
G. Allen et al. (Eds.): ICCS 2009, Part I, LNCS 5544, pp. 904–913, 2009.
© Springer-Verlag Berlin Heidelberg 2009

CUDA Solutions for the SSSP Problem*

Pedro J. Martín, Roberto Torres, and Antonio Gavilanes

Dpto. Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Spain
{pjmartin@sip,r.torres@fdi,agav@sip}.ucm.es

Abstract. We present several algorithms that solve the single-source shortest-
path problem using CUDA. We have run them on a database, composed of
hundreds of large graphs represented by adjacency lists and adjacency matrices,
achieving high speedups regarding a CPU implementation based on Fibonacci
heaps. Concerning correctness, we outline why our solutions work, and show
that a previous approach [10] is incorrect.

Keywords: Shortest path algorithms, GPU, CUDA.

1 Introduction

Computing shortest paths in a graph is one of the most fundamental problems in
computer science and network optimization. In particular, the Single-Source Shortest-
Paths (in the sequel, SSSP) problem, which computes the weight of the shortest path
from a specific vertex (source) to all other vertices, in a weighted directed graph, is a
heavily studied problem in graph theory.

Probably, the most well-known algorithm solving this problem for the case of
graphs with nonnegative edges was given by Dijkstra in 1959 [1], and nearly all the
subsequent proposals are based on it. In spite of its early formulation, this classic
solution is still presented in almost every textbook on algorithms [2]. After the
simplest Dijkstra´s implementation, which uses arrays to represent min-priority
queues and runs in ܱሺ݊ଶሻ time, where ݊ is the number of vertices, many authors have
designed different data structures to implement these queues and achieve better and
better asymptotic running times. In particular, Fibonacci heaps [3] can be used to get ܱሺ݉ ൅ ݊ log ݊), where ݉ is the number of edges.

As [4] points out, Dijkstra’s algorithm is inherently sequential since its efficiency
depends on a fixed ordering of the vertices. The Bellman-Ford algorithm allows all
vertices to be considered in parallel but at the cost of being not efficient. Different
formulations of parallel algorithms for the SSSP problem are reviewed in detail in [5].
In particular, a specific proposal for incorporating parallelism into Dijkstra’s
algorithm has been the introduction of parallel priority queues [6]. However, the
literature contains few experimental studies on parallel algorithms of the nonnegative
SSSP problem. Some of the more recent works study the use of supercomputers for
solving large graphs. [7] reports performance results on the multithread parallel
computer Cray MTA-2, using the Δ-stepping parallel algorithm of [5]. [7] exhibits
remarkable parallel speedup when compared to competitive sequential algorithms, for

* Research supported by the Project CCG08-UCM/TIC-4252.

 CUDA Solutions for the SSSP Problem 905

low-diameter sparse graphs of 100 million vertices and 1 billion edges. On the other
hand, [8] contains an experimental evaluation of [6] on the APEmille supercomputer,
but restricted to graphs with no more than thousands of vertices.

However, some modern applications, such as data mining, network organization, etc.
require large graphs with millions of vertices, and some of the previous algorithms
become impractical, when we do not have a very expensive hardware at our disposal.
Fortunately, Graphics Processing Units (GPUs) supply a high parallel computation power
at a low price. Moreover, they have become very popular since the languages involved in
their programming have evolved from graphics APIs to general purpose languages. One of
the best examples is the CUDA API [9] of NVIDIA. As a consequence of this evolution,
the so called General Purpose Computing on GPU (GPGPU) [11] has consolidated as a
very active research area, where many problems that are not directly related to computer
graphics are solved using GPUs. The aim of all these GPU-based implementations is to
achieve better running times than their CPU-based counterparts.

With this new technology available, the natural challenge is: “how can GPUs be
used to solve the SSSP problem?”. Unfortunately programming with CUDA must be
carefully taken, basically because CUDA programming model is very restricted
concerning synchronization, and the unique proposal we are aware of ([10]) is not
correct. Apart from giving a counterexample, in this paper we present different
correct solutions, based on Dijkstra´s algorithm, that are experimentally compared
using a database of hundreds of randomly generated large graphs.

2 Dijkstra´s Algorithm Overview

Dijkstra´s algorithm solves the SSSP problem for directed graphs ܩ ൌ ሺܸ, ሻ in whichܧ
every edge ሺݒ, Ԣሻݒ א ,ݒhas a positive weight ߱ሺ ܧ Ԣሻݒ ൐ 0. Let ݊ and ݉ be the number
or vertices and edges respectively. We assume that vertices are numbered from to ݊ െ 1, and that 0 is the source vertex. The algorithm splits the set of vertices in two
parts: the set ܴ of resolved vertices (ܴ-vertices) and the set ܷ of unresolved vertices (ܷ-
vertices), and it keeps a shortest-path estimate ܿሾ݅ሿ for each vertex ݅, which actually
coincides with the shortest path weight for ܴ-vertices. For ܷ-vertices, ܿሾ݅ሿ holds the
weight of the shortest special path (SSP) to ݅ w.r.t. ܴ, that is, the shortest path among
the paths to ݅ that exclusively traverses ܴ-vertices before reaching ݅.

The algorithm implements a loop. Each iteration is composed of three steps: (1) the
estimates for ܷ-vertices are relaxed using the last vertex added to ܴ, which we will
call the frontier vertex, (2) the minimum estimate for ܷ-vertices is computed, and (3)
a ܷ-vertex with the minimum estimate is promoted to ܴ, and becomes the new
frontier. Figure 1 presents a typical Dijkstra’s algorithm implementation that includes
the variable f to hold the current frontier vertex. Regardless of the graph
representation we chose, it runs in ܱሺ݊ଶሻ.

The soundness of the algorithm is based on two fundamental properties that can be
proved. First, anytime a new frontier arises in the third step, its estimate actually
coincides to the weight of its shortest path, thus it can be safely promoted to ܴ.
Second, in order to relax the estimates of a ܷ-vertex ݆ using the current frontier vertex ݂, the SSP to ݆ w.r.t. ܴ cannot traverse more ܴ-vertices after visiting ݂, hence we
only consider the previous estimate and ܿሾ݂ሿ ൅ ߱ሺ݂, ݆ሻ when updating ܿሾ݆ሿ.

906 P.J. Martín, R. Torres, and A. Gavilanes

void DDijkstra (c) {

forall vertex i { c[i]=INFINITY; u[i]=true;}

 c[0]=0; u[0]=false;

 f=0; mssp=0;

 while (mssp!=INFINITY) {

 forall unresolved vertex j {

 c[j]= min(c[j], c[f]+w[f,j]);}

 mssp= INFINITY;

forall unresolved vertex j

 if(c[j]<mssp){ mssp=c[j]; f=j;}

 u[f]=false;

 }//while

}

Fig. 1. Dijkstra’s algorithm implementation

3 Parallelizing Dijkstra’s Algorithm

Dijkstra´s algorithm handles a unique frontier vertex even when the estimates of
several ܷ-vertices coincide with the minimum computed in the second step. In these
cases, the algorithm simply chooses one of them to compose the new frontier. In
consequence, it requires a different iteration to promote each of them to ܴ.
Fortunately, this set of ܷ-vertices, which we will call ܨ, can be processed at once
because the previous two properties remain:

1. Their estimates actually coincide with the weight of their shortest paths.
2. In order to relax the estimate of a remaining ܷ-vertex ݆, the SSP to ݆ w.r.t. ܴ

cannot traverse more ܴ-vertices after visiting one ܨ-vertex, hence only the
previous estimate and min௙אிሼܿሾ݂ሿ ൅ ߱ሺ݂, ݆ሻሽ must be considered when updating ܿሾ݆ሿ. In particular, note that only one ܨ-vertex can belong to the SSP to ݆ w.r.t. ܴ.

Fig. 2. Dijkstra’s algorithm adapted to compound frontiers

Therefore the notion of compound frontier can be used to design the Dijkstra’s
algorithm Adapted to Compound Frontiers (DA2CF) presented in Fig. 2. Although
the algorithm is composed of the same three basic operations, their implementations
must suitably handle compound frontiers:

void DDA2CF(c) {

 initialize(c, f, u);

 mssp = 0;

 while (mssp != INFINITY) {

 relax(c, f, u);

 mssp = minimum(c, u);

 update(c, f, u, mssp);

 }//while

}

void iinitialize(c, f, u) {

 forall vertex i {

 c[i] = INFINITY;

 f[i] = false;

 u[i] = true;

 }//for

 c[0] = 0;

 f[0] = true; u[0] = false;

}

 CUDA Solutions for the SSSP Problem 907

1. relax(c, f, u) must relax the shortest path estimate for every ܷ-vertex using ܨ-
vertices. Hence it must compute ܿሾ݆ሿ ൌ ݉݅݊ሼܿሾ݆ሿ, ܿሾ݂ሿ ൅ ߱ሺ݂, ݆ሻሽ for every pair of
vertices ݆ א ܷ and ݂ א .ܨ

2. minimum(c, u) must find the minimum estimate of the ܷ-vertices, called mssp.
3. update(c, f, u, mssp) must update the set of ܷ-vertices by removing those vertices

whose estimate is equal to mssp, which will compose the new set of ܨ-vertices.

There are many ways to implement these operations. Although sequential solutions
could be easily written by means of the obvious single loop (two nested loops for the
relax procedure), the operations can be performed in parallel, by launching a thread
for each iteration of the loop (the main loop for relax).

Figure 3 shows two versions of the relax procedure. On the left, relax_F processes ܨ-vertices: “for each ܨ-vertex we visit all of its successors, relaxing ܿ for those
vertices that are still unresolved”. Observe that the sentence c[j]=min(c[j],

c[i]+ ω(i,j)) could produce concurrency inconsistencies if two ܨ-vertices i and i’
accessed the same ܷ-vertex j and the worst value c[i]+ ω(i,j) were finally left. In
order to prevent such inconsistencies, we use the atomic instruction atomicMin(x,y)
that allows only one thread to store the minimum of x and y in the variable x.

CUDA devices of compute capability 1.0 do not support atomic functions, thus we
propose another approach that does not use them. Figure 3 on the right presents the
relax_U procedure which focuses on ܷ-vertices instead of ܨ-vertices: “for each ܷ-
vertex, we visit all of its predecessors, relaxing its ܿ-value when a ܨ-vertex is found”.
Notice that this approach requires predecessors instead of successors.

A parallel version of the minimum function is a more difficult task, because of its
sequential nature. Fortunately, different reduction procedures have been already
adapted to the stream model [12, 13, 14]. In this paper we have adapted the reduce3
method included in the CUDA SDK 1.1 [15] to obtain the minimum1 procedure of Fig.
4 on the right.

Finally, we parallelize the update procedure as Fig. 4 on the left shows. In the
sequel, DA2CF_F and DA2CF_U will denote the algorithms that use relax_F and
relax_U, respectively.

Regarding asymptotic complexity, let us compare the Dijkstra´s algorithm of Fig.
1, that runs in ܱሺ݊ଶሻ, to the sequential versions of the DA2CF algorithm that result

void rrelax_F(c, f, u) {

 forall i iin parallel do {

 if (f[i]) {

 forall j successor of i do {

 if (u[j])

 atomicMin(c[j],c[i]+w[i,j]);

 }//for

 }//if

 }//for

}

void rrelax_U(c, f, u) {

 forall i iin parallel do {

 if (u[i]) {

 if (f[j])

 c[i]= min(c[i],c[j]+w[j,i]);

 }//for

 }//if

 }//for

}

 forall j predecessor of i do {

Fig. 3. Processing frontier (left) or unresolved (right) vertices within the relax operation

908 P.J. Martín, R. Torres, and A. Gavilanes

when the “in parallel” qualifier is erased. Firstly, notice that the number of iterations
required for the main DA2CF-loop depends more heavily on the given graph; since
the size of the arising compound frontiers influences its termination. Hence, we
analyze its worst case. We focus on adjacency lists since they fit better to large graphs
and they provide the algorithm of Fig. 1 with smaller running times. The worst case
corresponds to a complete graph requiring ݊ iterations (the frontier size is always 1),
DA2CF_F also takes a time in ܱሺ݊ଶሻ, but with a greater constant due to the
management of the f array. However, DA2CF_U takes a time in ܱሺ݊ଷሻ, since the
edges arriving at an unresolved vertex are repeatedly processed while it remains
unresolved. In order to evaluate the general case, we experimentally run CUDA
implementations on randomly generated graphs.

4 CUDA Implementations

The adjacency list representation of a graph is made up of three arrays: ݒ for vertices, ݁ for edges and ߱ for weights. Array ݒ is used to access the adjacency list of each
vertex. Specifically, the adjacency list of the vertex ݅ appears in ݁ and ߱ from index ݒሾ݅ሿ to index ݒሾ݅ ൅ 1ሿ െ 1 (Fig. 5 on the left). In order to deal with the last vertex in
the same way, an extra component is added at the end of ݒ such that ݒሾ݊ሿ ൌ ݉. In
consequence, array ݒ is of size ݊ ൅ 1 and both ݁ and ߱ are of size ݉.

There are two possible interpretations for the data occurring in ݁. Vertices belonging to
the adjacency list of vertex ݅ can be understood as successors or predecessors. Formally, in
the predecessor interpretation, there is an edge to ݅ from each adjacent vertex, whereas in
the successor interpretation the edge goes from ݅ to each adjacent vertex. Graphs must be
represented in the proper interpretation before execution, since the relax procedure
requires either successors (relax_F) or predecessors (relax_U), but not both.

void update(c, f, u, mssp) {

 forall i in parallel do {

 f[i] = false;

 if (c[i] == mssp) {

 u[i] = false;

 f[i] = true;

 }//if

 }//for

}

void minimum1(u, c, minimums) {

 forall i in parallel do {

 thid = threadIdx.x;

 i = blockIdx.x*(2*blockDim.x)+threadIdx.x;

 j = i + blockDim.x;

 data1 = u[i] ? c[i] : INFINITY;

 data2 = u[j] ? c[j] : INFINITY;

 sdata[thid] = min(data1, data2);

 __syncthreads();

 for (s = blockDim.x/2; s>0; s>>=1) {

 if (thid<s) {

 sdata[thid]=min(sdata[thid],sdata[thid+s]);

 }// if

 __syncthreads();

 }// for

 if (thid==0) minimums[blockIdx.x]= sdata[0];

 }// forall

}

Fig. 4. Updating the frontier (left), and computing the minimum sssp with CUDA (right)

 CUDA Solutions for the SSSP Problem 909

4.1 Implementations

We have sequential C implementations corresponding to the sequential versions of
DA2CF_F and DA2CF_U, that we respectively call FCPU and UCPU. Before presenting
the pure CUDA implementations, we have tried some hybrid systems running on
both, CPU and GPU. Since the minimum function is inherently sequential, we have
restricted this function to run on CPU. Moreover, in order to fit the requirements of
any CUDA device, we have focused on the relax_U procedure. Hence, we have
designed three hybrid implementations based on the DA2CF_U algorithm: UH1, UH2
and UH3 which respectively run the update procedure, the relax_U procedure, and both
update and relax_U on the GPU.

In order to run the complete algorithm on GPU, we must run additional passes of
the minimum function, since the minimum1 kernel of Fig. 4 only reduces each block to a
single value. Thus, we have implemented another kernel, called minimum2, to execute a
second pass on GPU. The obtained values are finally minimized on CPU in a
sequential manner, because the number of these values is too small. Hence, we have
two fully GPU-implemented solutions based on the DA2CF_U algorithm, UGPU and
UGPU+2min that apply one and two minimization passes, respectively. Based on the
DA2CF_F algorithm, we also have two fully-GPU solutions, but this time they have
been designed to analyze the cost due to simultaneous accesses to the c array. Thus,
apart from the FGPU solution, we have another one, called FGPU_no_Atomic, that does not
use the atomic function atomicMin but a non-atomic function min. We introduce the
latter solution only for measuring purposes, since it is not correct in a parallel
environment. Anyway, both solutions apply a single minimum pass.

4.2 Exploiting CUDA Resources

It is possible to accelerate the UGPU solution by using some CUDA features.
Concretely, in this subsection we exploit texture cache and shared memory to improve
the implementation of the relax_U kernel. Let us call the corresponding solution
UGPU_PLUS.

In order to retrieve the boundaries of the adjacency list, the i–th thread must access ݒሾ݅ሿ and ݒሾ݅ ൅ 1ሿ, whereas the ሺ݅ ൅ 1ሻ–th thread must access ݒሾ݅ ൅ 1ሿ and ݒሾ݅ ൅ 2ሿ.
Thus, the value ݒሾ݅ ൅ 1ሿ is shared by the two threads, and can be brought only once if
shared memory is used. Then, each thread ݅ reads ݒሾ݅ሿ from global memory, writes it
to shared memory, and after that, it reads ݒሾ݅ ൅ 1ሿ from shared memory directly. A
special case is the last thread of a block, since it will bring both ݒሾ݅ሿ and ݒሾ݅ ൅ 1ሿ.

Notice that two threads can access the array f for the same vertex j. To accelerate
the corresponding readings, the array can be accessed through a texture, taking
advantage of the texture cache. Thus, it is possible for threads of the same block to
read f[j] from the cache and not from global memory.

4.3 A Bugged Implementation

Let us explain the problem we have found in the solution presented in [10]. The
authors propose an implementation of Dijkstra´s algorithm which relaxes using the
frontier, in a similar way to our relax_F procedure. However, instead of the atomic

910 P.J. Martín, R. Torres, and A. Gavilanes

0

1 32 n-2

n-1

.....

…… … …

… … ……

Fig. 5. Left: The adjacency list representation. Right: Counterexample to [10].

function atomicMin, they use the following code to relax a vertex j which is successor
of a frontier vertex i:

if (uc[j] > c[i]+w[i,j]) uc[j] = c[i]+w[i,j];

where the array uc, called the updating cost array, holds a copy of the array c before
relaxing. Indeed, as the authors explain, the new cost is not reflected in c, but is
updated in uc, in order to avoid read-after-write inconsistencies. Later, they dump uc
onto c in the update kernel.

Unfortunately, this technique is not enough to avoid write-after-write
inconsistencies. Concretely, if two frontier vertices i and i’, whose related threads
are simultaneously running, satisfy uc[j]>c[i]+w[i,j] and uc[j]>c[i’]+w[i’,j] at the
same time for the same ܷ-vertex j, then both threads will make the above if-condition
true. Thus, there will be no control on the final value assigned to uc[j]. Since
debugging concurrent programs is highly difficult, we have defined the graph of Fig.
5 on the right in order to increase the number of these critical situations.

We have run their implementation on a GeForce 8800 GTS, similar to the GeForce
8800 GTX used in [10], with ݊=1024 and 32 threads per block. Furthermore, we have also
tested the undirected version of the graph, since the authors do not specify the kind of
graph they manage. In any case, observe that vertices ranging from 1 to ݊ െ 2 will
compose the frontier after the first iteration. Actually, ܿሾ݅ሿ ൌ ሾ݅ሿܿݑ ൌ 1, for 1 ൑ ݅ ൑ ݊ െ2, and ܿሾ݊ െ 1ሿ ൌ ሾ݊ܿݑ െ 1ሿ ൌ INFINITY, after the first iteration. Hence, every vertex ሺ1 ൑ ݅ ൑ ݊ െ 2ሻ, tries to relax ܿݑሾ݊ െ 1ሿ to a different value during the second iteration.
In consequence ܿሾ݊ െ 1ሿ ends with a value that randomly changes from execution to
execution, instead of computing the right solution ܿሾ݊ െ 1ሿ ൌ 2.

Since threads of different blocks cannot be synchronized in CUDA, solving this
bug requires the use of atomic functions in the relax_F implementation. Unfortunately
such functions are only available from compute capability 1.1, so solving this bug for
the cards GeForce 8800 GTS and GTX demands a deeper modification of the
algorithm. This is actually the aim of our relax_U kernel.

5 Adjacency Matrices

In the case of adjacency lists, it is difficult to conceive a method to allow threads to
collaborate when reading from global memory. On the opposite, when adjacency

 CUDA Solutions for the SSSP Problem 911

matrices are used, threads must visit every element of each column or row, and so,
threads can cooperate to bring elements of arrays f, c or u to shared memory.

As we did for the adjacency list representation, we can consider two kind of
implementations: one that looks for predecessors (UCPU and UGPU), and another one
that looks for successors (FCPU and FGPU). In UGPU, each thread t must look for its
predecessors by visiting the ݐ–th column. In order to make threads collaborate, the
exploration is divided in chunks of ܾ elements, where ܾ is the number of threads in a
block. The arrays f and c are also divided in chunks of ܾ elements. Before visiting
the chunk of the column, each thread brings a component of the chunk of f and c into
shared memory. That way, the information of the arrays f and c is already available
when each predecessor within the chunk is processed. Once a chunk is dispatched, the
next one is processed identically.

On the other hand, FGPU processes frontier vertices, so each thread explores a row.
Threads can also collaborate similarly, but this time they bring elements of u.

6 Results and Discussion

We have tested all the implementations using an Intel CORE 2 QUAD Q6600 2.40
GHz 2GB DDR memory, and a NVIDIA GEFORCE GTX 280, which has 30
multiprocessors and 1 GB of GDDR3 memory, using 256 threads per block. The
database is composed of randomly generated graphs with a number of vertices that
ranges from 1 to 11 M for adjacency lists, and from 1 to 15 K for adjacency matrices.
The database includes 25 graphs for each of these sizes. The degree of each graph is
fixed, so every vertex has the same number of adjacent vertices. The chosen degree is
7 for adjacency lists, while ݊/5 for matrices. Concerning lists, graphs have been
generated using the predecessor interpretation, so we have also turned each graph into

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11

U-CPU

U-H1

U-H2

U-H3

U-GPU

U-GPU+2min

U-GPU-PLUS

F-CPU

F-GPU-noAt

F-GPU

FH

Fig. 6. Results for adjacency lists. Units: seconds for the y-axis and 220 vertices for the x-axis.

912 P.J. Martín, R. Torres, and A. Gavilanes

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

U-CPU

F-CPU

U-GPU

F-GPU

F-GPU-noAt

FH

Fig. 7. Results for adjacency matrices. Units: ms. for the y-axis and 210 vertices for the x-axis.

its successor interpretation. Notice that the degree of the graph can not to be kept after
this operation. Edge weights are integers that randomly range from 1 to 10.

Figures 6 and 7 show the results we have obtained comparing the average times for
each solution to a CPU-solution, called FH, implemented using Fibonacci Heaps and
based on the SPLIB library [16]. Most of our solutions, including some CPU ones,
run faster on these graphs since the arising frontiers are large. Thus, our solutions
only require a few iterations to solve the problem. Concretely, around 45 are enough
to solve the largest graphs represented with adjacency lists.

Let us analyze the results for the adjacency list representation presented in Fig. 6.
The figure shows that fully CUDA-implemented solutions (UGPU, UGPU+2min and FGPU)
are more efficient than partially CUDA-implemented ones (UH1, UH2 and UH3), which
is due to the overhead connected to the data movement between CPU and GPU. The
figure also shows that a two-pass minimization behaves as a single one, since UGPU
and UGPU+2min overlap. This can be explained comparing the number of values
provided by minimum1 to those provided by minimum2. Notice that these numbers are ݊/ሺ2ܾሻ and ݊/ሺ2ܾሻଶ, respectively, where ܾ is the number of threads per block. Since ݊ ranges from 1 כ 2ଶ଴ to 11 כ 2ଶ଴ and we have chosen ܾ ൌ 256 ൌ 2଼, these numbers
finally range from 2ଵଵ to 11 כ 2ଵଵ for minimum1 and from 2ଶ to 11 כ 2ଶ for minimum2.
Therefore, the number of values that must be copied from GPU to CPU, in order to be
minimized on CPU, is similar for UGPU and UGPU+2min; so there is no difference in time
consumption. The figure also shows that exploiting CUDA resources leads to better
results, since UGPU_PLUS is slightly faster, obtaining a factor near 10X w.r.t. FH.

Concerning solutions based on the relax_F procedure, Fig. 6 shows that processing
unresolved vertices is slower than processing the frontier, even for parallel
implementations, since FGPU is quite faster than UGPU. Also notice that FGPU_no_Atomic
behaves as FGPU

 because the simultaneous accesses to the same c-component are rare
when the degree is small. These solutions reach a factor around 60X w.r.t. FH.

Regarding adjacency matrices (Fig. 7), the more vertices the graph has, the higher
is the degree. Thus, the frontier sets are huge, and relax_F based solutions are slower
than relax_U based ones. To summarize, UGPU is the fastest, achieving a factor of 32X
w.r.t. FH. Finally, the figure gives more insight about how atomic operations affect
the overall performance, since FGPU_no_Atomic is usually faster than FGPU.

 CUDA Solutions for the SSSP Problem 913

7 Conclusions

GPUs can be used to speed up solutions to many problems, including classic problems.
Nevertheless, the CUDA programming model is very restricted concerning
synchronization, so implementations must be carefully designed, and intuitions about
their correctness should be given at least.

In the paper we have shown different CUDA solutions for the SSSP problem,
considering adjacency lists and matrices. We have also explained the bug we found in
[10], which is basically due to write-after-write inconsistencies. In order to solve this bug,
two approaches have been shown. On the one hand, atomic functions can be used for
devices of compute capability 1.1 and higher. On the other one, the usual relax procedure
can be reversed in order to process unresolved vertices instead of frontier vertices.
Although processing unresolved vertices is theoretically less efficient, the latter approach
is the only applicable solution to any CUDA device.

References

1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Num. Math. 1, 269–271 (1959)
2. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms, 2nd edn. MIT

Press, Cambridge (2001)
3. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network

optimization algorithms. J. ACM 34, 596–615 (1987)
4. Meyer, U., Sanders, P.: Δ-stepping: A parallel single source shortest path algorithm. In:

Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461,
pp. 393–404. Springer, Heidelberg (1998)

5. Meyer, U., Sanders, P.: Δ-stepping: a parallelizable shortest path algorithm. J. of
Algorithms 49, 114–152 (2003)

6. Brodal, G., Träff, J., Zaroliagis, C.: A parallel priority queue with constant time
operations. J. Parallel and Distributed Computing 49, 4–21 (1998)

7. Madduri, K., Bader, D., Berry, J., Crobak, J.: An experimental study of a parallel shortest
path algorithm for solving large-scale graph instances. In: Proc. Workshop on Algorithm
Engineering and Experiments (ALENEX 2007) (2006)

8. Di Stefano, G., Petricola, A., Zaroliagis, C.: On the implementation of parallel shortest path
algorithms on a supercomputer. In: Guo, M., Yang, L.T., Di Martino, B., Zima, H.P., Dongarra,
J., Tang, F. (eds.) ISPA 2006. LNCS, vol. 4330, pp. 406–417. Springer, Heidelberg (2006)

9. http://www.nvidia.com/object/cuda_home.html#
10. Harish, P., Narayanan, P.J.: Accelerating large graph algorithms on the GPU using CUDA.

In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2007. LNCS,
vol. 4873, pp. 197–208. Springer, Heidelberg (2007)

11. http://www.gpgpu.org/
12. Buck, I., Purcell, T.: A toolkit for computation on GPUs. In: GPU Gems, ch. 37. Addison-

Wesley, Reading (2004)
13. Harris, M., Sengupta, S., Owens, J.: Parallel prefix sum (Scan) with CUDA. In: GPU

Gems, ch. 39, vol. 3. Addison-Wesley, Reading (2008)
14. Harris, M.: Parallel prefix sum (Scan) with CUDA (2007),

 http://developer.download.nvidia.com/compute/cuda/sdk/
 website/projects/scan/doc/scan.pdf

15. http://www.nvidia.com/object/cuda_get.html
16. http://avglab.com/andrew/soft.html

	CUDA Solutions for the SSSP Problem
	Introduction
	Dijkstra´s Algorithm Overview
	Parallelizing Dijkstra’s Algorithm
	CUDA Implementations
	Implementations
	Exploiting CUDA Resources
	A Bugged Implementation

	Adjacency Matrices
	Results and Discussion
	Conclusions
	References

