
Research Article

Cubic Spline Method for a Generalized Black-Scholes Equation

Jian Huang and Zhongdi Cen

Institute of Mathematics, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China

Correspondence should be addressed to Zhongdi Cen; czdningbo@tom.com

Received 10 January 2014; Revised 6 February 2014; Accepted 6 February 2014; Published 6 March 2014

Academic Editor: Kim Meow Liew

Copyright © 2014 J. Huang and Z. Cen.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We develop a numerical method based on cubic polynomial spline approximations to solve a a generalized Black-Scholes equation.
We apply the implicit Euler method for the time discretization and a cubic polynomial spline method for the spatial discretization.
We show that the matrix associated with the discrete operator is an M-matrix, which ensures that the scheme is maximum-norm
stable. It is proved that the scheme is second-order convergent with respect to the spatial variable. Numerical examples demonstrate
the stability, convergence, and robustness of the scheme.

1. Introduction

An option is a tradable �nancial contract whose value
depends on the value of an underlying asset.�e buyer of the
contract obtains the right, but not the obligation, to buy or to
sell an asset at a speci�ed price on or before amaturity date. A
call option provides the right to buy the underlying asset for
a certain price, whereas a put option confers the right to sell
the underlying asset for a certain price. A European option
can only be exercised at thematurity date, while an American
option can be exercised at any time prior to its maturity date.
Black and Scholes [1] showed that the value of a European
option is governed by a second-order parabolic di	erential
equation with respect to the underlying asset price and time,
which is known as the Black-Scholes equation.�e value of an
American option is determined by a linear complementarity
problem or as a free boundary value problem involving the
Black-Scholes di	erential operator [2]. It is o
en necessary
to use numerical methods to solve these partial di	erential
equations, as analytic solutions are not generally available.

�ere are several numerical methods for the valuation of
European andAmerican options.�e �rst numerical method
for option pricing was the lattice method proposed in Cox
et al. [3] and was improved in Hull and White [4], which
is equivalent to an explicit time-stepping scheme. Since the
Black-Scholes equation with constant or space-independent
parameters can be transformed into a di	usion equation,
the �nite di	erence methods applied to constant-coe�cient
heat equations have also been developed (see, e.g., Schwartz

[5], Courtadon [6], Wilmott et al. [2], and Rogers and Talay
[7]) for pricing options. Vázquez [8] presented an upwind
numerical approach for the Black-Scholes equation. Cen and
Le [9–11] presented stable �nite di	erence schemes on a
piecewise uniformmesh for pricing European and American
options. Wang [12] and Angermann andWang [13] proposed
a �tted �nite volume method for the discretization of the
Black-Scholes equation. Rambeerich et al. [14] applied the
exponential time integration scheme to price options. Other
methods, such as meshless approach [15, 16], element-free
kp-Ritz method [17, 18], and element-free Galerkin method
[19], also can be used to solve the generalized Black-Scholes
equation.

�e spline collocation methods are useful methods for
solving partial di	erential equations. Spline solutions have
their own advantages. For example, once the solution has
been computed, the information between mesh points is
available. Numerical methods based on spline collocation
methods also have been used to solve option pricing prob-
lems. Christara et al. [20] proposed a quadratic spline
collocation method to the American option pricing prob-
lems. Holtz and Kunoth [21] developed a B-spline-based
monotone multigrid method for the valuation of American
options. Khabir and Patidar [22] applied a B-spline collo-
cation method to solve the heat equation which is obtained
from the Black-Scholes equation by an Euler transformation.
Kadalbajoo et al. [23, 24] used cubic B-spline collocation
methods for the Black-Scholes equation.
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In this paper, we present a numerical method based
on cubic polynomial spline to solve a generalized Black-
Scholes equation. We combine the implicit Euler method
for discretizing the time variable with the cubic polynomial
spline scheme for discretizing the spatial variable.�ematrix
associated with the discrete operator is an M-matrix, which
ensures that the scheme is maximum-norm stable. We will
show that the scheme is second-order convergent with
respect to the spatial variable. Numerical results support the
theoretical results.

�e rest of the paper is organized as follows. In the next
section, a generalized Black-Scholes equation is introduced.
�e temporal semidiscretization is described in Section 3.
�e spatial discretization is constructed in Section 4. �e
fully discrete scheme is presented in Section 5. Finally,
numerical experiments are provided to support these theo-
retical results in Section 6.

2. The Continuous Problem

We consider the following generalized Black-Scholes equa-
tion:

−�V�� − 12 �̂2 (�, �) �2 �
2
V��2 − � (�) ��V�� + � (�) V = 0,

(�, �) ∈ R
+ × (0, 	) , (1)

equipped with the terminal and boundary conditions

V (�, 	) = max (� − 
, 0) , � ∈ R
+,

V (0, �) = 0, � ∈ [0, 	] . (2)

Here, V(�, �) is the value of European call option at asset price� and at time �, 
 is the exercise price, 	 is the maturity, �(�) is
the risk-free interest rate, and �̂(�, �) is the volatility function
of underlying asset. When �̂ and � are constant functions, it
becomes the classical Black-Scholesmodel.�e existence and
uniqueness of a classical solution of (1)-(2) are well known
(see [25, 26]).

Note that (1) degenerates when � goes to zero. We trans-
form the Black-Scholes equations (1)-(2) into a nondegener-
ate partial di	erential equation by using a log transformation� = ln �

− ���� − 12�2 (�, �) �
2���2 − (� (�) − 12�2 (�, �)) ����+ � (�) � = 0, (�, �) ∈ R × (0, 	) ,

� (�, 	) = max (�� − 
, 0) , � ∈ R,
� (�, �) = 0, as � �→ −∞, � ∈ [0, 	] ,

(3)

where �(�, �) = V(�, �) = V(��, �) and �(�, �) = �̂(��, �).
For applying the numerical method, we truncate the

in�nite domain R × (0, 	) into a truncated domain Ω =(�min, �max)×(0, 	), where �min and �max are chosen properly
so that, for practical purposes, they do not a	ect the option
price. Based on Willmott et al.’s estimate [2] that the upper
bound of the asset price is typically three or four times the
strike price, it is reasonable for us to set �max = ln(4
),

while, for the lower bound of the asset price, since − ln(4
)
is negative enough, we take �min = − ln(4
) for convenience
in numerical experiments.�erefore, in the remaining of this
paper, we will consider the following problem:

− ���� − 12�2 (�, �) �
2���2 − (� (�) − 12�2 (�, �)) ����+ � (�) � = 0, (�, �) ∈ Ω,

� (�, 	) = max (�� − 
, 0) , � ∈ (�min, �max) ,� (�min, �) = 0, � ∈ [0, 	] ,
� (�max, �) = ��max − 
�−∫�� �(�)d�, � ∈ [0, 	] .

(4)

Here, the right boundary condition is chosen according to
Vázquez [8]. Normally, this truncation of the domain leads
to a negligible error in the value of the option [25].

3. The Temporal Semidiscretization

To approximate the solution (4), �rst, we apply the implicit
Euler method to discretize the temporal variable. �is
scheme, on a uniform mesh

Ω� = {�� = �Δ�, 0 ≤ � ≤ �, Δ� = 	�} , (5)

reads

�� = � (�, 	) = max (�� − 
, 0) ,
(� + Δ���) �� (�) = ��+1 (�) ,
�� (�min) = 0,
�� (�max) = ��max − 
�−∫��� �(�)d�,

for � = � − 1, . . . , 1, 0,

(6)

where

���� (�) = −12(��(�))
2  2�� �2

− (�� − 12(��(�))
2)  �� �

+ ���� (�) ,
(7)

and ��(�) denotes the approximation of the exact solution�(�, �) at the time level ��.
Similarly to Kellogg and Tsan [27], we can prove that the

di	erential operator (�+Δ���) satis�es amaximumprinciple,
and, consequently,

!!!!!(� + Δ���)−1!!!!!∞ ≤ 11 + �Δ� . (8)

Hence, we can obtain the following result.

Lemma 1. �e temporal semidiscretization scheme (6) is
unconditionally stable.
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Estimates for the global error are deduced from appropri-
ate bounds of the local error, where the auxiliary problem

(� + Δ���) �̂� = � (�, ��+1) ,
�̂� (�min) = 0,

�̂� (�max) = ��max − 
�−∫��� �(�)d�,
(9)

is introduced to de�ne the local error.

Lemma 2 (local error estimate). �e local error associated
with the method (9), de�ned by �� = �(�, ��) − �̂�(�), satis�es!!!!!��!!!!!∞ = " ((Δ�)2) . (10)

Proof. Using Taylor expansion, we have

−� (�, ��+1) − � (�, ��)Δ� = −�	 (�, ��) + " (Δ�)
= −��� (�, ��) + " (Δ�) ,

(11)

for 1 ≤ � < �. From (9) and (11), it is straightforward to show
that the local error is the solution of the problem

(� + Δ���) �� = " ((Δ�)2) ,
�� (�min) = �� (�max) = 0, (12)

and, therefore, the result follows from themaximumprinciple
for the operator (� + Δ���).
Lemma 3 (global error estimate). �e global error associated

with the implicit Euler method (6), given by 
� = �(�, ��) −��(�), satis�es

 = sup
�≤�

!!!!!
�!!!!!∞ = " (Δ�) , (13)

and, therefore, the temporal semidiscretization scheme is a �rst-
order convergent scheme.

Proof. �e global truncation error at time �� can be decom-
posed as


� = � (�, ��) − �� (�)
= (� (�, ��) − �̂� (�)) + (�̂� (�) − �� (�)) . (14)

By relations (6) and (9), we have

(� + Δ���) (�̂� (�) − �� (�)) = � (�, ��+1) − ��+1 (�) . (15)

Applying the maximum principle for the operator (�+Δ���),
we can obtain!!!!!�̂�(�) − ��(�)!!!!!∞ ≤ 11 + �Δ�!!!!!�(�, ��+1) − ��+1(�)!!!!!∞. (16)

�us, from (14)–(16), we have!!!!!
�!!!!!∞ ≤ # (!!!!!��!!!!!∞ + !!!!!��+1!!!!!∞ + ⋅ ⋅ ⋅ + !!!!!��!!!!!∞)≤ #Δ�, (17)

for 0 ≤ � ≤ �, where # is a positive constant independent
from Δ�.

4. The Spatial Discretization

For the approximate solution of the semidiscretization prob-
lem (6), the spatial discretization is performed on a uniform
mesh

Ω� = {�� = &ℎ, 0 ≤ & ≤ *, ℎ = (�max − �min)* } , (18)

for the computational domain [�min, �max].�us, at each time
point ��, we apply a cubic spline scheme on the above uniform

mesh Ω� to approximate problem (6).

Let ��Δ(�) be the approximate solution of the exact

solution ��(�) of the boundary value problem (6) at the �th
time level. At each subinterval [��, ��+1], the cubic spline

function ��Δ(�) has the following form:

��Δ (�) = /�� + 3�� (� − ��) + 5�� (� − ��)2
+  �� (� − ��)3, & = 0, 1, . . . , * − 1, (19)

where /�� , 3�� , 5�� , and  �� are constants. Using the notation6��
for approximation of ��(�) at mesh points �� and ��Δ(��) =
6�� , ��Δ(��+1) = 6��+1 as interpolatory constraints. From
algebraic manipulation, we can obtain

/�� = 6�� ,
3�� = 6��+1 − 6��ℎ − ℎ (7��+1 −7�� )6 ,
5�� = 7��2 ,
 �� = 7��+1 −7��6ℎ ,

(20)

where 7�� = (��Δ)��(��). Using the continuity of the �rst
derivative at mesh point ��, we get the following equation:

7��+1 + 47�� +7��−1 = 6ℎ2 (6��+1 − 26�� + 6��−1) . (21)

Substituting

7�� = −2��+1� − Δ� (2�� − (��� )2) ���,� + 2 (1 + Δ���) ���
Δ�(��� )2

(22)

in (21) and using the following approximations for �rst-order

derivative of ��
���,� ≃ 6��+1 − 6��−12ℎ ,

���,�+1 ≃ 36��+1 − 46�� + 6��−12ℎ ,

���,�−1 ≃ −6��+1 + 46�� − 36��−12ℎ ,

(23)
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we get the following spline di	erence scheme:

��6�� = 2ℎ2
(���−1)2

6�+1�−1 + 8ℎ2
(��� )2

6�+1�
+ 2ℎ2
(���+1)2

6�+1�+1 , & = 1, 2, . . . , * − 1,

6�0 = 0, 6�� = ��max − 
�−∫��� �(�)d�,

(24)

where

��6�� = [
[
−6Δ� − 12ℎΔ�B��+1 + 2ℎΔ�B��

+32ℎΔ�B��−1 +
2ℎ2 (1 + Δ���)

(���−1)2
]
]
6��−1

+ [
[
12Δ� + 2ℎΔ�B��+1 − 2ℎΔ�B��−1

+8ℎ2 (1 + Δ���)(��� )2
]
]
6��

+ [
[
−6Δ� − 32ℎΔ�B��+1 − 2ℎΔ�B��

+12ℎΔ�B��−1 +
2ℎ2 (1 + Δ���)

(���+1)2
]
]
6��+1

(25)

and B�� = 2��/(��� )2 − 1.
It is easy to see that thematrix associated with the discrete

operator�� is anM-matrix for su�ciently small ℎ. Hence, the
following discrete maximum principle holds true.

Lemma 4 (discrete maximum principle). For su�ciently

small ℎ, the operator �� de�ned by (25) on the uniform meshΩ� satis�es a discrete maximum principle; that is, if F is a

mesh function that satis�es F0 ≥ 0, F� ≥ 0, and ��F� ≥0 (1 ≤ & < *), then F� ≥ 0, for all &.
From the above lemma, we can conclude that the spatial

discretization scheme (24) is maximum-norm stable.
To prove the convergence of the spline di	erence scheme,

we discretize the auxiliary problem (9) and obtain

��6̂�� = 2ℎ2
(���−1)2

� (��−1, ��+1) + 8ℎ2
(��� )2

� (��, ��+1)

+ 2ℎ2
(���+1)2

� (��+1, ��+1) , & = 1, 2, . . . , * − 1,

6̂�0 = 0, 6̂�� = ��max − 
�−∫��� �(�)d�.
(26)

Lemma 5. Let �̂�(�) be the solution of (9) and {6̂�� } be the
solution of (26). �en, we have the following error estimate:

IIIII�̂� (��) − 6̂�� IIIII ≤ #ℎ2Δ�, 0 ≤ & ≤ *. (27)

Proof. We use a Taylor expansion at � = �� to obtain the
following local truncation error estimate:

IIIII�� (�̂�� − 6̂�� )IIIII =
IIIIIIIIIIII
���̂�� − 2ℎ2

(���−1)2
� (��−1, ��+1)

− 8ℎ2
(��� )2

� (��, ��+1)

− 2ℎ2
(���+1)2

� (��+1, ��+1)
IIIIIIIIIIII

=
IIIIIIIIIIII
���̂�� − 2ℎ2

(���−1)2
(� + Δ���) �̂��−1

− 8ℎ2
(��� )2

(� + Δ���) �̂��

− 2ℎ2
(���+1)2

(� + Δ���) �̂��+1
IIIIIIIIIIII

≤ 13ℎ4Δ� (IIIIIB��−1IIIII + 2 IIIIIB�� IIIII + IIIIIB��+1IIIII)
× IIIIIIIII

 3�̂� �3 (J�)
IIIIIIIII≤ #ℎ4Δ�.

(28)

Hence, using the discrete maximum principle (Lemma 4) for

the discrete operator ��, we have
IIIII�̂� (��) − 6̂�� IIIII ≤ #ℎ2Δ�, 0 ≤ & ≤ *, (29)

which completes the proof.

5. The Fully Discrete Scheme

Combining the time semidiscretization scheme (6) with
the spatial discretization scheme (24), we can obtain the
following fully discretization scheme:

6�� = max (�� − 
, 0) ,
��6�� = 2ℎ2

(���−1)2
6�+1�−1 + 8ℎ2

(��� )2
6�+1�

+ 2ℎ2
(���+1)2

6�+1�+1 , 1 ≤ & < *,

6�0 = 0, 6�� = ��max − 
�−∫��� �(�)d�,
for � = � − 1, . . . , 1, 0,

(30)
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where the discrete operators �� are described in Section 4

and 6�� is the fully discrete approximation to the exact
solution of (4) at the mesh point (��, ��).

Now,we can get themain result for our di	erence scheme.

�eorem 6. Let �(�, �) be the exact solution of (4) and let 6
be the discrete solution of the fully discrete scheme (30). �en,
the global error of our di	erence scheme satis�es

IIIII� (��, ��) − 6�� IIIII ≤ # (ℎ2 + Δ�) , 0 ≤ & ≤ *, 0 ≤ � ≤ �,
(31)

where # is a positive constant independent of ℎ and Δ�.
Proof. �e global error at the time �� can be decomposed in
the form

IIIII� (��, ��) − 6�� IIIII ≤ IIIII� (��, ��) − �̂� (��)IIIII
+ IIIII�̂� (��) − 6̂�� IIIII + IIIII6̂�� − 6�� IIIII .

(32)

From Lemmas 2 and 5, we can obtain

IIIII� (��, ��) − 6�� IIIII ≤ #Δ� (ℎ2 + Δ�) + IIIII6̂�� − 6�� IIIII . (33)

Further, it is easy to see that 6̂� − 6� can be written as the
solution of one step of (30) with zero boundary conditions

and �(�, ��+1) − 6�+1 as the �nal value. Applying the stability
of the discrete scheme (Lemma 4), we have

IIIII6̂�� − 6�� IIIII ≤ #!!!!!� (�, ��+1) − 6�+1!!!!!∞. (34)

�en, from (33) and (34), a recurrence relation for the global
errors follows, and, from it, the result of �eorem 6 can be
obtained immediately.

6. Numerical Experiments

In this section, we present some numerical results to examine
the performance and convergence of the cubic splinemethod.
Errors and convergence rates for the numerical scheme are
presented for three examples.

Example 1. European call option with parameters: � =0.4, � = 0.08, 	 = 1, 
 = 1, �min = − ln(4
), and �max =
ln(4
): in this case, the analytical solution is

V (�, K) = �* ( 1) − 
�−�(�−�)*( 2) , (35)

where

*(�) = 1√2M ∫�
−∞

�−�2/2dO,
 1 (�, K) = ln (�/
) + (� + (1/2) �2) (	 − K)

�√	 − K ,
 2 (�, K) =  1 (�, K) − �√	 − K.

(36)

�emaximum error is given in Table 1.�e analytical and
numerical solution pro�les are given in Figure 1.

Table 1: Numerical results for Example 1.

* � Error ��,� Rate ��,�
8 4 1.2469� − 02 —

16 16 2.9318� − 03 2.089

32 64 7.2583� − 04 2.014

64 256 1.8143� − 04 2.000

128 1024 4.5346� − 05 2.000

Table 2: Numerical results for Example 2.

* � Error ��,� Rate ��,�
8 4 1.8366� − 02 —

16 16 6.7729� − 03 1.439

32 64 1.4290� − 03 2.245

64 256 3.6112� − 04 1.985

128 1024 8.9871� − 05 2.007

Table 3: Numerical results for Example 3.

* � Error ��,� Rate ��,�
8 4 1.8364� − 02 —

16 16 6.7715� − 03 1.439

32 64 1.4277� − 03 2.246

64 256 3.5967� − 04 1.989

128 1024 8.8418� − 05 2.024

Example 2. European call option with parameters: � =0.1, � = 0.06, 	 = 1, 
 = 1, �min = − ln(4
) and �max =
ln(4
): as in Example 1, in this case, the analytical solution is
known.

�emaximum error is given in Table 1.�e analytical and
numerical solution pro�les are given in Figure 2.

Example 3. European call option with parameters: �(�, K) =0.15(0.5+2K)((�/100−1.2)2/((�/100)2+1.44)), � = 0.06, 	 =1, 
 = 1, �min = − ln(4
), and �max = ln(4
): here, the
volatility function �(�, K) is the same as the one given in
Toivanen [28] and Kadalbajoo et al. [23, 24].

In this case, the exact solution is not known. We use the
approximated solution of * = 2048 and � = 4096 as the
exact solution. We present the error estimates for di	erent*
and�. Let62048,4096 denote “the exact solution.”Wemeasure
the accuracy in the discrete maximum norm

��,� = max
�,�

IIIII6�,��� − 62048,4096�,�
IIIII (37)

and the convergence rate

S�,� = log2 ( ��,��2�,4�) . (38)

�e error estimates and convergence rates are listed in
Table 3. �e analytical and numerical solution pro�les are
given in Figure 3.

From Figures ( 1)–( 3), it is seen that the numerical
solutions by our method are nonoscillatory. From Tables 1,
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Figure 1: Option value at � = 0 for Example 1.
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Figure 2: Option value at � = 0 for Example 2.

2, and 3, we see that ��,�/�2�,4� is close to 4, which supports
the convergence estimate of�eorem 6.�ey indicate that the
theoretical results are fairly sharp.
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