
cuBLASTP: Fine-Grained Parallelization of Protein Sequence
Search on a GPU

Jing Zhang1, Hao Wang1, Heshan Lin1, and Wu-chun Feng1,2

1Department of Computer Science and 2Department of Electrical and Computer Engineering
Virginia Tech

{zjing14, hwang121, hlin2, wfeng}@vt.edu

 BLAST, short for Basic Local Alignment Search Tool, is a fundamental algorithm in the life
sciences that compares biological sequences [1.2].

 With the advent of next-generation sequencing (NGS), the exponential growth of
sequence databases is arguably outstripping our ability to analyze the data.

 The previous studies [3.4.5.6] for accelerating BLAST on GPU used coarse-grained
parallel approaches, (i.e. one sequence alignment is mapped to only one thread), which
are not adapted to GPU architecture and cannot solve the irregular memory access in
BLAST.

 Our goal is to propose a faster GPU-BLAST using the fine-grained multithreaded
approach.

Introduction
 For the critical phases, i.e., hit detection and ungapped extension, cuBLASTP has up to

7.8x speedup over a single-thread FSA-BLAST[8], and up to 2.9x speedup over the
multithreaded NCBI-BLAST[9] on a quad-core CPU. Moreover, by overlapping the data
transfer and the kernel execution, our implementation delivers 4.7x and 3x speedup
(since cuBLASTP is based on FSA-BLAST, which is faster than NCBI-BLAST, the overall
speedup of cuBLASTP over NCBI-BLAST is higher than the speedup for critical phases) for
the overall program execution.

 Compared to GPU-BLAST, which is the existing fastest GPU implementation of BLAST [7],
cuBLASTP has up to 2.8x speedup for critical phases, and up to 1.8x speedup for overall
performance.

Results

 We propose cuBLASTP, an efficient fine-grained BLASTP for GPU using the CUDA
programming model.

 In cuBLASTP, we decoupled most time-consuming stages - hit detection and ungapped
extension - into separate kernels to apply multiple strategies on different memory access
patterns, and added an additional stage: sorting and filtering, to reorganize intermediate
results.

 cuBLASTP has up to 7.8x speedup over FSA-BLAST on a single core and 2.9x speedup
over NCBI-BLAST on a quad-core CPU for the critical phases, and up to 4.7x speedup and
3x speedup for the overall performance, respectively.

 Compared with GPU-BLAST, the existing fastest BLAST on GPU: GPU-BLAST, cuBLASTP
has up to 2.8x speedup for the critical phases and up to 1.8x speedup for the overall
performance.

Conclusions

References
1. S. F. Altschul, et al., “Gapped BLAST and PSI-BLAST: a New Generation of Protein Database Search Programs”, Nucleic Acids Research,

25, pp. 3389-3402, 1997.
2. Stephen Altschul, et al., “Basic Local Alignment Search Tool”, Journal of Molecular Biology, 215:403-410, 1990.
3. W. Liu, et al., “Cuda-blastp: Accelerating BLASTp on CUDA-Enabled Graphics Hardware”. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 8(6):1678–1684, 2011
4. S. Xiao, et al., “Accelerating Protein Sequence Search in a Heterogeneous Computing System”, IPDPS ’11, 2011.
5. P. D. Vouzis, et al., “GPU-BLAST: Using Graphics Processors to Accelerate Protein Sequence Alignment”, Bioinformatics, 27(2):182–

188, 2011.
6. C. Ling, et al., “Design And Implementation of a CUDA-compatible GPU-based Core for Gapped BLAST Algorithm”, In P. M. A. Sloot, G.

D. van Albada, and J. Dongarra, editors, ICCS, volume 1 of Procedia Computer Science, pages 495–504. Elsevier, 2010.
7. D. Glasco, “An Analysis of BLASTP Implementation on NVIDIA GPUs”, http://biochem218.stanford.edu/Projects%202012/Glasco.pdf
8. FSA-BLAST. Get FSA-BLAST at SourceForge.net. http://sourceforge.net/projects/fsa-blast/
9. NCBI-BLAST. Get NCBI-BLAST at ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/

BLAST Algorithm
 BLAST is a family of algorithms with variants used for different searching alignments,

e.g., BLASTp for protein sequence, BLASTn for nucleotide sequence.

 BLAST is a heuristic method that approximates the Smith-Waterman algorithm,
searching for similarities between a short query sequence and a large set of database
sequences (subject sequences).

 BLAST algorithm locate high scoring short matches (i.e., hits) between the query
sequence and the subject sequences, and extend hits to longer alignments. Four stages
of BLAST are presented as below (Fig. 1):

1. Hit detection identifies high scoring short matches (i.e., hits) with a fixed length
between a query sequence and the subject sequences via Deterministic Finite
Automaton (DFA) or lookup table.

2. Ungapped extension determines whether multiple hits can form the basis of a
local alignment without insertions and deletions of residues. Extensions are
triggered only if distances of two neighboring hits are within a threshold.

3. Gapped extension performs the further extension based on alignments from the
previous stage and allows gaps.

4. Gapped alignment with traceback re-scores all alignments from the previous stage
using a traceback algorithm.

 Stage one and two are most time-consuming phases, taking 75% of execution time.
Thus, our studies currently focus on these two stages.

Subject:...CL-PIXYAALGDLPLIYPFLVNDPABC...
Query:...CFAJ-PDALLGPLPNIYPFIVNDPGEG...

Gapped Extension

Ungapped Extension

Hit Detection

Figure 1. First Three Stages of BLAST Execution

Chart 2. Overall speedup of cuBLASTP over FSA-BLASTP. 4t means the program runs with 4 threads; F
means the program runs on NVIDIA Fermi GPU; K means the program runs on NVIDIA Kepler GPU.

Chart 1. Speedup of cuBLASTP over FSA-BLASTP for critical phases. 4t means the program runs with 4
threads; F means the program runs on NVIDIA Fermi GPU; K means the program runs on NVIDIA Kepler
GPU.

0
1
2
3
4
5
6
7
8
9

query127 query517 query1054

Sp
ee

du
p

ov
er

 F
SA

-B
LA

ST

Database: env_nr

NCBI_BLAST(4t) GPU-BLASTP(F) cuBLASTP(F) GPU-BLASTP(K) cuBLASTP(K)

0

1

2

3

4

5

query127 query517 query1054

Sp
ee

du
p

ov
er

 F
SA

-B
LA

ST

Database: env_nr

NCBI_BLAST(4t) GPU-BLASTP(F) cuBLASTP(F) GPU-BLASTP(K) cuBLASTP(K)

0

1

2

3

4

5

6

query127 query517 query1054

Sp
ee

du
p

ov
er

 F
SA

-B
LA

ST

Database: swissprot

NCBI_BLAST(4t) GPU-BLASTP(F) cuBLASTP(F) GPU-BLASTP(K) cuBLASTP(K)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

query127 query517 query1054

Sp
ee

du
p

ov
er

 F
SA

-B
LA

ST

Database: swissprot

NCBI_BLAST(4t) GPU-BLASTP(F) cuBLASTP(F) GPU-BLASTP(K) cuBLASTP(K)

 Design of Fine-grained BLASTp (Fig. 3):
• Fine-grained hit detection with binning

 Multiple threads are issued in the column-major order for the coalesced access.
 Binning are introduced to group output by diagonal numbers and sequence numbers.
 bin number = diagonal number mod number of bins.

• Hit reorganization with sorting and filtering
 One bin includes hits from different diagonals, leading to hits are out of order. Thus, sorting is

introduced to sort hits in each bin with diagonal number.
 Filtering is also introduce to filter out hits whose distance with neighbors are longer than the

threshold.
• Configurable Fine-grained ungapped extension

 Diagonal-based extension can avoid redundant hit extension but has more divergence.
 Hit-based extension has less divergence but more redundant computation.

• Hierarchical buffering
 Hierarchical buffering is introduced for core data structure, e.g., DFA.
 Maintain most reusable part of DFA in the shared memory and remaining part in the constant

memory (NVIDIA Fermi GPU) or read-only cache(NVIDIA Kepler GPU).

Fine-grained BLASTp

Figure 3. Design of Fine-grained BLASTp for GPU

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Th
re

ad
 4

Th
re

ad
 5

Th
re

ad
 6

Th
re

ad
 7

Th
re

ad
 8

Th
re

ad
 9

Th
re

ad
 1

0

Th
re

ad
 1

1

Th
re

ad
 1

2

Th
re

ad
 1

3

ABB ABC

2,8

1,3

ABC
ABB

ABB
ABC

ABC

Thread 3

ABC

ABB

ABA

...

1 7

...

7,3

11,
3

11

ABC

2 6

Subject Sequence

6,8

Thread 8

Thread 61,
13

11,
13

7,1
3

Bin 0

Bin 2

Bin 1

Bin 3

(7,3):D-4 (11,3):D-8

(1,3):D2 (7,13):D6

(1,13):D12

(11,13):D2 (6,8):D2(2,8):D6

Query Sequence

So
rti

ng

Bin 0

Bin 2

Bin 1

Bin 3

(7,3):D-4 (11,3):D-8

(1,3):D2

(1,13):D12

(2,8):D6(6,8):D2 (7,13):D6(11,13):D2
Filtering

Bin 0

Bin 2

Bin 1

Bin 3

(1,3):D2 (2,8):D6(6,8):D2 (7,13):D6(11,13):D2

Bi
nn

in
g Fine-grained Hit

Detection with Binning

Fine-grained
Ungapped ExtensionSorting & Filtering

DFA/Lookup
Table

Thread 0

Thread 1

Thread 2

Thread 3

Diagonal-based Hit-based

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 4

Th
re

ad
 3

BinNo =
DiagNo MOD NumOfBin

SortBy DiagNo, SubPos

QueryPos,
SubPos

(QueryPos,
SubPos):DiagNo

IF Distance(curr, prev) > t,
THEN Del(prev)

 Challenges of mapping BLAST to GPUs
• Irregular memory access due to the

heuristic nature of BLAST

• Different memory access patterns hit
detection and ungapped extension –
hit detection execution is in column-
major order, but ungapped extension
is executed in diagonal-major order
(Fig. 2).

• No straightforward design to fully
utilize the massively parallel
computational capability of GPU

Figure 2. Execution of Hit Detection
and Ungapped Extension

Subject Sequence

Query Sequence

(2,8)

(1,3)

ABC
ABB

ABB
ABC

ABA

(7,3)

(6,8)

(10,6)

Hit Detection

Search direction

ABA ABBABC

5

3

Lasthit Array: record the
last hit in each diagonal

Dia -4 Dia 2

1

2

…... Dia 6…...

4

(QueryPos, SubPos)

Access Order

synergy.cs.vt.edu

contact name

Jing Zhang: zjing14@vt.edu
Poster

P4214

category: Bioinformatics & Genomics - BG09

