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ORIGINAL ARTICLE

Cuckoo search epistasis: a new method for exploring
significant genetic interactions

M Aflakparast1,2, H Salimi3, A Gerami4, M-P Dubé5, S Visweswaran6 and A Masoudi-Nejad1

The advent of high-throughput sequencing technology has resulted in the ability to measure millions of single-nucleotide

polymorphisms (SNPs) from thousands of individuals. Although these high-dimensional data have paved the way for

better understanding of the genetic architecture of common diseases, they have also given rise to challenges in developing

computational methods for learning epistatic relationships among genetic markers. We propose a new method, named cuckoo

search epistasis (CSE) for identifying significant epistatic interactions in population-based association studies with a case–control

design. This method combines a computationally efficient Bayesian scoring function with an evolutionary-based heuristic search

algorithm, and can be efficiently applied to high-dimensional genome-wide SNP data. The experimental results from synthetic

data sets show that CSE outperforms existing methods including multifactorial dimensionality reduction and Bayesian epistasis

association mapping. In addition, on a real genome-wide data set related to Alzheimer’s disease, CSE identified SNPs that are

consistent with previously reported results, and show the utility of CSE for application to genome-wide data.

Heredity (2014) 0, 000–000. doi:10.1038/hdy.2014.4
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INTRODUCTION

One source of complexity in biological systems is due to rich
interactions among the components (Weng et al., 1999; Hlavacek
and Faeder, 2009). The advent of high-throughput genotyping and
sequencing technologies has enabled the measurement of millions of
single-nucleotide polymorphisms (SNPs)—the commonest type of
genetic variants—in an individual. This has paved the way for
understanding the genetic architecture of common diseases, but has
also given rise to challenges in developing efficient methods for
identifying of interactions (epistasis) among genetic variants. Several
methods have been developed for analyzing genetic data that focus on
epistatic interactions and include frequentist and Bayesian statistical
methods and computational methods (Ritchie et al., 2001; Zhang and
Xu, 2005; Zhao and Xiong, 2006; Ferreira et al., 2007; Yang and Liu
2007; Gayan et al., 2008; Li et al., 2008b; Park and Hastie, 2008; Jung
et al., 2009; Miller et al., 2009; Wang, 2009; Wu et al., 2009).Q2 A key
challenge is the large number of statistical tests that have to be
performed in epistasis testing especially in genome-wide association
(GWA) studies that measure a large number of SNPs (Bellman and
Kalaba, 1959; Steen, 2011). Moreover, high-dimensionality arising
from multi-locus combinations, the relatively small sample size and
the resulting data sparsity lead to lack of power in data mining
methods (Cordell, 2009; Steen, 2011). To address the challenge of
high-dimensionality, several feature selection methods have been
applied to GWA data as a first step in identifying informative SNPs
(Dube et al., 2007, Saeys et al., 2007).

Feature selection methods can be broadly grouped into two
categories that include filter and wrapper methods (Freitas, 2002).
In Q3addition, feature selection methods that leverage biological
knowledge relevant to SNPs, such as INTERSNP and Biofilter, have
been developed as alternatives to filter and wrapper methods that do
not sue such knowledge (Bush et al., 2009; Herold et al., 2009).
INTERSNP is a time-efficient approach to select combinations of
SNPs for a further interaction analysis based on a priori information
obtained from either statistical evidence of single-marker association
or biologic/genetic relevance information sources (Herold et al.,
2009). Similarly, Biofilter is a systematic knowledge-based approach
to produce SNP models by integrating multiple genetic databases.
This approach can be implemented with a variety of techniques
such as logistic regression, classification and regression trees (Bush
et al., 2009).
The filter methods, typically, assess the quality of each attribute

(such as a SNP) using a selection criterion. These types of feature
selection methods have the advantage of being fast, but are often
criticized for their inability to select relevant attributes involved in a
significant interaction effect on the susceptibility of a disease or trait
but that would not show sufficient individual effects for selection.
Wrapper approaches, on the other hand, attempt to evaluate subsets
of attributes based on sample classification accuracy. In contrast to
filter methods, wrapper methods allow for all attributes to be retained
and use a selection probability (Moore et al., 2010). As a result, no
attribute is eliminated from the analysis. There are different types of
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wrapper methods and among them evolutionary computing algo-
rithms such as the genetic algorithm (GA) and the evolution strategy
methods have attracted much attention for stochastic search of
epistatic interactionsQ4 (Li et al., 2001; Ooi and Tan, 2003; Moore
et al., 2004; Shah and Kusiak, 2004; Jirapech-Umpai and Aitken,
2005). Recently, a GA-based hybrid algorithm called genetic ensemble
(GE) was proposed by Yang et al. (2010); this method relies on a
combination of an ensemble of classifiers and a multi-objective GA
(Zhang and Yang 2008; Yang et al., 2010).
The GE algorithm was shown to outperform other GA-based

methods (Zhang and Yang, 2008). However, ensemble methods such
as GE require diverse and accurate classifiers to achieve better
accuracy, and identifying an efficient set of classifiers can be difficult
(Dietterich, 2000). Selecting appropriate classifiers for different data
sets with different number of attributes and samples, and configuring
parameters properly for each classifier is challenging. Moreover,
ensemble methods are likely to be more computationally expensive
than methods that use a single classifier. Finally, despite the superior
performance of GAs in comparison with gradient-based optimization
methods, they are sensitive to parameter settings, exhibiting varying
performance for different configurations of parameters such as
population size, crossover frequency and mutationQ5 rate (Kumar and
Chakarverty, 2011).
Motivated by evolutionary algorithms, we develop and evaluate a

fast stochastic search method named cuckoo search epistasis (CSE)
for identifying significant epistatic interactions in GWA studies. CSE
differs from wrapper feature selection methods in that CSE does not
search for a subset of informative attributes that are further analyzed
for epistasis, but performs stochastic search of epistasis with no
classification or training/prediction scheme. CSE used a new and
relatively fast evolutionary algorithm called cuckoo search (CS),
which performs better than other evolutionary algorithms. In addi-
tion, CSE uses a computationally efficient Bayesian score to evaluate
combinations of SNPs for association with the phenotype.
We compare CSE’s ability to identify epistatic interactions to that of

multifactorial dimensionality reduction (MDR) and Bayesian epistasis
association mapping (BEAM) using synthetic data sets. We also apply
CSE to an Alzheimer’s disease GWA data set that contains over
300 000 SNPs.

Background

This section provides background information on Bayesian combi-
natorial method (BCM), which uses a Bayesian statistic for measuring
genetic interactions. The CSE method uses the Bayesian statistic of
BCM to evaluate combinations of SNPs. In addition, brief descrip-
tions on MDR and BEAM are also provided.

Bayesian combinatorial method

BCM is a search algorithm that evaluates the association between a set
of interacting genetic variants and phenotype with a Bayesian statistic.
It exhaustively searches over all possible combinations of SNPs and

identifies combinations with a high posterior probability
(Visweswaran et al., 2009). BCM is one of several methods that have
been developed to identify epistatic variants based on a statistical
measure. BCM has several advantages including the ability to handle
sparse and unbalanced data, ability to deal with nonlinear interac-
tions, and is computationally efficient, nonparametric and model free.
BCM defines an interaction model M, as a set of probabilities

denoted by P(Z|g¼ (g1, g2, � � , gc)) for phenotype states Z, given
combination of genotypes g. For a given g value, a multinomial
distribution is assumed for Z (binomial, if Z has only two states).
Assuming that the parameters of all multinomial distributions, that is,
hc a priori follow a Dirichlet distribution, a posterior estimate for hc is
obtained. The Bayes theorem is used to score the fitness of any given
combinatorial model as the following:

PðM Dataj Þ / PðData Mj ÞPðMÞ ð1Þ

where P(M) is the prior probability of model M, which is assumed to
have a constant value for all models and P(Data|M) is the marginal
likelihood, which is evaluated by the following equation:

PðData Mj Þ ¼

Z

PðData Mj ; hcÞP ðhc Mj Þ dhc ð2Þ

where P(Data|M, hc) is the distribution of the data for a given
genotype–phenotype table. Figure 1 presents an example of counts of
genotypes for an interaction model with two SNPs (denoted SNP1
and SNP2) and a binary phenotype (for example, case and control).
A binomial distribution for each column (that is, the combination

of genotypes for SNP1 and SNP 2) is assumed. Thus, P(Data|M, hc) is
obtained by multiplying nine independent binomial distributions.
The closed form for P(Data|M) is given by the following equation

and was originally derived by Q6Cooper and Herskovits (1992):

PðData Mj Þ ¼
Y

I

i¼1

ðai � 1Þ !

ðni þ ai � 1Þ !

Y

J

j¼1

ðnij þ aij� 1Þ !

ðaij� 1Þ !

 !

ð3Þ

where aij are the positive hyper-parameters of a Dirichlet distribution
and Saij¼ai, I is the number of genotype combinations (for example,
nine for a model with two SNPs with three states each), J is the
number of phenotype states (for example, two for a case–control data
set), ni is the number of samples for a given genotype combination in
an epistatic model and nij is the number of samples for the jth
phenotype and ith genotype combination.
Assuming that the prior distribution P(M) is uniform over all

possible models and the Dirichlet hyperparameters are all set to 1, the
following expression gives the score that is used by BCM for an
interaction model:

ScoreBCMðMÞ ¼
Y

I

i¼1

J� 1ð Þ !

ni þ J� 1ð Þ !

Y

J

j¼1

nij !

 !

: ð4Þ

A major limitation of BCM is that it searches exhaustively over all
possible combinations of SNPs in a data set and hence it does not
scale up to high-dimensional data sets. Our new algorithm overcomes

Figure 1 An example of genotype–phenotype table with two SNPs and a binary phenotype. This figure summarizes the genotype and phenotype data for a

two-way interaction model with two SNPs. BCM assumes a binomial distribution for any combination of the SNP1 and SNP2 values, that is, each column

of this table follows a binomial distribution. Thus, P(Data|M, hc) is obtained by multiplying nine independent binomial distributions.
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this limitation such that BCM can be applied to explore the space of
possible models in high-dimensional GWA data.

Multifactorial dimensionality reduction

MDR is a nonparametric data mining method for identifying SNP
interactions (Ritchie et al., 2001). MDR is based on a dimensionality
reduction strategy that projects the whole genotype space to one
dimension with two values, that is, low-risk or high-risk genotypes. In
addition, this method does not assume a model for the data and it has
the advantage of flexibility to genetic model. Since MDR was first
introduced, it has been widely used in association studies. Several
modifications and extensions for MDR have also been proposed either
by its original authors or others (Bush et al., 2007; Chung et al., 2007;
Gui et al., 2007; Lee et al., 2007; Velez et al., 2007; Namkung et al.,
2009), which have increased its applicability. However, MDR is an
exhaustive method and is mostly applicable to candidate gene studies
where the number of tested SNPs is o500. To address this limitation,
filtering methods are typically used to alleviate the computational
burden and to feasible analyze genome-wide data (Cordell, 2009). The
MDR software is available from http://epistasis.org.

Bayesian epistasis association mapping

As an alternative to data mining methods, we compare CSE to a
Bayesian statistical method called BEAM that has recently gained
much popularity for epistasis detection. BEAM uses a model to
partition markers into three categories. The first category contains
markers assumed to have no impact on the disease, the second
category contains markers assumed to have additive effects on the
disease and the third category contains markers that are assumed to
jointly influence the disease. In addition, a novel B statistic is
proposed to exhaustively score interactions for candidate markers
and is also used for further analyze of the resulting categories (Zhang
and Liu, 2007). The BEAM software is available from http://
www.fas.harv-ard.edu/Bjunliu/BEAM.

MATERIALS AND METHODS
This section provides details of the CSE method and then describes the

experimental details including a description of the data sets. We first describe

CS and a modification of CS and then describe CSE.

Cuckoo search
CS is a metaheuristic search algorithm developed by Yang and Deb (2009,

2010). The algorithm is motivated by the reproduction strategies used by
cuckoos. Cuckoos lay their eggs in the nests of other host birds and sometimes

the host bird may be of a different species. The host bird may discover that the

eggs are alien and either destroy them or abandon the nest. To overcome this,
cuckoo eggs have evolve to mimic the eggs of the host birds. This interesting

reproductive strategy of the cuckoos has been encapsulated as an optimization

strategy in the form of three idealized rules:

� Each cuckoo lays one egg at a time and dumps it in a random nest. The eggs

represent a set of epistatic models in our application.
� A fraction of the nests containing the best eggs are carried over to the next

generation. That is, in each step of the search procedure, a fraction of the

epistatic models that represents the best interaction scores are carried over.

� The number of nests is fixed and there is a probability that a host will
discover an alien egg. When this happens, the host discards the nest and

builds a new nest in a new location. That is, a model is discarded with

probability P and a new model is created in its place. The probability P can
also be interpreted as the fraction of models that is discarded.

CS uses the Lévy flight process for searching (Yang and Deb, 2009). The
Lévy flight process is a random walk that consists of a series of jumps chosen

from a probability density function that has a power law tail. When generating
a new model in CS, a Lévy flight is performed starting at the position of a

randomly selected model. If the new model is better than another randomly

selected model then that model is replaced with the new model. The advantage

of CS over other metaheuristic search algorithms like GA and particle swarm
optimization is that there is only one parameter to adjust, namely, P the

fraction of models that is discarded (Yang and Deb, 2009).

Modified CS
Although CS is guaranteed to find the optimal model, the rate of convergence

is not guaranteed to be fast. Walton et al. (2011) modified CS so that the

convergence rate is increased and thus allows CS to be applied to larger model

spaces.
This modified CS consists of two modifications to the original CS (Walton

et al., 2011). The first modification is the use of an adaptive step size in the

Lévy flight. In CS, the step size is constant while in modified CS the step size
decreases gradually as the algorithm progresses. This encourages more localized

searching as the algorithm gets closer to the optimal model.

The second modification in modified CS is addition of information

exchange among models to speed up convergence. In CS, each model is
processed independently of other models while in modified CS a fraction of

the best models is put into a group of top models. For each of the top models,

a second model in the group is picked at random and a new model is then

generated on the line connecting these two top models. Compared with CS,
modified CS has two adjustable parameters: (i) the fraction of models that is

discarded, and (ii) the fraction of models in the top group. Walton et al. (2011)

determined empirically that setting the fraction of models that is discarded to
0.75 and the fraction of models that make up the top group to 0.25 yielded the

best results. Figure 2 provides the pseudocode for the modified CS method.

CSE method
The CSE method combines modified CS search with the model score used in

BCM, and enables searching for significant epistatic models in data, that is, on

a genome-wide scale. CSE is substantially more efficient than GE for several

reasons. First, modified CS is computationally faster than other evolutionary-
based methods. Second, although GE uses several classification and voting

techniques, CSE uses a single but efficient scoring function. Third, the scoring

function in CSE does not use cross-validation that is computationally

expensive and instead uses the entire data to compute the model score. Many
computational methods focus on increasing classification accuracy, which does

not necessarily result in models with the largest association with the

phenotype; thus, we were motivated to use an efficiently computable scoring
function instead of a classification technique. Figure 3 provides an overview of

the main steps in CSE.

In CSE, each egg represents an interaction model, which is a combination of

different SNP markers to be evaluated for their association with the disease of
interest. Dependent on user-defined SNP interaction order, for example, a k-

way interaction detection setting, to generate the initial set of models we

assume each egg to represents a vector with k components. Then, CSE assigns a

random value in [0, 1], based on random walks, for each component of the egg,
which represents a SNP. It is guaranteed that each egg cannot contain the same

SNP markers. Next, a model score is calculated for each egg using the BCM

score. CSE tries to allocate continuous numbers to each component of the eggs
in order to get nearer to the interaction model with a higher model score. This

procedure can be repeated for detecting any-way SNP interaction model.

In GWA data where an astronomical number of potential interaction models

exist, the data redundancy and correlation structure between SNPs often
produce inconsistent results. To address this problem, we considered several

modifications to CSE so that it can be applied to GWA data. In the first stage,

CSE partitions the SNPs into m groups with Li SNPs, i ¼ 1; ::m;

Pm
i¼1 Li ¼ L.

This partitioning of SNPs can be with respect to either their natural position in
the genome or their associated gene. This is because there is considerable

correlation among neighboring SNPs in the genome as measure by linkage

disequilibrium (LD). Considering the k–SNP interaction detection problem, k

groups are selected out of all m groups. Then, to construct each egg of the
generation, a vector of k dimensions with continuous numbers in [0, 1] is
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assigned by the CSE algorithm as described earlier such that each component

of the vector represents a SNP that is selected from one of the k selected
groups. In the next steps of the algorithm, the top 100 highest scored

interaction models with k SNPs for the selected groups are identified. The

procedure continues by selecting other k groups either until a predefined

number of iteration is reached or all possible k groups have been examined
exhaustively. Finally, the best interaction models from the resulting models are

reported. Figure 4 gives the pseudocode for CSE.

Figure 2 Pseudocode for modified CS.
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Grouping of SNPs
We partitioned GWA data into groups of SNPs in the first stage. Two

partitioning schemes that are likely to be useful are:

(a) Group SNPs according to their natural genomic order such that adjacent

SNPs are in the same group.
(b) Group SNPs according to their associated genes such that SNPS on a gene

are in a single group.

There are other ways to partition SNPs in groups that may be useful. For

instance, knowledge obtained from gene ontology or gene expression experi-

ments may be used to partition SNPs in an association study. Determining
which partitioning scheme is to be chosen depends on the goals of the analyses

and the computational costs. If the goal is to detect gene–gene interactions as

well as SNP–SNP interactions, then grouping SNPs based on genes is the

preferred method. If the goal is to identify only SNP–SNP interactions, then

partitioning SNPs according to their natural genomic order or based on their

LD may be the preferred method. From the computational perspective,
partitioning based on LD is more expensive than partitioning that is based

on the genomic order or based on gene membership.

In addition, a partitioning scheme should balance the group size (that is,

number of SNPs per group) and the number of groups. Considering
dimension of data and computational facilities, the group size and number

of groups can be defined by the user based on the importance of LD in the

resulted interaction models. As a big group size induces less number of groups,

which include SNPs with low LDs between two groups; the chance of deriving
mixed results because of LD is expected to be minimized. However, as CSE, in

a genome-wide scale, does not consider searching for interaction models inside

Figure 3 Flowchart showing the main steps in CSE.
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a group; it is likely to ignore evaluating a possibly high-scored interaction

model in the first place. As our main focus in this study was developing the

main procedure of detecting interaction effects rather than proposing a specific
procedure to partition SNPs, we have selected these parameters based on

limited analyses of simulated data. However, in order to comprehensively

consider the effect of these parameters, sensitivity analysis should be performed

before implementation of the procedure.

Experimental methods
We evaluated the performance of CSE using several synthetic data sets. For

comparison, we used two control methods including MDR and BEAM that
represent two different schools of epistasis methods. We compared the

performance of CSE, MDR and BEAM in terms of power and computational

time.

Synthetic data
We used two different synthetic data sources that have been developed

previously. Detection of two loci epistasis was assessed using the Velez data
(Velez et al., 2007), and higher order SNP interactions detection was assessed

using the Himmelstein data (Himmelstein et al., 2011).

The Velez data set includes 20 different non-linear genetic models (Velez

et al., 2007). These data sets were developed with a case–control ratio of 1:1
and for penetrance functions with variable heritability levels (0.01 and 0.4) and

varying minor allele frequencies (MAFs; 0.2 and 0.4). Genotype frequencies for

epistasis models were consistent with Hardy–Weinberg proportions. The

evaluations were performed on sample sizes of 400, 800 and 1600 with 1000
SNPs per individual. Each genetic model included 100 data sets in which two

functional SNP markers were embedded within a set of 998 non-interacting

SNP markers with a weak marginal effect. A total number of 2000 data sets
were used for each sample size. These data sets are available online from http://

discovery.dartmouth.edu/epistatic_data/.

We also used Himmelstein data sets with three to five functional SNPs,

which had been generated with no predefined genetic models, to evaluate
methods in identifying higher order interactions. For any interaction order, the

data folders consisted of 100 data sets each having 1500 cases and 1500

controls for a SNP number as high as the considered interaction order.

Assuming Hardy-Weinberg equilibriumQ7 proportions and MAF of 0.5, we
randomly generated additional SNP data to embed with the Himmenstein data

using a multinomial distribution. After embedding Himmelstein data with our

generated data sets, the resulting data sets for any interaction order contained

1000 SNPs for 3000 samples. These data sets are available online from http://
discovery.dartmouth.edu/model_free_data/.

GWA data
To evaluate the performance of the CSE method on a real GWA data set, we

used a late-onset Alzheimer’s disease (LOAD) GWA data set that was collected
and analyzed previously (Reiman et al., 2007). Genotype data were obtained

from 1411 samples including 861 cases diagnosed with LOAD and 550

controls. Of the 1411 samples, the case–control status was defined as

neuropathological LOAD determined from brain tissue in 1047 samples and
was determined based on clinical diagnosis for 364 samples. The genotype data

consist of 502 627 SNPs that were measured using the Affymetrix chip Q8, from

which 312 316 SNPs remained after applying quality controls by the original
investigators. In addition, the original investigators measured two apoplipo-

protein E genotypes (rs429358 and rs7412) by either pyrosequencing or

restriction fragment length polymorphism analysis because they are not

measured on the Affymetrix chip. The apoplipoprotein E is the most reliably
replicated genetic variant associated with LOAD (Corder et al., 1993;

Pappassotiropoulos et al., 2006; Coon et al., 2007). On the basis of the

two genotypes, the apoplipoprotein E gene has three common variants e2, e3

and e4 where e2 is the low-risk allele, and each copy of the e4 allele increases
the risk.

RESULTS

We first present results from the synthetic data sets and then present
results from the LOAD GWA data set.

Application to synthetic data

We have performed an extensive analysis of synthetic data to assess
the performance of the CSE method and compare its performance
with that of MDR and BEAM methods. We used the ReliefF filter
method, which is implemented in the MDR software package, to filter
the top 100 informative SNPs out of 1000 SNPs before testing for
interaction detection. Thereafter, the MDR procedure was implemen-
ted to detect the best interaction models of different interaction
orders. The analysis parameters such as number of chains/burn-ins
and configurations of grouping priors for the BEAM algorithm were
set according to recommended parameter settings by the authors
(included in BEAM software package). We estimated the power as the
proportion of the 100 replicate data sets for which the algorithm
ranks the two functional SNPs as the top two SNPs.
Figure 5 presents the power comparison for the three methods for

20 different penetrance functions and for three sample sizes based on
the Velez data set for two interacting loci. As can be seen in Figure 5,

Figure 4 Pseudocode for CSE method.
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the performance of all methods is positively correlated with sample
size. MDR had better performance than BEAM for genetic models
with large values of MAF and heritability (models in the top two rows
in Figure 5). However, for smaller values of MAF and heritability
(models in the bottom two rows in Figure 5) BEAM performed better
than MDR. On the Himmelstein data sets (see Table 1), BEAM does
better than MDR in two out of three experiments. These results are
supportive of BEAM having better performance than MDR
in situations where interacting loci have modest main effects and
interaction effects, and similar results were obtained in a compre-
hensive study that evaluated several epistasis detection methods
(Chen et al., 2011).
CSE performed better than MDR and BEAM on both the Velez and

Himmelstein data sets with marked increase in power for models with
low heritability. The failure of the preprocessing filter procedure to

retain the functional SNPs at the first step likely explains the weak
performance of MDR.
We compared the computational time of the three methods using a

desktop computer of 2.26GHz CPU and 4GB RAM. Table 2
summarizes the average computational time to run each data set.
For a comprehensive comparison, we estimated the average running
time for MDR when implemented exhaustively. As it is shown in
Table 2, the running time of CSE is nearly eight times less than
exhaustive MDR and two times less than BEAM.

Application to GWA data

We imputed the missing genotypes in the GWA data using the
IMPUTE software (Howie et al., 2009). A Q9genotypic test using w2

statistic with 2 df, was applied to each of the SNPs using the PLINK

Figure 5 Powers obtained by three epistasis detection methods (CSE, MDR and BEAM) on synthetic data containing two interacting SNPs. The figure gives

the power of the methods for three sample sizes of 1600, 800 and 400 with equal numbers of cases and controls. For each sample size, 20 penetrance

functions with two MAFs and two heritability levels are examined. For each penetrance model, 100 data sets with 1000 SNPs are examined. The highest

scoring interactions were evaluated using CSE, MDR and BEAM for each data set. Finally, the power was estimated as the number of correctly detected

interacting SNPs divided by the number of SNPs in the data set.
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software (Bender et al., 2007). Finally, 76 755 SNPs with P-value o0.2
were retained for further analysis for epistatic interactions.
In order to detect two-way interactions, we partitioned the SNPs

into 295 groups each containing 260 SNPs considering a balance
between group size and number of groups. Then, CSE was applied to
explore every pairwise partition for epistatic interactions. We set CSE
to identify the 100 top-ranked epistatic interactions for any experi-
ment on a pair of partitions. Our experimental results with the LOAD

data set identified the apoplipoprotein E SNP rs7412 to have the
strongest association with LOAD. This is consistent with the knowl-
edge that the SNP is the most representative disease involved in high-
ranked interaction models with LOAD (Combarros et al., 2009 Q10).
Table 3 summarizes the 19 top-ranked SNP interactions in the

LOAD data set detected by CSE. Of these SNPs, 16 have been initially
identified as LOAD-associated SNPs in other GWA studies Q11(Reiman
et al., 2007; Li et al., 2008a; Shi et al., 2010).

DISCUSSION

The high dimensionality of SNP data sets poses a challenge to
exhaustive search methods for the detection of genetic interaction in
genome-wide data sets. Traditional filtering methods to reduce the
number of SNPs rely on the selection of SNPs based on marginal
effects and have limited ability to detect interactions in the absence of
marginal effects. The newer multivariate filter methods such as
ReliefF, which we used in conjunction with the MDR method, can
detect interactions in the absence of marginal effects. However, they
may suffer from lack of power. Our experimental results highlighted
in particular the loss of power for genetic models with low
heritability. Evolutionary computing methods, such as advanced
wrapper methods, have gained more popularity in recent years as
an alternative, however, they have classification limitations mostly
because of the capacity of features, which does not necessarily identify
epistatic interactions.
In this paper, we proposed CSE as a new method, which combines

a computationally efficient Bayesian scoring function with an evolu-
tionary-based heuristic search algorithm, for epistasis detection in
genome-wide data. Although relying on an evolutionary computing
strategy, CSE is much faster than other algorithms of its kind. A
differentiating characteristic of CSE is that in contrast to computa-
tional methods such as wrapper methods, which rely on data
classification, CSE uses an efficient function to score epistatic
interactions. The epistatic scoring function gains in efficiency by
eliminating the need to perform cross-validation. Furthermore, CSE
can efficiently test for a variety of different multi-locus epistatic
models, and because it does not eliminate SNP markers with filtering,
it can conduct a heuristic search among all possible interaction
models for all available SNPs in the data set.
The results obtained with synthetic data support the additional

value of CSE over other epistasis methods for the detection of
epistatic interaction. The results illustrate that preprocessing proce-
dures may reduce the computational burden at the cost of power. The
application of CSE to a real GWA data set of LOAD provided results
that are consistent with previously reported findings, highlighting the
value of CSE for the exploration of epistatic interactions in genome-
wide data.

Software availability

The software package that implements CSE, the documentation and
illustrative examples are available from the following website: http://
lbb.ut.ac.ir/Download/LBBsoft/CSE.
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Table 2 Running times for the three epistasis detection methods

Sample size CSE MDR (exhaustive) MDR (filtered) BEAM

1600 69s 480 s 16s 134 s

800 54s 390 s 12s 102 s

400 40s 190 s 7 s 75s

Abbreviations: BEAM, Bayesian epistasis association mapping; CSE, cuckoo search epistasis;

MDR, multifactorial dimensionality reduction; SNP, single-nucleotide polymorphism.

The running times were obtained from a data set with 1000 SNPs and different sample sizes

of 400, 800 and 1600.

Table 3 List of top-ranked SNPs that interact with the APOE SNP

rs7412 that were identified by CSE

Rank SNP identifier Chromosome number Associated gene Interaction score

1 rs7079348 10 C10ORF11 �833.573

2 rs934745* 18 MAPK4 �838.546

3 rs10499687* 7 VWC2 �840.237

4 rs2517509 6 MUC21 �841.314

5 rs2122339 2 STIM2 �841.828

6 rs7817227 8 C8orf80 �843.664

7 rs2779556* 9 GABBR2 �845.716

8 rs475093 1 LOC440585 �846.129

9 rs17126808 8 PSD3 �849.232

10 rs7585710 2 ATP6V1C2 �850.014

11 rs7097398 10 KIF20B �854.823

12 rs12162084 16 HS3ST4 �856.846

13 rs473367 8 POU5F1 �857.432

14 rs4394475 9 NXNL2 �857.973

15 rs17330779 7 NRCAM �857.989

16 rs17048904 4 NDST4 �858.782

17 rs17151710 5 CSNK1G3 �858.302

18 rs1763351 1 COL11A1 �859.012

19 rs10824310 1 PRKG1 �859.285

Abbreviations: APOE, apoplipoprotein E; CSE, cuckoo search epistasis; SNP, single-nucleotide

polymorphism.

Of the 19 SNPs in the table, 16 SNPs have been initially identified in both Reiman et al.

(2007) and Li et al. (2008a). Three of the 19 SNPs (indicated by a star) have not been

documented in previous studies and are potential candidates for future studies. The interaction

score is the natural logarithm of the Bayesian score given in Equation 4.

Table 1 Powers obtained by three epistasis detection methods for

three-way, four-way and five-way interactions

Interaction order CSE MDR BEAM

Three-way 69 45 48

Four-way 47 40 35

Five-way 18 12 31

Abbreviations: BEAM, Bayesian epistasis association mapping; CSE, cuckoo search epistasis;

MDR, multifactorial dimensionality reduction; SNP, single-nucleotide polymorphism.

Power is estimated as the proportion of the 100 replicate data sets for which the method ranks

the functional SNPs as the top three, four or five SNPs.
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