
CUDA-lite: Reducing GPU Programming

Complexity

Sain-Zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
{ueng, mlathara, bsadeghi, hwu}@crhc.uiuc.edu

Abstract. The computer industry has transitioned into multi-core and
many-core parallel systems. The CUDA programming environment from
NVIDIA is an attempt to make programming many-core GPUs more
accessible to programmers. However, there are still many burdens placed
upon the programmer to maximize performance when using CUDA. One
such burden is dealing with the complex memory hierarchy. Efficient and
correct usage of the various memories is essential, making a difference of
2-17x in performance. Currently, the task of determining the appropriate
memory to use and the coding of data transfer between memories is still
left to the programmer. We believe that this task can be better performed
by automated tools. We present CUDA-lite, an enhancement to CUDA,
as one such tool. We leverage programmer knowledge via annotations
to perform transformations and show preliminary results that indicate
auto-generated code can have performance comparable to hand coding.

1 Introduction

In 2007, NVIDIA introduced the Compute Unified Device Architecture (CUDA)
[9], an extended ANSI C programming model. Under CUDA, Graphics Process-
ing Units (GPUs) consist of many processor cores, each of which can directly
address into a global memory. This allows for a much more flexible programming
model than previous GPGPU programming models [11], and allows developers
to implement a wider variety of data-parallel kernels. As a result, CUDA has
rapidly gained acceptance in application domains where GPUs are used to exe-
cute compute intensive, data-parallel application kernels.

While GPUs have been designed with higher memory bandwidth than CPUs,
the even higher compute throughput of GPUs can easily saturate their available
memory bandwidth. For example, the NVIDIA GeForce 8800 GTX comes with
86.4 GB/s memory bandwidth, approximately ten times that of Intel CPUs on a
Front Side Bus. However, since the GeForce 8800 has a peak performance of 384
GFLOPS and each floating point operation operates on up to 12 bytes of source
data, the available memory bandwidth cannot sustain even a small fraction of
the peak performance if all of the source data are accessed from global memory.

Consequently, CUDA and its underlying GPUs offer multiple memory types
with different bandwidth, latency, and access restrictions to allow programmers
to conserve memory bandwidth while increasing the overall performance of their
applications. Currently, CUDA programmers are responsible for explicitly al-
locating space and managing data movement among the different memories to
conserve memory bandwidth. Furthermore, additional hardware mechanisms at
the memory interface can enhance the main memory access efficiency if the ac-
cess patterns follow memory coalescing rules. Currently, CUDA programmers
shoulder the responsibility of massaging the code to produce the desirable ac-
cess patterns. Experiences show that such responsibility presents a major burden
on the programmer. CUDA-lite is designed to relieve such burden. Furthermore,
CUDA code that is explicitly optimized for one GPU’s memory hierarchy de-
sign may not easily port to the next generation or other types of data-parallel
execution vehicles.

This paper presents CUDA-lite, an experimental enhancement to CUDA that
allows programmers to deal only with global memory, the main memory of a
GPU, with transformations to leverage the complex memory hierarchy. For in-
creased efficiency, the programmers provide annotations describing certain prop-
erties of the data structures and code regions designated for GPU execution. The
CUDA-lite tools analyze the code along with these annotations and determine if
the memory bandwidth can be conserved and latency can be reduced by utilizing
any special memory types and/or by massaging memory access patterns. Upon
detection of an opportunity, CUDA-lite performs the transformations and code
insertions needed. CUDA-lite is designed as a source-to-source translator. The
output is CUDA code with explicit memory-type declarations and data trans-
fers for a particular GPU. We envision CUDA-lite to eventually target multiple
types and generations of data-parallel execution vehicles. If maximum perfor-
mance is desired, the programmer can still choose to program certain kernels at
the CUDA level.

In this paper we present CUDA-lite in detail. We cover the memories and
techniques that are leveraged by the tool to conserve memory bandwidth and
reduce memory latency. We describe how CUDA-lite identifies the opportunities
and the hand transformations that it replaces. We have developed plug-ins for
the Phoenix compiler [7] from Microsoft to perform all of the transformations as
a source-to-source compiler, and evaluated our results by passing the resulting
source code through NVIDIA’s tool chain. We show that the performance of
code generated by CUDA-lite matches or is comparable to hand generated code.

2 CUDA Programming Model

The CUDA programming model is ANSI C extended with keywords and con-
structs. The GPU is treated as a coprocessor that executes data-parallel kernel
functions. The user supplies a single source program encompassing both host
(CPU) and kernel (GPU) code. These are separated and compiled by NVIDIA’s

G r i d
C o n s t a n tM e m o r yT e x t u r eM e m o r yG l o b a lM e m o r y

B l o c k (0 , 0)S h a r e d M e m o r y
L o c a lM e m o r yT h r e a d (0 , 0)R e g i s t e r s L o c a lM e m o r yT h r e a d (1 , 0)R e g i s t e r s B l o c k (1 , 0)S h a r e d M e m o r y

L o c a lM e m o r yT h r e a d (0 , 0)R e g i s t e r s L o c a lM e m o r yT h r e a d (1 , 0)R e g i s t e r s

Fig. 1. CUDA Programming Model and Memory Hierarchy

compiler, nvcc. The host starts the kernel code with a function call. The complete
description of the programming model can be found in [8–10].

Figure 1 depicts the programming model and memory hierarchy of CUDA.
Threads are organized into a three-level hierarchy, and are executed on the
streaming multiprocessors (SMs) on the GPU. At the highest level, each ker-
nel creates a single grid, which consists of many thread blocks (TBs) arranged in
two dimensions. The maximum number of threads per TB is 512, arranged in a
three dimensional manner. Each TB is assigned to a single SM for its execution.
Each SM can handle up to eight TBs at a time. Threads in the same TB can
share data through the on-chip shared memory and can perform barrier syn-
chronization by invoking the syncthreads primitive. Synchronization across
TBs can only be safely accomplished by terminating the kernel.

One of the major bottleneck to achieving performance while using CUDA is
the memory bandwidth and latency. The GPU provides several different memo-
ries with different behaviors and performance that can be leveraged to improve
memory performance. However, the programmer must explicitly and correctly
utilize these different memories in the source code in order to gain the benefit.
In the rest of this section we will examine shared memory and desirable memory
access patterns to global memory that improve memory performance, and show
the work required of programmers. Work that CUDA-lite intends to automate.

We focus on memory coalescing for global memory and shared memory in
this work since these are the only writable memories in CUDA. We leave the
read-only memories, constant and texture, for future work.

2.1 Global Memory

CUDA exposes a general-purpose, random access, readable and writable off-chip
global memory visible to all threads. It is the slowest of the available memory
spaces, requiring hundreds of cycles, and is not cached. However, its resem-
blance to a CPU’s memory in its generality and size are also what allows more

d e f i n e A S I Z E 3 0 0 0# d e f i n e T P B 2 5 6_ _ g l o b a l _ _ v o i dk e r n e l (f l o a t * a , f l o a t * b){ i n t t h i = t h r e a d I d x . x ;i n t b k i = b l o c k I d x . x ;f l o a t t = (f l o a t) t h i + b k i ;i n t i ;i f (b k i * T P B + t h i > = A S I Z E)r e t u r n ;f o r (i = 0 ; i < A S I Z E ; i + +){ b [(b k i * T P B + t h i) * A S I Z E + i] =a [(b k i * T P B + t h i) * A S I Z E + i] * t ;}}

151 01 52 0

i n t m a i n (){ i n t n u m _ b l o c k s ;i n t s i z e = s i z e o f (f l o a t) * A S I Z E * A S I Z E ;/ * A l l o c a t e a _ h o s t a n d b _ h o s t ,* a n d i n i t i a l i z e a _ h o s t w i t h v a l u e s * // * A l l o c a t e a _ d e v i c e a n d b _ d e v i c e * /c u d a M a l l o c ((v o i d * *) & a _ d e v i c e , s i z e) ;c u d a M a l l o c ((v o i d * *) & b _ d e v i c e , s i z e) ;/ * C o p y v a l u e s f r o m h o s t t o d e v i c e * /c u d a M e m c p y (a _ d e v i c e , a _ h o s t , s i z e ,c u d a M e m c p y H o s t T o D e v i c e) ;n u m _ b l o c k s = A S I Z E % T P B = = 0 ?A S I Z E / T P B : (A S I Z E / T P B) + 1 ;/ * N u m b e r o f t h r e a d b l o c k s i n t h e g r i d * /d i m 3 g r i d D i m (n u m _ b l o c k s) ;/ * N u m b e r o f t h r e a d s p e r t h r e a d b l o c k * /d i m 3 b l o c k D i m (T P B) ;/ * S t a r t e x e c u t i n g o n t h e G P U * /k e r n e l < < < g r i d D i m , b l o c k D i m > > >(a _ d e v i c e , b _ d e v i c e) ;/ * C o p y v a l u e s f r o m d e v i c e b a c k t o h o s t * /c u d a M e m c p y (b _ h o s t , b _ d e v i c e , s i z e ,c u d a M e m c p y D e v i c e T o H o s t) ;}
Fig. 2. Example Code: Base Case

general-purpose applications to be ported easily onto the GPU. A straightfor-
ward implementation of an application would be to utilize only global memory
as a proof of concept for parallelizing the algorithm on CUDA.

Figure 2 shows an example CUDA code. The function main sets up the data
for computation on the CPU while the function kernel contains the code that
is actually executed on the GPU. Notice that variables that reside in the global
memory of the GPU, like a device, are allocated in main and data movement
is also performed there via API calls to cudaMemcpy.

In the kernel function, each thread on the GPU traverses a different row of
the 2-D array a, scaling each element by a thread specific value before storing
into the corresponding location in array b. Since each TB must have the same
number of threads, depending on the data size and program parallelization there
may be excess threads that do not have data to operate on. The conditional check
on line 12 that exits the kernel function before the loop handles these cases. This
check becomes important as we attempt to utilize memory coalescing (Section
2.3).

2.2 Shared Memory

Shared memory is a small (16KB per SM for the GeForce 8800) readable and
writable on-chip memory and as fast as register access. Shared memory is unini-
tialized at the beginning of execution, and resident data is private to each TB

and visible to all threads within the same TB. The intuition is that shared mem-
ory should be used for data that is reused, especially if reused across different
threads in a TB. However, we found that memory performance improvement
from coalesced global memory accesses (Section 2.3) is large enough that shared
memory should be leveraged for such purposes even if there is no data reuse.

2.3 Memory Coalescing

Global memory does have a behavior called memory coalescing that helps con-
serve bandwidth while reducing effective latency. Conceptually it is similar to
loading an entire cache line from memory versus loading one word at a time.
Threads in a TB are numbered along the x direction first and gathered sequen-
tially into warps. On the GeForce 8800 a group of 32 threads form a warp.
Each warp executes in SIMD (single-instruction, multiple-data) fashion, i.e. all
threads in the same warp execute the same instruction at the same time. When
the threads of a half-warp execute a global load, the loads are consolidated if
they meet constraints necessary for the hardware to perform memory coalescing.
Otherwise the loads are serviced individually. We summarize the requirements
here and refer interested readers to [10] for full details.

There are four major requirements that memory accesses to global memory
have to follow for memory coalescing to happen:

1. Each element of the array has to be 4, 8, or 16 bytes and aligned.
2. The threads in the half-warp have to access consecutive memory addresses

in order, e.g. thread number N within the half-warp need to access address
BaseAddr + N.

3. Thread numbering matters only along the first dimension of the thread block,
the x dimension.1

4. BaseAddr must be aligned to a multiple of the element size.

The requirements for memory coalescing are complex. Furthermore, with the
exception of access alignment, all of the requirements must be fulfilled or there
will be no improvement in the memory performance; a partial improvement usu-
ally occurs if alignment is the only requirement missed. The data access pattern
to fulfill the memory coalescing requirement is also not natural for all algorithms,
e.g. reduction across the rows of an array. When performing a reduction across
the rows of an array, it is more natural to have one thread per row, as in Figure
3(a). The different groups of colored arrows represent different TBs. However,
traversing one thread per column, shown in Figure 3(b), is needed to fulfill re-
quirement 2 for memory coalescing. The data accessed by threads in a half-warp
need to be adjacent to one another in the horizontal direction, not vertical, for
the accesses to coalesce. The lack of synchronization across TBs also contributes
to making this traversal pattern unnatural for performing a reduction across
rows in CUDA. An alternative is to tile the computation, as shown in Figure

1 Thread blocks are usually created so that the x dimension is a multiple of the number
of threads in a warp.

3(c). The tile is first traversed along the column and data is coalesced loaded
into a buffer in shared memory, indicated by the grayed arrows. The algorithm
then operates on the data along the row from shared memory before moving
to the next tile. The performance improvement from doing coalesced loads and
using shared memory makes this worthwhile despite the instruction overhead.

(a) T r a v e r s a l A l o n g t h e R o w s (b) T r a v e r s a l A l o n g t h e C o l u m n s (c) T i l e d T r a v e r s a l
Fig. 3. Graphical View of Data Traversal: (a) Row (b) Column (c) Tiled

For example, the memory access to array a on line 18 of Figure 2 does not
coalesce because it violates rule number 2. For each iteration of the loop, thread N

accesses a[N*ASIZE + i]; bki does not matter since the threads are in the same
thread block. This means that each thread is accessing data vertically adjacent
to each other, as in Figure 3(a), which does not trigger coalescing.

Figure 4 shows the kernel code from Figure 2 rewritten by hand so the al-
gorithm is tiled and the memory accesses coalesced. The amount of code is
roughly doubled. The original loop has been tiled and additional code is in-
serted to load/store data between global and shared memory. The load from
array a on line 25 is coalesced since thread N accesses a[k*ASIZE + N] on each
iteration. The computation kernel now operates on the data in shared memory,
and the loop around it has included the check on line 12 of the original code as
an additional condition. In other words, the excess threads we mentioned back
in Section 2.1 may be used to perform memory coalescing accesses, but must not
be allowed to perform actual computation.

This rewriting is a large additional burden on the programmer. Not only must
the programmer fulfill the memory coalescing requirements, the programmer also
has to maintain correctness. The performance improvement this optimization
provides will be the ideal, or oracle, case for CUDA-lite.

3 CUDA-lite

Since the behavior of memory coalescing is complex yet understood, we believe
that such transformations are best undertaken by an automated tool. This would
reduce the potential for errors in writing memory coalescing code, and reduce the
burden upon programmers. In our vision, programmers would provide a straight-

d e f i n e A S I Z E 3 0 0 0# d e f i n e T P B 3 2_ _ g l o b a l _ _ v o i dk e r n e l (f l o a t * a , f l o a t * b){ i n t t h i = t h r e a d I d x . x ;i n t b k i = b l o c k I d x . x ;f l o a t t = (f l o a t) t h i + b k i ;i n t i ;i n t j , E n d , k ;_ _ s h a r e d _ _ f l o a t a _ s h a r e d [T P B] [T P B] ;_ _ s h a r e d _ _ f l o a t b _ s h a r e d [T P B] [T P B] ;E n d = A S I Z E % T P B = = 0 ? A S I Z E / T P B : (A S I Z E / T P B) + 1 ;f o r (j = 0 ; j < E n d ; j + +){ / * C o a l e s c e l o a d s * /_ _ s y n c t h r e a d s () ;f o r (k = 0 ; k < T P B ; k + +){ i f ((j * T P B + t h i < A S I Z E) & &((b k i * T P B + k) * A S I Z E + j * T P B + t h i < A S I Z E * A S I Z E))a _ s h a r e d [k] [t h i] = a [(b k i * T P B + k) * A S I Z E + j * T P B + t h i] ;}_ _ s y n c t h r e a d s () ;/ * C o n d i t i o n s :* T P B & & o b e y o r i g i n a l e n d & & ! (e a r l y e x i t c o n d i t i o n)* /f o r (i = 0 ;(i < T P B) & & (j * T P B + i < A S I Z E) & & ! (b k i * T P B + t h i > = A S I Z E) ;i + +){ b _ s h a r e d [t h i] [i] = a _ s h a r e d [t h i] [i] * t ;}/ * C o a l e s c e s t o r e s * /_ _ s y n c t h r e a d s () ;f o r (k = 0 ; k < T P B ; k + +){ i f ((j * T P B + t h i < A S I Z E) & &((b k i * T P B + k) * A S I Z E + j * T P B + t h i < A S I Z E * A S I Z E))b [(b k i * T P B + k) * A S I Z E + j * T P B + t h i] = b _ s h a r e d [k] [t h i] ;}_ _ s y n c t h r e a d s () ;}}

Comp utationKernel

CoalescedLoads

CoalescedStores

SharedMemory

15 1 01 52 02 53 03 54 04 54 9

LoopTiling

Fig. 4. Example Code: Hand Coalesced Kernel(a) _ _ a n n o t a t i o n (L " _ _ g l o b a l _ _ < t h r e a d s p e r b l o c k > < t h r e a d b l o c k s p e r S M > ") ;(d) _ _ a n n o t a t i o n (L " l o o p < i t e r a t o r > < s t a r t > < e n d > < i n c r e m e n t > ") ;(b) _ _ a n n o t a t i o n (L " g a r r a y < n a m e > < r a n k > < e l e m e n t s i z e > < r a n k s i z e s > ") ;(c) _ _ a n n o t a t i o n (L " B o u n d C h k ") ;
Fig. 5. CUDA-lite Annotations

forward implementation of the kernel code that utilizes only global memory, and
depend on tools to optimize the memory performance.

We have developed tools to automate the transformations previously done by
hand to maximize memory performance via memory coalescing. The programmer
provides a version of the program that has been parallelized for CUDA using
only global memory and the tools output a version with the memory accesses
optimized. In other words, the tools transform code like the kernel function in
Figure 2 to the memory coalescing version in Figure 4. We rely upon information
from the programmer provided via annotations to perform our transformations.
We call the software tools and annotations together CUDA-lite.

Figure 5 shows the current form of the annotations in CUDA-lite. Part (a)
indicates the functions of interest, i.e. kernel functions running on the GPU,
and parallelization factors. While some of the information, like threads per TB,
can eventually be derived from CUDA code, the last argument gives program-
mers some control over how much resources a kernel generated by CUDA-lite
should take. Part (b) indicates what arrays in global memory are of interest and
their properties. This gives control over which memory accesses are targeted
for optimization, which uses up resources. The speedup gained from performing
memory coalescing needs to be balanced against excessive resource usage that
reduces executing parallelism. We will discuss this in detail in Section 4. Part (c)
is for annotating exit checks, such as the conditional check on line 12 of Figure
2 mentioned in Section 2.1. While CUDA threads may terminate early, CUDA-
lite may need those threads to satisfy memory coalescing and synchronization
requirements. Therefore CUDA-lite removes the early termination and places
guards around the original computation, as mentioned in Section 2.3. Finally,
part (d) conveys information about the control flow of loops in the program. We
currently use this information to perform loop transformations.

We recognize that some of the information provided by the annotations is
derivable by advanced compiler techniques. However, the point of the annota-
tions was to quickly provide the additional information needed and enable the
transformations so that the memory hierarchy optimization automation work
can proceed. It is not necessarily the final form.

Requirement 2 of the four requirements detailed in Section 2.3 is the most
difficult to satisfy and check for. CUDA-lite derives the expression used in global
memory accesses by performing a backwards dataflow up to the parameters
of the kernel function and thread indices. The expression is first simplified by
extracting all references to the thread index in the x direction. We leverage the
SIMD execution model to eliminate the need for temporal locality checks, since
the execution model guarantees that the expression is the same for all threads
in the warp. The desired expression is one where every thread in a half-warp
accesses the same location, differing only by their order within the half-warp.
Consequently, any instance of ⌊thi.x/hwarp⌋ can be safely disregarded, where
thi.x is the thread index in the x dimension and hwarp is the number of threads
in a half-warp. Mathematically this can be seen as the function f in Equation 1.

As long as the expression fits the form of the function, then the memory access
is coalesced.

f(thi.x) = thi.x + g

(⌊

thi.x

hwarp

⌋)

+ C (1)

A S I Z E * t h i x + i + a + T P B * A S I Z E * b k i
t h i x + A S I Z E * k + T P B * j + a + T P B * A S I Z E * b k i

(a)
(b)

f o r (i = 0 t o A S I Z E) / / l i n e 1 5 , F i g u r e 2a [(b k i * T P B + t h i x) * A S I Z E + i] / / l i n e 1 8 , F i g u r e 2
f o r (j = 0 t o E n d) / / l i n e 1 7 , F i g u r e 4f o r (k = 0 t o T P B) / / l i n e 2 0 , F i g u r e 4a [(b k i * T P B + k) * A S I Z E + j * T P B + t h i] / / l i n e 1 8 , F i g u r e 4

P s e u d o 5 c o d e :E x p r e s s i o n :P s e u d o 5 c o d e :E x p r e s s i o n :
Fig. 6. Array Access and Expression (a) Non-Coalescing (b) Coalescing

Figure 6(a) shows the relevant pseudo-code and expression generated by
CUDA-lite for the memory access to array a in Figure 2. Due to the ASIZE

multiplier on the first term, the expression does not fit function f and thus the
load is not coalesced. Part (b) shows the memory access to array a in Figure 4.
Unlike part (a), the expression does fit the form of the function f and therefore
the access is coalesced.

If the memory access is not already coalesced, CUDA-lite will attempt to
automatically generate a coalescing version. The labels of the additional boxes
in Figure 4 outline the majority of the transformations: inserting shared mem-
ory variables, performing loop tiling, generating memory coalesced loads and/or
stores, and replacing the original global memory accesses with accesses to the
corresponding data in shared memory.

The shared memory size and tiling factor are fixed and known for each target
GPU, due to the half-warp requirement for memory coalescing. The amount of
shared memory allocated can thus be determined by the number of arrays of
interest, array dimensions, and array element size. The generation of coalescing
loads or stores depends on the relationship between the array dimension and the
threading dimension. If they match, then CUDA-lite needs to have each thread
load from the appropriate place in global memory into the thread’s correspond-
ing position in shared memory. If the array is of higher dimension than the
thread organization, two-dimension to one dimension in the running example,
then CUDA-lite generates loops that load/store the data. This can be seen in
the Coalesced Loads and Stores boxes of Figure 4. These loops must not only

d e f i n e A S I Z E 3 0 0 0# d e f i n e T P B 3 2v o i dk e r n e l (f l o a t * a , f l o a t * b){ _ _ a n n o t a t i o n (L " _ _ g l o b a l _ _ T P B 1 ") ;_ _ a n n o t a t i o n (L " g a r r a y a 2 4 A S I Z E A S I Z E ") ;_ _ a n n o t a t i o n (L " g a r r a y b 2 4 A S I Z E A S I Z E ") ;i n t t h i = t h r e a d I d x . x ;i n t b k i = b l o c k I d x . x ;f l o a t t = (f l o a t) t h i + b k i ;i n t i ;_ _ a n n o t a t i o n (L " B o u n d C h k ") ;i f (b k i * T P B + t h i > = A S I Z E)r e t u r n ;f o r (i = 0 ; i < A S I Z E ; i + +){ _ _ a n n o t a t i o n (L " l o o p i 0 A S I Z E 1 ") ;b [(b k i * T P B + t h i) * A S I Z E + i] =a [(b k i * T P B + t h i) * A S I Z E + i] * t ;}}

15 1 01 52 02 5
Fig. 7. Example Code: CUDA-lite Kernel

be tiled correctly for correct data movement but they must also obey the array
bounds.

Figure 7 shows how the example kernel would be annotated using the current
implementation of CUDA-lite. The programmer only needs to insert the five
boxed additional lines instead of doubling the amount of code like in Figure 4.

It is important to note that CUDA-lite does not affect parallelization and
threading decisions, and operates under the constraints of how the program has
been parallelized. This was a deliberate decision to make the problems that
CUDA-lite is tackling more tractable. CUDA-lite can be folded into a more
comprehensive programming framework for GPU computing system as the part
that handles memory optimization.

4 Experimental Results

We have implemented CUDA-lite using the Phoenix compiler [7] as a source-
to-source compiler using two Phoenix plug-ins: one to perform the necessary
analysis and code transformations, and another to generate source code back
from the IR. The regenerated source code is then fed into NVIDIA’s compiler
nvcc to generate binaries for execution. We used CUDA version 1.0 for all of our
experiments. The CPU was an Opteron 248 system running at 2.2GHz with 1GB
of memory. The GPU was a GeForce 8800 GTX. The source codes for Phoenix
are straightforward CUDA implementations that use only global memory, with
slight manipulations so the CUDA extensions not recognized by Phoenix can be
passed through and regenerated correctly.

We present three applications as our benchmark: MRI-FHD, TPACF, and
the running example of this paper. These three applications display differences
in the arrays to be optimized (e.g. 1-D and 2-D) and the level of control flow
sophistication (e.g. loop nesting) that CUDA-lite had to handle. MRI-FHD is
one of the compute intensive portions of three-dimensional MRI Reconstruction,

00 . 20 . 40 . 60 . 8 11 . 2
B a s e C a s e H a n dC o a l e s c e d C U D A � l i t e B a s e C a s e H a n dC o a l e s c e d C U D A � l i t e B a s e C a s e H a n dC o a l e s c e d C U D A � l i t eM R I � F H D T P A C F E x a m p l eN ormali zedE xecuti onTi me

Fig. 8. Overall Results

of which details can be found in [16]. TPACF stands for the two-point angular
correlation function, which is used to characterize the probability of finding a
cosmological object at a given distance from another cosmological body. A more
detailed description of the algorithm can be found in [3]. Both of these programs
experienced terrific speedup moving from CPU to GPU [14].

Figure 8 shows the overall results for our benchmarks. The run times are
normalized to the base case of the application implemented in CUDA utiliz-
ing only global memory. For each application we show base, hand-coalesced,
and CUDA-lite results. It is obvious how important improving the memory per-
formance can be, providing between 2 to 17x performance difference in these
studies. CUDA-lite, despite being generated from an automated tool, provided
performance comparable to the hand-generated versions for all of the applica-
tions. We explain the discrepancy of the results between hand-generated and
CUDA-lite-generated code in Section 4.1.

Figure 9 shows the detailed results of our experiments. Part (a) is MRI-
FHD. Fast math is a compiler option in nvcc to utilize the hardware special
function units (SFUs) on the GeForce 8800. This is very beneficial for MRI-
FHD because its sine and cosine calculations can be performed on the SFUs. We
present three sets of data: Code generated by hand, passing hand-generated code
through Phoenix (Post-Phoenix), and CUDA-lite. The second set of data gives
an idea of the overhead for going through a translation tool, and provides a more
appropriate comparison for CUDA-lite. Note that Post-Phoenix and CUDA-lite
memory coalescing code out-perform hand-generated. Fewer registers per thread
were allocated by nvcc for the Post-Phoenix and CUDA-lite codes than the hand-
generated code, which allowed two TBs to run concurrently on an SM. Otherwise
the register allocation allowed only one. Part(b) shows the details of the TPACF
results. Although the performance of CUDA-lite is the same as Post-Phoenix,
they are both worse than hand-generated. Only one TB could run on an SM at
a time in all cases due to shared memory usage.

01 02 03 04 05 0
B a s e C a s e M e m o r y C o a l e s c i n g B a s e C a s e M e m o r y C o a l e s c i n g M e m o r y C o a l e s c i n gB y H a n d P o s t ¿ P h o e n i x C U D A ¿ l i t e

Ti me(mi n)

1 6 3 1 . 8 0 1 6 1 6 . 1 0 2 8 2 . 1 7 9 5 . 7 3
1 6 3 4 . 9 0 1 7 4 7 . 7 0 2 6 9 . 2 8 9 1 . 5 6 2 7 0 . 7 2 9 3 . 0 20 . 0 01 0 0 . 0 02 0 0 . 0 03 0 0 . 0 04 0 0 . 0 0

B a s e F a s t M a t h(F M) B a s e F a s t M a t h(F M) B a s e F a s t M a t h(F M) B a s e F a s t M a t h(F M) B a s e F a s t M a t h(F M)B a s e C a s e M e m o r y C o a l e s c i n g B a s e C a s e M e m o r y C o a l e s c i n g M e m o r y C o a l e s c i n gB y H a n d P o s t î P h o e n i x C U D A î l i t e
Ti me(s)

(a) M R I � F H D R e s u l t s

(b) T P A C F R e s u l t s

(c) E x a m p l e C o d e R e s u l t s01 02 03 04 05 06 07 08 09 0

B aseC ase C oal esced LD C oal esced S T C oal esced LD+S T B aseC ase C oal esced LD C oal esced S T C oal esced LD+S T C oal esced LD C oal esced S T C oal esced LD+S TB y H a n d P o s t 7 P h o e n i x C U D A 7 l i t e
Ti me(ms)

Fig. 9. Detailed Results: (a) MRI-FHD (b) TPACF (c) Example Code

Figure 9(c) shows the results for the running example code in this paper. We
compare the benefits of load coalescing, store coalescing, and both. There are
two arrays in the example code. Array a is read while array b is stored to. Using
the annotations in CUDA-lite, we control which accesses are coalesced by the
tool. The results indicate that coalescing either the load or the store is better
than coalescing both. When only one access to one array is coalesced, up to three
TBs can run concurrently on an SM. When accesses to both arrays are coalesced,
the amount of shared memory used is doubled and the number of TBs running
is reduced to one. Consequently, automatically coalescing all memory accesses
is not always a good policy. Resource usage and overall performance need to be
taken into account, perhaps in a performance optimization search like in [15].

4.1 Post-Phoenix Overhead

Intuitively, regenerating source code from a compiler should add some amount
of overhead. Curiously, our results show that this does not always translate into
performance loss. Going through Phoenix showed no ill effect for MRI-FHD, a
visible slowdown in TPACF, and mixed results in the example code. We narrowed
down the problem to a combination of control flow and executing parallelism.

The output of Phoenix uses only GOTO statements to express the control
flow of the program. This results in poor performance on CUDA. We verified
this by manually generating versions that consist of only GOTO statements for
control flow and observed similar degradations in performance. This explains
the slowdown of TPACF and coalesced LD+ST in the example code. Multiple
TBs executing on an SM provides additional parallelism to mask this overhead
in MRI-FHD.

5 Related Work

Techniques have been proposed to allow array-dominated applications to benefit
from scratch-pad memories [5, 12]. In [2], the authors used the polyhedral model
to detect data locality and copy the portion of data that is going to be used in
a tile into the shared memory (or “scratch-pad memory”) of a GPU. Our moti-
vation and approach is different as we copy data from global memory to shared
memory even if there is no data reuse. This is due to the significant performance
benefit of coalescing global memory accesses on the GPU architecture.

Related techniques have also been developed to manipulate data accesses for
SIMD devices [13, 18]. SIMD units typically operate on short vectors, as opposed
to the large massively parallel arrays that CUDA prefers. Also, memory coalesc-
ing has to be linear access since that is the requirement from the programming
model. Data permutation and rearrangement would apply to setting up the data
outside of the GPU kernel, or detecting that the data usage within the kernel
covers data in such a way that interaction with the array should be coalesced.

We performed loop transformations such as tiling to properly reorganize the
execution pattern. Wolf et al. [17] covered the loop transformations that enhance

data locality in loop nests. We decided not to automate the tiling transformations
and rely upon programmer annotations instead since that was not the focus
of our work. Our approach is not the same as the multi-level tiling schemes
presented in [4, 6], but we share the view that having a global knowledge of data
access patterns facilitates improving locality in higher levels of memory hierarchy
and increases global memory bandwidth performance.

There exists a body of work that incorporates programmer knowledge in
performing transformations. Among these, the Spec# system by Microsoft [1] is
closest to our work. It utilizes annotations to allow a separate verifying compiler
to check for program correctness. Our annotations are information that feed
directly into compiler analyses and transformations, usually information that
would otherwise be missing or difficult to infer automatically by the compiler.

6 Conclusion and Future Work

In this paper we introduced CUDA-lite to help relieve programmers of the burden
of optimizing the memory performance of code developed under the CUDA pro-
gramming environment for GPU, which offers a complex memory hierarchy that
needs to be leveraged to best match memory bandwidth with compute through-
put. This is an important task due to the large effect memory performance has
on overall performance (2-17x).

We show that CUDA-lite produces code with performance comparable to
hand-coded versions. The coding requirements for CUDA-lite are lower than
performing the same transformations by hand and provides a layer of abstrac-
tion from the definition of warps in CUDA, which could change in the future.
Since CUDA-lite does not handle the parallelizing aspects of GPU programming,
we foresee CUDA-lite as the memory optimizing module of an eventual overall
framework for facilitating GPGPU programming that encompasses paralleliza-
tion and resource usage decisions to maximize performance.

For future work we plan to broaden the application set and to extend CUDA-
lite to leverage constant memory. We also hope to simplify the annotations in
CUDA-lite, some of which can be replaced by compiler analyses currently not in
our infrastructure.

Acknowledgment

We would like to thank David Kirk and NVIDIA for generous hardware loans
and support. We also thank the anonymous reviewers for their feedback. The
authors acknowledge the support of the Gigascale Systems Research Center,
funded under the Focus Center Research Program, a Semiconductor Research
Corporation program. Experiments were made possible by NSF CNS grant 05-
51665. Any opinions, findings, conclusions, or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of
the NSF. This work was performed with software donations from Microsoft.

References

1. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An
overview. In Proc. of Construction and Analysis of Safe, Secure and Interoperable

Smart Devices, volume 3362 of LNCS. Springer, March 2004.
2. M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Rountev,

and P. Sadayappan. Automatic data movement and computation mapping for
multi-level parallel architectures with explicitly managed memories. In PPoPP ’08:

Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, 2008.
3. R. J. Brunner, V. V. Kindratenko, and A. D. Myers. Developing and deploying

advanced algorithms to novel supercomputing hardware. In Proceedings of NASA

Science Technology Conference - NCTC’07, 2007.
4. J. Guo, G. Bikshandi, B. B. Fraguela, M. J. Garzaran, and D. Padua. Programming

with tiles. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2008.
5. M. Kandemir and A. Choudhary. Compiler-directed scratch pad memory hierarchy

design and management. In DAC ’02: Proceedings of the 39th Conference on Design

Automation, 2002.
6. T. J. Knight, J. Y. Park, M. Ren, Mike H., M. Erez, K. Fatahalian, A. Aiken, W. J.

Dally, and P. Hanrahan. Compilation for explicitly managed memory hierarchies.
In Proceedings of the 2007 ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, 2007.
7. Microsoft. Phoenix compiler. http://research.microsoft.com/Phoenix/.
8. J. Nickolls and I. Buck. NVIDIA CUDA software and GPU parallel computing

architecture. Microprocessor Forum, May 2007.
9. NVIDIA. NVIDIA CUDA. http://www.nvidia.com/cuda.

10. NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Programming

Guide: Version 1.0. NVIDIA Corporation, June 2007.
11. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and

T. J. Purcell. A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

12. P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient utilization of scratch-pad
memory in embedded processor applications. In EDTC ’97: Proceedings of the

1997 European Conference on Design and Test, 1997.
13. G. Ren, P. Wu, and D. A. Padua. Optimizing data permutations for SIMD devices.

In PLDI, pages 118–131, 2006.
14. S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. W. Hwu.

Optimization principles and application performance evaluation of a multithreaded
GPU using CUDA. In PPoPP, pages 73–82, 2008.

15. S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. Ueng, J. A. Stratton,
and W. W. Hwu. Program optimization space pruning for a multithreaded GPU.
In CGO, April 2008.

16. S. S. Stone, J. P. Haldar, S. C. Tsao, W. W. Hwu, Z. Liang, and B. P. Sutton.
Accelerating advanced MRI reconstructions on GPUs. In Proceedings of the 2008

International Conference on Computing Frontiers, May 2008.
17. M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In PLDI ’91:

Proceedings of the ACM SIGPLAN 1991 Conference on Programming Language

Design and Implementation, 1991.
18. P. Wu, A. E. Eichenberger, A. Wang, and P. Zhao. An integrated simdization

framework using virtual vectors. In ICS, pages 169–178, 2005.

