbitrary degree of
accuracy when the step size approaches zero on two
different classes of mesh. These upper bounds on
error in approximation of ® and its derivatives by
the cubic spline CHFIF and its derivatives respec-
tively with different boundary conditions are also
obtained. If the data generating function ®(z) sat-
isfies w(®@ ) = O([t|*(log [t])"), n = 0,1, or 2,
0 < u <1, ® can be approximated satisfactorily by
a cubic spline CHFIF fi(x) by choosing only free
variables «,, and =, suitably, since 8, and z, do
not affect the smoothness of the CHFIF f{'(x).14

Hidden variables, free variables and constrained
variables play an important role in determining the
shape of the cubic spline CHFIF. For prescribed
boundary conditions, an infinite number of cubic
spline CHFIFs can be constructed interpolating
the same data by changing free variables «,, con-
strained free variables 3,,, hidden variables ~,,, free
parameter z, or boundary conditions of self-affine
cubic spline fractal function. Thus, for simulating
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objects having non-self-affine or self-affine smooth
shapes, the cubic spline CHFIF offers more flexibil-
ity. It is felt that spline FIF should find rich appli-
cations since classical splines have vast applications
in CAM/CAD and other mathematical, engineer-
ing applications.'??? The self-affine and non-self-
affine nature of smooth objects in various scientific
applications can also be effectively captured with
the use of cubic spline CHFIF's.
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APPENDIX
In this section, the details of employing moments
My and M,; n=0,1,2,..., N in the construction

of cubic spline CHFIFs in Sec. 2 are given. Since f1”
is affine,

1 (Ln(2))

= anff @)+ g o) + BT

n=12,...,N. (A1)

Using Eq. (2.1) and Eq. (A1), k, = M} — M} _, —
an(My, — M§) — Bn(Mn — M) and 1, = M| —
an M — B, My. So, Eq. (A.1) reduces to

fl// (Ln(z)) = anflﬁ(x) + ﬁanN (z)
+ (M;—: - OénMX[ - ﬁnMN)(x - .’B())

IN — X
n (M, _y — anMg — By Mo)(zn — )
IN — X ’

Integrating the above equations twice and using Eq. (2.1), the cubic spline CHFIF satisfies
| OF; = a5, = B My) (o — 20)°

(L)) = a;i{anﬁ (2) + fufola)

6(.’BN — xo)

(M, — g — BuMo)(ex —2)* (M) — anMg — fuMo)(zy — o)z — )

+ n—1 "

6(1‘]\7 — .’B())

6

M — an M — B My ) @y — o) (2 — _ -
(M — an My — B My)(zn — o) (2 x0)+<yn l_anyo_ﬂnz())M

a2

6 = IN — X0
T—
+ (y—;—anyN—ﬁnzN) 70} n=1,2,...,N. (A.2)
ay TN — X0
Introduce the following notations:
—6an4+10041 —(anhy + 20041 hnt1) Pt
hp = Xy — Tp—1, C*:#, C, = , A= ——,
" " et " hn + hn+1 " hn + hn—l—l " hn + hn—l—l

J* = 6[(Ynt1 — Yn)/hni1 — (Yn — Yn—1)/hn] o 6(ani 10011 — @nn) YN — Yo

Py + g1 Iy + g1 IN — X
. 6(an+1ﬂn+1 - anﬂn) ZN — 20 + 6(an+1ﬂn+1fé(x0) - anﬂnfé(x]\/))
hn + hn+1 TN — o hn + thrl
ﬁnhn + 2ﬁn+1hn+1 MO + 2ﬁnhn + ﬁn—l—lhn—l—l MN
hn + hn+1 hn + hn+1
_(2anhn + an+1hn+1) % 6an o,
—1-\,, D, = . Df=-mn o —19,... N -1,
Hn " " hn + thrl " hn + thrl

dg = 6/h1[y1 — yo — enai(yn — o) — Brai(

ZN — 20)] + Bi[6ay f2' (x0) + 2k Mo + hi My,



Cg = 6(1 — aloq),

DN = 2(1 — aN)hN,

CO = 2(1 — Oél)hl,

Ao = hi,

Dy = —6(1 — anan),
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Dy = —aqhy,

Cn = —anhy,

UN = hn,
dy = —6/hnxlyn —yn—1 — anak(yn — yo)

— BnaX (zn — 20)] + By [hn Mo + 2hy My — 6an f2' (zn)]-

Using Eq. (A.2), we can write the functional relation for f{(z¢), continuity relations at f{(z,) for n =

1,2,---, N — 1, and the functional relation for f{(xy) in the matrix form as
i CS Cy ANJO O... O 0 0 Dy 0 7 _fll(xO)_ da 7
Cik Cl—i—,ul 22 0... 0 0 0 Dy DT Méﬁ dT
cs Co p2 2 X... 0 0 0 Dy D3 M; &
Cék 03 0 M3 2 ... 0 0 0 D3 D;g MQ* d§
: : N : : : : : : : (A.3)
Ci g Cnz 00 0... 2 Ay 0 Dn_s Dy | | Mi dy_3
01*\772 CN_Q 0 00 e UN—2 2 )\N_Q DN_Q D}kvfz ijif—l d}K\T—Q
Coh y Cno1 00 0... 0 puvy 2 Avoi+Dy1Di My dy
0 Oy 000... 0 0 puy Dy py | LW @yl L dy |

The system of Eqgs. (A.3) consisting of (N+1)x (N+
3) coefficient matrix has unknowns fi'(z¢), M,
Mik7"'aM]>:/af1/(xN)'

First an analogue of Eq. (A.3), can be con-
structed for the self-affine fractal function fo by
taking 8, = 0 and «, = <,. The solution of
the corresponding system of equations with suit-
able boundary conditions determines f5'(z¢) and
fo'(xn) and moments M,, n = 0,1,2,..., N of fo.

Next, using values of fo'(zo), fo/(zn), Mo, and My,
with suitable boundary conditions, the system of
Egs. (A.3) is solved and fi'(zo), Mg, M, ..., My,
and fi'(zx) are determined. These values of M,
and M}; n = 0,1,2,...,N are finally used in the

construction of a cubic spline CHFIF from the IFS
that is given by Eq. (2.8).



