Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 484362, 7 pages
http://dx.doi.org/10.1155/2014/484362

Research Article

Hindawi

Cubic Spline Method for a Generalized Black-Scholes Equation

Jian Huang and Zhongdi Cen

Institute of Mathematics, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China

Correspondence should be addressed to Zhongdi Cen; czdningbo@tom.com

Received 10 January 2014; Revised 6 February 2014; Accepted 6 February 2014; Published 6 March 2014

Academic Editor: Kim Meow Liew

Copyright © 2014 J. Huang and Z. Cen. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We develop a numerical method based on cubic polynomial spline approximations to solve a a generalized Black-Scholes equation.
We apply the implicit Euler method for the time discretization and a cubic polynomial spline method for the spatial discretization.
We show that the matrix associated with the discrete operator is an M-matrix, which ensures that the scheme is maximum-norm
stable. It is proved that the scheme is second-order convergent with respect to the spatial variable. Numerical examples demonstrate

the stability, convergence, and robustness of the scheme.

1. Introduction

An option is a tradable financial contract whose value
depends on the value of an underlying asset. The buyer of the
contract obtains the right, but not the obligation, to buy or to
sell an asset at a specified price on or before a maturity date. A
call option provides the right to buy the underlying asset for
a certain price, whereas a put option confers the right to sell
the underlying asset for a certain price. A European option
can only be exercised at the maturity date, while an American
option can be exercised at any time prior to its maturity date.
Black and Scholes [1] showed that the value of a European
option is governed by a second-order parabolic differential
equation with respect to the underlying asset price and time,
which is known as the Black-Scholes equation. The value of an
American option is determined by a linear complementarity
problem or as a free boundary value problem involving the
Black-Scholes differential operator [2]. It is often necessary
to use numerical methods to solve these partial differential
equations, as analytic solutions are not generally available.
There are several numerical methods for the valuation of
European and American options. The first numerical method
for option pricing was the lattice method proposed in Cox
et al. [3] and was improved in Hull and White [4], which
is equivalent to an explicit time-stepping scheme. Since the
Black-Scholes equation with constant or space-independent
parameters can be transformed into a diffusion equation,
the finite difference methods applied to constant-coefficient
heat equations have also been developed (see, e.g., Schwartz

[5], Courtadon [6], Wilmott et al. [2], and Rogers and Talay
[7]) for pricing options. Vazquez [8] presented an upwind
numerical approach for the Black-Scholes equation. Cen and
Le [9-11] presented stable finite difference schemes on a
piecewise uniform mesh for pricing European and American
options. Wang [12] and Angermann and Wang [13] proposed
a fitted finite volume method for the discretization of the
Black-Scholes equation. Rambeerich et al. [14] applied the
exponential time integration scheme to price options. Other
methods, such as meshless approach [15, 16], element-free
kp-Ritz method [17, 18], and element-free Galerkin method
[19], also can be used to solve the generalized Black-Scholes
equation.

The spline collocation methods are useful methods for
solving partial differential equations. Spline solutions have
their own advantages. For example, once the solution has
been computed, the information between mesh points is
available. Numerical methods based on spline collocation
methods also have been used to solve option pricing prob-
lems. Christara et al. [20] proposed a quadratic spline
collocation method to the American option pricing prob-
lems. Holtz and Kunoth [21] developed a B-spline-based
monotone multigrid method for the valuation of American
options. Khabir and Patidar [22] applied a B-spline collo-
cation method to solve the heat equation which is obtained
from the Black-Scholes equation by an Euler transformation.
Kadalbajoo et al. [23, 24] used cubic B-spline collocation
methods for the Black-Scholes equation.



In this paper, we present a numerical method based
on cubic polynomial spline to solve a generalized Black-
Scholes equation. We combine the implicit Euler method
for discretizing the time variable with the cubic polynomial
spline scheme for discretizing the spatial variable. The matrix
associated with the discrete operator is an M-matrix, which
ensures that the scheme is maximum-norm stable. We will
show that the scheme is second-order convergent with
respect to the spatial variable. Numerical results support the
theoretical results.

The rest of the paper is organized as follows. In the next
section, a generalized Black-Scholes equation is introduced.
The temporal semidiscretization is described in Section 3.
The spatial discretization is constructed in Section 4. The
fully discrete scheme is presented in Section 5. Finally,
numerical experiments are provided to support these theo-
retical results in Section 6.

2. The Continuous Problem

We consider the following generalized Black-Scholes equa-
tion:
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equipped with the terminal and boundary conditions

v(S,T) = max (S—E,0), x¢eR",
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Here, v(S, t) is the value of European call option at asset price
Sand at time t, E is the exercise price, T is the maturity, r(t) is
the risk-free interest rate, and &'(S, t) is the volatility function
of underlying asset. When & and r are constant functions, it
becomes the classical Black-Scholes model. The existence and
uniqueness of a classical solution of (1)-(2) are well known
(see [25, 26]).

Note that (1) degenerates when S goes to zero. We trans-
form the Black-Scholes equations (1)-(2) into a nondegener-
ate partial differential equation by using a log transformation
x=1InS
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where u(x,t) = v(S,t) = v(e*, t) and o(x,t) = 7(e*, t).

For applying the numerical method, we truncate the
infinite domain R x (0,T) into a truncated domain Q =
(Xmin> Xmax) X (0, T), where x_;, and x,,. are chosen properly
so that, for practical purposes, they do not affect the option
price. Based on Willmott et al’s estimate [2] that the upper
bound of the asset price is typically three or four times the
strike price, it is reasonable for us to set x = In(4E),

max
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while, for the lower bound of the asset price, since —In(4E)
is negative enough, we take x,;, = —In(4E) for convenience
in numerical experiments. Therefore, in the remaining of this
paper, we will consider the following problem:
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Here, the right boundary condition is chosen according to

Vazquez [8]. Normally, this truncation of the domain leads
to a negligible error in the value of the option [25].

3. The Temporal Semidiscretization

To approximate the solution (4), first, we apply the implicit
Euler method to discretize the temporal variable. This
scheme, on a uniform mesh

Q ={tj=jAt,OsjsK,At=£}, (5)
reads
u* = u(x,T) = max (e* - E,0),
(I+AtL)u (x) = /"' (x),
W (Xpin) = 0, (6)
W () = = B 1,
for j=K-1,...,1,0,
where
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and 1/(x) denotes the approximation of the exact solution
u(x, t) at the time level t.

Similarly to Kellogg and Tsan [27], we can prove that the
differential operator (I+AtL, ) satisfies a maximum principle,
and, consequently,

(8)

N

Hence, we can obtain the following result.

Lemma 1. The temporal semidiscretization scheme (6) is
unconditionally stable.
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Estimates for the global error are deduced from appropri-
ate bounds of the local error, where the auxiliary problem

(T+AtL )@ =u(xty,),
aj (xmin) = 0’ (9)
T
aj (xmax) = gFm Ee_ Lj r(S)dS’

is introduced to define the local error.

Lemma 2 (local error estimate). The local error associated
with the method (9), defined by ¢’ = u(x, t) - i (x), satisfies

'], = o (ae). (10)
Proof. Using Taylor expansion, we have

_u(x, th) - u(x, tj)
At

= —u, (x, tj) + O (At) )

=-L.u (x, tj) + O (At),

for1 < j < K. From (9) and (11), it is straightforward to show
that the local error is the solution of the problem

(I+AtL,)el =0((an?),
=0,

(12)

= eJ (xmax)
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and, therefore, the result follows from the maximum principle
for the operator (I + AtL,). O

Lemma 3 (global error estimate). The global error associated
with the implicit Euler method (6), given by E/ = u(x,t;) -
w (x), satisfies

E-= ig}g"E’ | =0, (13)

and, therefore, the temporal semidiscretization scheme is a first-
order convergent scheme.

Proof. The global truncation error at time ¢; can be decom-
posed as

E = u(x, t]-) - (x)
= (u (x, tj) — i (x)) + (ﬁj (x) - (x)). (14)

By relations (6) and (9), we have
(I+AtL,) (ﬁj (x) — o (x)) =u (x, tjﬂ) - (x). (15)

Applying the maximum principle for the operator (I + AtL,),
we can obtain

- vl <

Thus, from (14)-(16), we have

[E] = CUeloo + bl + 10) )
< CAt,
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for 0 < j < K, where C is a positive constant independent
from At. O

4. The Spatial Discretization

For the approximate solution of the semidiscretization prob-
lem (6), the spatial discretization is performed on a uniform
mesh

ﬁNz{xiZih,OSiSN>h=W}> (18)

for the computational domain [x,;,, X ... Thus, at each time
pointt;, we apply a cubic spline scheme on the above uniform

mesh QY to approximate problem (6).
Let S}(x) be the approximate solution of the exact

solution 1/(x) of the boundary value problem (6) at the jth
time level. At each subinterval [x;, x;,,], the cubic spline

function Si(x) has the following form:

Sh(x)=al +b/ (x—x;) +(x - x;)

j (19)
+d{(x—xi)3) i=0,1,...,N—1,

where a/, bij , ¢/, and d] are constants. Using the notation Uij
for approximation of u/(x) at mesh points x; and S} (x;) =
U/, S]A (x;41) U/, as interpolatory constraints. From
algebraic manipulation, we can obtain

J_17i
a; =U;,
i i j j
b — Ul -ul k(M - M)
' h 6 ’
oM (20)
d=—,
! 2
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i 6h

: -
where MIJ = (SJA) (x;). Using the continuity of the first
derivative at mesh point x;, we get the following equation:

M +aM] + M| = o (UL, -2u/+Ul). (@
Substituting
200t At (er - (G.j)z) Wo+2 (1 + Atrj) u
M] _ 1 1 X,1 1

1 At(oij)z )
22

in (21) and using the following approximations for first-order
derivative of 1/

j j
i Uin Uy
Bl ST
j Jj j
W= 3U;, —4U; + U, (23)
X,i+1 2]’1 >
Jj j Jj
W= —Uj,, +4U; - 3U, ’

x,i—1 Zh



we get the following spline difference scheme:
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and p! = 2r/(07)" - 1.
It is easy to see that the matrix associated with the discrete
operator L is an M-matrix for sufficiently small 4. Hence, the
following discrete maximum principle holds true.

Lemma 4 (discrete maximum principle). For sufficiently
small h, the operator L~ defined by (25) on the uniform mesh
QN satisfies a discrete maximum principle; that is, if w is a
mesh function that satisfies w, > 0, wy = 0, and LNw; >
0 (1<i<N),thenw; >0, foralli.

From the above lemma, we can conclude that the spatial
discretization scheme (24) is maximum-norm stable.

To prove the convergence of the spline difference scheme,
we discretize the auxiliary problem (9) and obtain

2K 8h?
O
2
+L2u(xi+l’tj+1), i=1,2,...,N—1,

LNU/ =

[A]z]\] = ¢*mx _ Fe J’: r(s)ds.
(26)
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Lemma 5. Let i/ (x) be the solution of (9) and {U\ij} be the
solution of (26). Then, we have the following error estimate:

|/ (x)-U]| <cr’at, 0<i<N. (27)

Proof. We use a Taylor expansion at x = x; to obtain the
following local truncation error estimate:
210
2
i
C)
8h’
— 7” (x,-, tj+1)

g;

'LN (ﬁf —ﬁlj)' = LNﬁ{ - u(xi_l,th)

hZ
_(02].—)21/‘ (xi+1’ tj+1)
i+1

2
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=|LNal - = (1+atL)al (29
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20 "
= (I+AtL,)al,,
Oi1
< §h4At (|Pz!71' +2 |Pz]| + |P{+1')
AP
e &)
< Ch*At.

Hence, using the discrete maximum principle (Lemma 4) for
the discrete operator LV, we have

|ﬁj (x;) - U,J| <CHAt, 0<i<N, (29)

which completes the proof. O

5. The Fully Discrete Scheme

Combining the time semidiscretization scheme (6) with
the spatial discretization scheme (24), we can obtain the
following fully discretization scheme:

UlK = max (ex - E) O) >
j 2h? : s .
Nu/ j*l j+1
LU = j sUi ; U,
0"1) (Ui)
L - (30)
] sUi1» 1<i<N,
(Gi+1)
T
Ué =0, UI]\T —¢'mx _ [ .[zj r(s)ds
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where the discrete operators LV are described in Section 4

and Uij is the fully discrete approximation to the exact
solution of (4) at the mesh point (x;, t i)
Now, we can get the main result for our difference scheme.

Theorem 6. Let u(x,t) be the exact solution of (4) and let U
be the discrete solution of the fully discrete scheme (30). Then,
the global error of our difference scheme satisfies

u(xpt;)-Ul| < C (K +At), 0<i<N,0<j<K,
(D)

where C is a positive constant independent of h and At.

Proof. The global error at the time ¢; can be decomposed in
the form

|u (x,-,tj) —Uij| < 'u (x,-,tj) — i (xl-)|

() -ol o -v].
From Lemmas 2 and 5, we can obtain
|u(xpt;) - U < Cat (W + at) + 0] -UI|. (33)

Further, it is easy to see that U7 — U’/ can be written as the
solution of one step of (30) with zero boundary conditions
and u(x,t,,) - U’ *1 as the final value. Applying the stability
of the discrete scheme (Lemma 4), we have

. 4 .
|/ - U!| < Cllu(xt5,) - U™ . (34)
Then, from (33) and (34), a recurrence relation for the global
errors follows, and, from it, the result of Theorem 6 can be
obtained immediately. O

6. Numerical Experiments

In this section, we present some numerical results to examine
the performance and convergence of the cubic spline method.
Errors and convergence rates for the numerical scheme are
presented for three examples.

Example 1. European call option with parameters: 0 =
04,7 =008, T =1,E=1,x = —In(4E), and x

min

In(4E): in this case, the analytical solution is

max

v(S,7) = SN (d,) - Ee "IN (d,), (35)
where
_ L[ e
N (x) - V21 J—oo ¢ dy’
In (S/E) + (r+ (1/2) 0®) (T - 7) (36)
d bl = bl
157 oVT -7

d,(S,1)=d, (S, 1) —oVT - 1.

The maximum error is given in Table 1. The analytical and
numerical solution profiles are given in Figure 1.

5
TABLE 1: Numerical results for Example 1.
N K Error ™% Rate ™K
8 4 1.246%e - 02 —
16 16 2.9318e - 03 2.089
32 64 7.2583e — 04 2.014
64 256 1.8143e — 04 2.000
128 1024 4.5346e — 05 2.000
TABLE 2: Numerical results for Example 2.
N K Error e™X Rate r™K
8 4 1.8366e — 02 —
16 16 6.7729e — 03 1.439
32 64 1.4290e - 03 2.245
64 256 3.6112e - 04 1.985
128 1024 8.9871e - 05 2.007
TABLE 3: Numerical results for Example 3.
N K Error e™X Rate ™K
8 4 1.8364e — 02 —
16 16 6.7715e — 03 1.439
32 64 1.4277e - 03 2.246
64 256 3.5967e — 04 1.989
128 1024 8.8418¢e - 05 2.024

Example 2. European call option with parameters: ¢ =
0.1, =006, T = 1,E = 1, xp;, = —In(4E) and x,,,,
In(4E): as in Example 1, in this case, the analytical solution is
known.

The maximum error is given in Table 1. The analytical and

numerical solution profiles are given in Figure 2.

Example 3. European call option with parameters: o(S, 1) =
0.15(0.5+27)((S/100—1.2)*/((S/100)* +1.44)), r = 0.06, T =
LE = 1,x,;,, = —In(4E), and x,,,, = In(4E): here, the
volatility function o(S, 1) is the same as the one given in
Toivanen [28] and Kadalbajoo et al. [23, 24].

In this case, the exact solution is not known. We use the
approximated solution of N = 2048 and K = 4096 as the
exact solution. We present the error estimates for different N
and K. Let U***®%%% denote “the exact solution.” We measure
the accuracy in the discrete maximum norm

N,K

s N,K 2048,4096
e —max'l}i. - U
ij ] L]

(37)

and the convergence rate

NK eN,K
R =10g2 m . (38)

The error estimates and convergence rates are listed in
Table 3. The analytical and numerical solution profiles are
given in Figure 3.

From Figures (1)-(3), it is seen that the numerical
solutions by our method are nonoscillatory. From Tables 1,
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3.5
3
—
o
=1
g
a
)

Asset price

— v(S,0)
—*— U(e*,0)

FIGURE 2: Option value at ¢ = 0 for Example 2.

2, and 3, we see that e /e*™*K is close to 4, which supports
the convergence estimate of Theorem 6. They indicate that the
theoretical results are fairly sharp.
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