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Abstract

Feature hashing is widely used to process large
scale sparse features for learning of predictive mod-
els. Collisions inherently happen in the hashing
process and hurt the model performance. In this
paper, we develop a new feature hashing scheme
called Cuckoo Feature Hashing (CCFH), which
treats feature hashing as a problem of dynamic
weight sharing during model training. By lever-
aging a set of indicators to dynamically decide the
weight of each feature based on alternative hash lo-
cations, CCFH effectively prevents the collisions
between important features to the model, i.e. pre-
dictive features, and thus avoid model performance
degradation. Experimental results on prediction
tasks with hundred-millions of features demon-
strate that CCFH can achieve the same level of per-
formance by using only 15%-25% parameters com-
pared with conventional feature hashing.

1 Introduction

Many industry-scale machine learning applications are con-
ducted on sparse feature datasets, some of which contain
more than hundreds of millions of features in a thousand-
billion dimensional space. Examples include personalized
spam filtering [Attenberg et al., 2009], advertisement click
through rate (CTR) prediction [Richardson et al., 2007], rec-
ommendation system [Shepitsen et al., 2008], DNA analy-
sis [Caragea et al., 2012], and etc. Feature hashing [Shi et al.,
2009; Weinberger et al., 2009] (i.e. hash kernel), widely used
to process sparse features in high-dimensional space due to
its strength in time and space efficiency, has been accepted as
a conventional method for sparse feature processing in most
ML libraries and platforms, such as scikit-learn [Pedregosa
et al., 2011], Mahout [Mahout, 2012], Spark [Zaharia et al.,
2010; Meng et al., 2016] and R [Ihaka and Gentleman, 1996].
By applying a hash function to directly map the features to
corresponding data buckets, feature hashing efficiently pro-
cesses sparse features without relying on an index to look up
the feature values (i.e., weights). Feature hashing also re-
duces the number of feature dimensions, as features are ran-
domly grouped into hash buckets, where the co-located fea-
tures share the same weight.

While existing feature hashing schemes [Weinberger et al.,
2009] are shown to be efficient, the resultant model perfor-
mance may suffer when the predictive features with different
expected weights are hashed into the same bucket, and as a re-
sult share the same parameter weight. Moreover, weight shar-
ing may hurt the sparsity of the model, since non-predictive
features hashed together with predictive features also receive
non-zero weights instead of zero. Although multiple hashing
is proposed to help reducing the inaccuracy caused by colli-
sions, it increases the variance of model and further hurts the
model sparsity. The increase of variance and loss of sparsity
may result in over-fitting and worse performance when deal-
ing with unseen new features [Weinberger et al., 2009].

In this paper, we treat feature hashing as a problem of
dynamic weight sharing and devise a new feature hashing
scheme, namely Cuckoo Feature Hashing (CCFH), to de-
termine the locations for predictive features during training,
while avoiding most collisions. As the name suggests, CCFH
exploits the idea of Cuckoo hashing [Pagh and Rodler, 2001]

to use two hash functions to provide two alternative locations
for each feature. When data collision occurs, the data in the
occupied entry can be moved to its alternative location. Any
key already residing in this location is then displaced to its al-
ternative location. This collision resolution process continues
until a vacant position is found. It is guaranteed that almost
all collisions can be resolved when the load factor of hash ta-
ble is smaller than 0.5, and each collision can be resolved in
amortized constant operations. Thus, it is able to dynamically
and flexibly ”adjust” the hash functions to resolve collisions
among predictive features.

The novelty of CCFH lies in leveraging a set of indica-
tors in the process of model training to decide the weight of
each feature based on its two possible locations. In CCFH,
these indicators are treated as parameters, hashed for model
compressing, and learnt from simple gradient descent based
algorithms. To realize the aforementioned ideas for feature
hashing in CCFH, several technical challenges arise. First,
there is no key but only value stored in the hash table. A pro-
tocol needs to be designed to find for each feature which of
the two possible locations stores its actual weight. Second,
Cuckoo hashing resolves collisions via its recurrent displac-
ing operations, while it is not clear how such collision resolv-
ing scheme can be realized during model training. Finally,
CCFH needs to preserve model sparsity by locating most non-
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predictive features at zero weight.
In summary, CCFH exhibits several major advantages: (1)

its hashing structure is adaptive during model training to min-
imize the loss; (2) it achieves much smaller hash table when
guaranteeing the same level of model performance; and (3)
its resolves collisions between predictive features as well as
preserves the model sparsity by assign zero weight to non-
predictive features.

Experimental results on public benchmark CTR datasets
Avazu and malicious URL detection dataset show that com-
pared with feature hashing and multiple hashing, CCFH can
further reduce the number of parameters by around 4x to 8x
to achieve the same model performance.

2 Preliminaries and Related Works

2.1 Feature Hashing

Feature hashing (i.e. hashing trick, hash kernel) [Shi et al.,
2009] has been widely used as a dimension reduction tech-
nique for sparse features [Song et al., 2011; Jang et al., 2011;
Caragea et al., 2012]. Given a vector in a d-dimensional space
x ∈ R

d, a mapping function φ : R
d → R

k is learned to
project it into k-dimensional space R

k where k ≪ d. We
denote R

d as the original space and R
k as the hashed space.

The sparse features x are projected to a low dimensional vec-
tor φ(x) via a map function

φ(x)i =
∑

j:h(j)=i

xjs(j) (1)

where h(·) : {1, ..., d} → {1, ..., k} defines the one-to-
one dimension mapping between the two spaces and s(·) :
{1, ..., d} → {±1} is a random signal function. It can be
shown that function φ preserves the unbiased expectation
of inner product operations between the feature input x and
weight w, i.e.

E[φ(w)Tφ(x)] = wTx (2)

since the signal function s(·) ensures that for i 6= j:

E[s(i)s(j)] = 0 (3)

→ E[wis(i)xjs(j)] = 0 (4)

Therefore, for all learning models, the dot-product operation
wTx in the original space Rd can be approximated by the dot-
product φ(w)Tφ(x) in the hashed space Rk. Feature hashing
leads to large memory savings and significant model size re-
duction, because 1) it can operate directly on the sparse input
features (e.g. n-grams, frequent patterns, features generated
from Cartesian product etc.) and avoids the use of a dictio-
nary to translate features into vectors; 2) the parameter vector
of a learning model resides in the much smaller dimensional
hashed space R

k instead of the original space R
d.

To achieve dimensionality reduction and a smaller param-
eter size k, where k ≪ d, there naturally exist considerable
amounts of collisions as multiple features may be hashed
into the same dimension. The rationale of applying feature
hashing is that the number of predictive features is inherently
small compared with the whole feature set and can be repre-
sented using the hashed space R

d, i.e. the predictive features

are sparse. Therefore, the weight associated with each hashed
location is primarily dependent on the most predictive feature
in it. The collisions between predictive features may cause
severe performance degradation.

Multiple hashing [Weinberger et al., 2009] is the current
solution for resolving hash collisions. By using c hashing
functions, the mapping function φ(·) is calculated via:

φ(x)i =
∑

l∈{1,..,c}

∑

j:hl(j)=i

c−1/2xjs(j) (5)

The collisions in multiple hashing are increased by c times
while the magnitude of error introduced by each collision is
reduced by 1/c. As shown in [Weinberger et al., 2009], mul-
tiple hashing also faces three major limitations: 1) reducing

the standard variance error ||φ(w)Tφ(x)−wTx||2 by c−1/2

with c times computational cost. 2) the error is reduced by
sacrificing model sparsity, which contradicts the rationale of
applying feature hashing. 3) increases the variance of model
and tends to overfit.

2.2 Feature Engineering

There are lots of feature engineering solutions such as factor-
ization machine [Juan et al., 2016; He and Chua, 2017] and
feature combination mining [Shan et al., 2016]. These meth-
ods are also frequently used for recommendation system and
Ads CTR prediction. Feature engineering is actually a dual
problem of feature hashing. The reason of applying feature
engineering is to make input samples linear-separable by cre-
ating new features. In contrast, feature hashing considers the
cases where input samples are already linear-separable and
there is a need to reduce the problem size (i.e. dimensional-
ity reduction). In many cases, feature engineering and fea-
ture hashing can be sequentially applied to introduce a linear-
separable feature set of proper size.

2.3 Dimensionality Reduction

Dimensionality reduction methods [Yan et al., 2007; Cun-
ningham and Ghahramani, 2015] aim to find a reduction map-
ping φ : Rd → R

k to minimize certain loss function. For all
linear dimensionality reduction methods, the mapping func-
tion φ can be described using a projection matrix P, i.e.
φ(x) = Px. For example, principle component analysis
(PCA) [Wall et al., 2003] for a given dataset X = [x1, ...,xn]
aims at preserving the inner-product operations for all data
pairs by minimizing ||(PX)TPX−XTX||2. For least dis-
criminant analysis (LDA) [Mika et al., 1999] and locality pre-
serving projection (LPP) [He and Niyogi, 2004], only label-
specific and neighborhood pairs are preserved respectively.
For most of these methods the mapping P is learnt from data
distribution or predictive task. While all these methods may
achieve superior performance compared with feature hash-
ing in their applied scenario, the computational complexity
of these methods are at least O(kd) (using SGD to com-
pute SVD, or O(k2d) for exact optimization), and the space
complexity for P is also O(kd). For large-scale analytics
tasks such as advertisement click-through rate (CTR) predic-
tion and personalized spam filtering [Richardson et al., 2007;
Attenberg et al., 2009; Ma et al., 2009], d could reach
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Figure 1: Insertion in Cuckoo hashing when collision happens

hundred-million or billion level, and k could also reach mil-
lion level. These dimensionality reduction techniques are not
applicable to large scale analytics tasks targeted in this paper.

Feature hashing can be viewed as a very efficient dimen-
sionality reduction method. Unlike most dimensionality re-
duction where the mapping function φ is carefully learnt, φ
in feature hashing is a simple pre-defined hashing function
without any training. It can also be seen as a linear dimen-
sionality reduction method φ(x) = Px, where

Pij =

{

1, if h(i) = j;

0, else;
(6)

Fixed sparse mapping via hashing leads to constant process
time per sparse feature. Therefore, feature hashing is well
received for dealing with sparse features in extremely high-
dimensional space.

It is worth noting that for all current feature hashing works
the hash locations for features are pre-determined before
model training, i.e. by pre-processing. However, whether
a feature is predictive or not is only revealed during the train-
ing process. Therefore, they are unable to reduce collisions
without increasing the size of hashed space. We propose to
develop a hashing based solution which also has constant pro-
cess time per sparse feature, while its mapping function is
dynamically optimized base on the predictive task.

2.4 Cuckoo Hashing

Cuckoo hashing [Pagh and Rodler, 2001] is a technique for
resolving collisions in hash tables. The basic idea is to use
two irrelevant hash functions to locate two possible buckets
in the hash table for each key. When a new key is inserted
with its two possible locations being occupied, the collision is
resolved by picking either conflicting entry and move it to its
alternative location. This procedure may be repeated multiple
times (called chain displacement) until a vacant location is
found. Figure 1 illustrates an example of collision resolution
which causes the chain displacement. As shown, both hashed
locations of x are occupied (by a and b) when it is inserted.
To resolve the conflict, b is moved to its alternative location,
which subsequently causes c and then d being moved to their
alternative locations.

Theoretical results show that the amortized operations for
resolving each collision is only a small constant, and the fail-

ure rate for this procedure (i.e. infinite loop occurs) is in
O(1/n) level, which is negligible, when the load factor is
less than 50%. By using more than two hashing functions in
Cuckoo hashing the load factor can be further improved to
more than 90% [Kutzelnigg, 2006]. Recently, Cuckoo hash-
ing has been used as an exact index alternate to feature hash-
ing in sparse feature processing [Zhou et al., 2015], where
the feature dimensionality is not reduced. In this paper, we
further leveraging Cuckoo hashing for reducing the dimen-
sionality with minimized information loss.

3 Cuckoo Feature Hashing

In this section, we address the technical challenges raised
earlier, and introduce the proposed feature hashing method,
Cuckoo Feature Hashing (CCFH).

3.1 Feature Hashing via Weight Sharing

Feature hashing can be interpreted as weight sharing for
model parameters [Chen et al., 2015] in machine learning.
In practice, the parameter to be learnt is φ(w) ∈ R

k instead
of w ∈ R

d. It is equivalent to randomly grouping the features
into the hashed dimensions in R

k and having those within the
same dimension share the same weight parameter.

Let w ∈ R
d denote the actual feature weights that are ap-

plied on the feature set x, and v ∈ R
k denote the parameter

to learn in the hashed space. The general goal of weight shar-
ing is to build a mapping F(·) : Rk → R

d to ”recover” the
parameter w in original space R

d using the hashed represen-
tation v. For feature hashing, it is equivalent to the weight
sharing scheme w = F(v) where:

wi = vh(i)s(i) (7)

Using φ(w) as the parameter v, and using [φ(x)]i to denote
the i-th element in φ(x), we have:

wTx ≈ vTφ(x) (8)

=
∑

i

vi × [φ(x)]i (9)

=
∑

i

vi × (
∑

j:h(j)=i

xjs(j)) (10)

=
∑

j

xjvh(j)s(j) (11)

= F(v)Tx (12)

There is only a slight difference between feature hashing
which computes vTφ(x) and weight sharing which computes
F(v)Tx, i.e. the dimensionality of x is d and is much larger
than the dimensionality of φ(x) which is k. However, con-
sidering that both x and φ(x) are sparse representations and
have same number of non-zero values, they are just two sides
of the same coin. By transforming the problem from feature
hashing to weight sharing, we can design operations based on
the learnt parameters instead of the original input features.

3.2 Model Design

CCFH uses two hash functions h1(·) and h2(·). Then, the
weight of any wi is decided by two reference weights vh1(i)
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Figure 2: Illustration example for Cuckoo feature hashing

and vh2(i). In Cuckoo hashing, the key is stored in the hash
buckets. Hence, its key-value pair can be directly accessed
from the two possible locations in the bucket. In CCFH, to
retrieve the actual weight of the parameter wi, we need a bi-
nary indicator pi for wi such that

wi = (pivh1(i) + (1− pi)vh2(i))s(i) (13)

Compared with feature hashing, the parameter retrieved
from vh(i) is replaced by a combination of two parameters
in the hashed space. When pi is set to 1, the feature weight
wi equals to vh1(i); When pi is set to 0, the feature weight wi

equals to the parameter vh2(i) in the alternative bucket h2(i).
Obviously, using d indicators for k parameters is exces-

sive. Moreover, discrete parameters are hard to optimize. In
CCFH, we propose to hash the indicators and treat them as
continuous parameters in the range [0, 1]. Using an additional
random hashing function H(·), and considering p ∈ R

d as
parameters like w, we apply the weight sharing scheme on it
by hashing it to a hashed parameter representation q ∈ [0, 1]l:
pi = qH(i), where l should be O(k). The parameter sharing
relations for CCFH can then be described as:

vi = (qH(i)wh1(i) + (1− qH(i))wh2(i))s(i) (14)

Therefore, the weight sharing relations q are also represented
as a set of parameters and can be learnt from the training pro-
cedure via gradient based algorithms. Figure 2 shows an ex-
ample where features in the same column are hashed into the
same bucket for h1, and that in the same row are hashed to-
gether for h2.

The training of CCFH with parameters v and p is almost
equivalent to the training of the original model with parameter
w. First, at each time when parameter wi is used (i.e. xi has
a non-zero value), it is computed from vh1(i), vh2(i), qH(i)

and s(i) using Equation (14). The computation of ∂L
∂w is the

same as the gradient computation in the original model. To
compute the gradient of the loss L over the parameters v and
q, we can utilize the chain rule:

∂L

∂v
=

∂L

∂w

∂w

∂v
(15)

∂L

∂q
=

∂L

∂w

∂w

∂q
(16)

To be specific, we have:

∂L

∂vj
=

∑

i,h1(i)=j

qH(i)s(i)
∂L

∂wi
+

∑

i,h2(i)=j

(1− qH(i))s(i)
∂L

∂wi

(17)

∂L

∂qj
=

∑

i,H(i)=j

s(i)
∂L

∂wi
(vh1(i) − vh2(i)) (18)

Note that ∂L
∂wi

is non-zero only when x is non-zero. There-

fore the gradient updates for CCFH only involves constant
operations per non-zero input feature.

3.3 Collision Resolving and Sparsity Preserving

Here we discuss how the aforementioned training procedure
can mimic the collision resolving operations in Cuckoo hash-
ing. Suppose wa and wb are the two weights of predictive
features hashed to the same bucket (e.g., h1(a) = h1(b) = c
and qH(a) = qH(b) = 1), and their alternative locations are
vh2(a) and vh2(b). At the beginning of training, all parameters
including vh2(a) and vh2(b) are starting from near zero value.
If these two weights have conflicting optimization interests,
∂L
∂wa

and ∂L
∂wb

have the opposite sign. Therefore, ∂L
∂qH(a)

and

∂L
∂qH(b)

also have the opposite sign, suggesting that one of

them is negative. The collision between wa and wb is re-
solved when qH(a) or qH(b) is decreased to 0. If, unfortu-
nately, the collision happens again in vh2(a) or vh2(b), then
the above procedure is repeated. Similar scheme works when
there are some collisions on the indicator parameters q: sup-
pose qH(a) is moving towards 1 due to collisions of other pa-
rameters but wa is expected to be the weight of vh2(a), as
long as the weight of vh1(a) is not shared with other predic-
tive features, there will be a derivative on vh1(a) towards the
value of vh2(a), and wa will share weight with vh1(a) instead.
Although the collision resolving for v and q may contradict
each other and lead to a higher failure rate, it is still signif-
icantly superior than fixed hashing function where the colli-
sion rate equals to the load factor.

Resolving collisions is not the only reason to use CCFH.
The performance degradation is not only caused by the colli-
sions between predictive features but also by loss of model
sparsity. For example, in multiple hashing, the weight-
sharing scheme makes more features to share weight with
predictive features, henceforth further hurts the model spar-
sity. Note that the non-zero weight assignment for non-
predictive features should be considered as noises which lead
to performance degradation of the model. In CCFH, every
feature has two possible weights to choose. Thus, given a
load factor of p for predictive features, other features have
1− p2 chance to be located with near-zero weight (in feature
hashing the probability is 1 − p), or be put at the one with
smaller absolute value in other cases. Therefore, CCFH not
only resolves collisions between predictive features, but also
locates most other features at near-zero weight. We have fur-
ther validated the sparsity analysis above by experimentally
evaluating the model sparsity for different methods (see Sec-
tion 4.4).
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Methods 1/8M 1/4M 1/2M 1M 2M 4M 81M

Exact - - - - - - 1.46
FH 3.15 2.64 2.21 1.97 1.75 1.64 -

MFH2 2.78 2.35 2.08 1.87 1.67 1.60 -
MFH4 2.84 2.34 2.06 1.84 1.63 1.58 -
CCFH 2.11 1.85 1.64 1.53 1.49 1.47 -

(a) Error Rate(%) on URL

1/8M 1/4M 1/2M 1M 2M 4M 130M

- - - - - - .390
.429 .423 .419 .411 .404 .400 -
.425 .421 .416 .409 .402 .397 -
.428 .423 .416 .408 .402 .395 -
.411 .405 .399 .394 .392 .390 -

(b) Log Loss on Avazu

Table 1: Main Comparison: Model performance with different model size

4 Experimental Study

4.1 Setup

Dataset. URL [Ma et al., 2009] is a dataset for malicious
URL detection. It consists of 2.4 million URLs in total. There
are 1.8 million lexical features, 1.2 million host name features
and 78 million second order features generated by feature en-
gineering. Each URL contains 300 features on average. Error
rate is the conventional evaluation metric. Avazu [Juan et
al., 2016] is a dataset for mobile Ads CTR prediction from
Kaggle competition. It consists of 40 million samples in to-
tal. 130 million features are generated by feature engineering.
Each sample contains 550 features on average. Log loss is the
evaluation metric suggested by Kaggle.

Dataset #Samples #Features AvgFeatures Metric

URL 2.4M 81M 300 Error rate
Avazu 40M 130M 550 Log loss

Table 2: Datasets

Model. We apply logistic regression as the analytics model.
Exact index (Exact), feature hashing (FH), multiple feature
hashing (MFH) and Cuckoo feature hashing (CCFH) are
used to process those sparse feature datasets. Exact index
is the exact logistic regression model which explicitly pa-
rameterizes every appeared feature. We use dense array and
an index dictionary for the implementation. There are some
other exact index methods such as [Zhou et al., 2015] which
could be more computational efficient. However, their accu-
racy should be the same. All other methods aim to hash the
high-dimension features into a lower dimensional space. We
vary their hash-table size (i.e. number of parameters) from
0.125M to 4M and evaluate their accuracy. Two versions of
MFH are developed, with 2/4 hashing functions respectively
(denoted by MFH2/MFH4). For CCFH, we split the parame-
ter space as two part: 80% for feature weight v and 20% for
weight indicator q.
Training Settings. All models are trained using mini-batch
stochastic gradient descent (SGD). The batch-size is set to
256, and the learning rate is adjusted based on Adam [Kingma
and Ba, 2014] with a momentum of 0.9. L1-penalty is applied
to the model parameter as used in [Weinberger et al., 2009;
Zhou et al., 2015] to introduce model sparsity (i.e. feature
selection).

4.2 Main Results

The test error rate on the URL dataset and log loss on the
Avazu dataset are reported in Table ??. MFH solutions do
lead to an improvement over FH. However, an FH solution

with double parameter size can always outperform the MFH
one. This observation can be easily explained as that MFH4
can at most reduce the approximation error by half, while sac-
rificing the model sparsity. However, doubling the parameter
size directly reduces the collision rate by half. Moreover, al-
though MFH2 outperforms FH in all the settings, it is not true
between MFH4 and MFH2. MFH4 performs slightly better
when the parameter size is large and MFH2 performs slightly
better when the parameter size is small. Therefore, resolv-
ing the collisions by using more hashing functions is not al-
ways cost-effective, due to its limited improvement and sig-
nificant computation overhead. CCFH achieves the best per-
formance on all the detailed comparisons. With 2/4M param-
eters, CCFH achieves similar performance compared with the
exact index approach which requires a huge feature index and
million-scale parameters.

Figure 3 shows the trade-off between model size and model
accuracy on URL dataset. To achieve the same level of perfor-
mance, CCFH only needs at most 1/4 of the model size com-
pared with MFH, and at most 1/8 of the model size compared
with FH. Moreover, unlike FH and MFH where the collision
rate is inversely proportional to the hash table size, CCFH
is expected to resolve most of the collisions between predic-
tive features when the load factor of predictive features is less
than a certain threshold. This trend can also be observed from
the figure, since the error rate of CCFH rapidly reduces to the
floor level when the hash-table size is larger than 1M. All
the aforementioned trends can also be observed in Figure 4,
which shows the trade-off on Avazu dataset.

4.3 Processing Time

Data Source Size Random Access Time

L1 Cache 128KB ∼ 4 cycles
L2 Cache 2MB ∼ 10 cycles
Local L3 Cache 3MB ∼ 40 cycles
Remote L3 Cache 30MB ∼ 70 cycles
DRAM - ∼ 200 cycles

Table 3: A Typical CPU Specification

The major advantages of feature hashing include not only
reduced model size but also fast processing time, i.e. con-
stant processing time per non-zero input feature. Most of the
training time is spent on the random accesses of the parame-
ter table. For FH, only one parameter per input feature needs
to be accessed based on its hashing function. For MFH with
c hashing functions, c parameters per input feature need to
be accessed. CCFH needs to access 2 weight locations and
1 indicator location. While CCFH needs 3 times the pro-
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Methods 1/8M 1/4M 1/2M 1M 2M 4M

FH 51.5 47.7 42.1 38.4 34.7 31.5
MFH2 55.9 49.5 46.8 41.8 37.1 33.6
MFH4 62.5 53.3 48.2 43.9 39.5 36.7
CCFH 47.9 39.7 32.8 29.0 28.3 27.6
Exact 26.5 of 300 has a norm larger than 0.02

Table 4: Model Sparsity

cessing time compared with FH, its smaller parameter size
also increases the cache efficiency. Table 3 shows a typical
specification for an Intel Xeon CPU. Considering that each
parameter is stored as a 4Byte float variable, a model with
0.5MB parameters can fit in L2 cache, and could be up to
7x faster than a 4MB parameter model which can only fit in
the remote L3 cache. Figure 5 shows the trade-off between
batch processing time and model accuracy. Comparing with
FH, CCFH achieves similar performance accuracy and pro-
cessing time using a smaller parameter size. Comparing with
the exact solution which needs to locate every parameter in an
index, CCFH with 2/4M parameters obtains similar accuracy
with much lower processing time.

4.4 Sparsity

CCFH is expected to preserve model sparsity. Table 4 sum-
marizes the number of activated features per sample for the
URL dataset. A feature is to be activated if its weight has
a norm larger than 0.02. L1-penalty is applied to the logis-
tic regression so that only 26.5 of 300 features are activated.
Since feature hashing methods introduce weight sharing, po-
tentially resulting in near-zero weights for non-predictive fea-
tures when there are predictive features in the same bucket.
Based on our analysis in Section 3.3, with a load factor of
p of non-zero weight in parameter table, p of non-predictive
feature cannot be located at zero for FH. CCFH can reduce
the rate to p2. For MFH with c hashing functions, the rate
increases to 1 − (1− p)

c
. Therefore, CCFH has a clear ad-

vantage in sparsity preserving when p is small. Experimental
results show that CCFH has the best sparsity preserving ef-
fect among all methods. With parameter size greater than 1M
CCFH significantly outperforms FH, suggesting that the load
factor is small. When the parameter size is reduced to 1/8M,
p becomes larger and the advantage of CCFH compared with
FH becomes less significant. MFH is even worse than FH
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Figure 6: Effect of CCFH Indicator Ratio

since its multiple hashing functions result in more collisions.

4.5 Size of Indicator

There is only one hyper-parameter for CCFH: the size of in-
dicator q. When no parameter space is split out for q, CCFH
degenerates to the MFH2 model. Meanwhile, increasing the
size of indicators results in a smaller hash table for feature
parameters. We vary the ratio of parameter used as indicators
in CCFH with 1/4M, 1M, 4M parameter size. The test error
on URL is reported in Figure 6. The performance peaks at 20
- 40%, and is very stable when the ratio is between 10 - 60%.

5 Conclusion

We introduce a novel feature hashing scheme called Cuckoo
Feature Hashing(CCFH) to process large scale sparse fea-
tures. CCFH determines the locations of predictive features
during model training, where most collisions lead to perfor-
mance drop can be avoided. CCFH is realized by providing
multiple possible hash locations for each feature, and use in-
dicator parameters to mimic the Cuckoo hashing collision re-
solving scheme. CCFH is also sparsity preserving and com-
putationally efficient. Experiments on two hundred million
features dataset show that CCFH can achieve the similar per-
formance by using only 15%-25% parameters compared with
feature hashing.
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