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Secure authentication on situated displays (e.g., to access sensitive information or to make purchases) is becoming increasingly

important. A promising approach to resist shoulder surfing attacks is to employ cues that users respond to while authenticating;

this overwhelms observers by requiring them to observe both the cue itself as well as users’ response to the cue. Although

previouswork proposed a variety ofmodalities, such as gaze andmid-air gestures, to further improve security, an understanding

of how they compare with regard to usability and security is still missing as of today. In this paper, we rigorously compare

modalities for cue-based authentication on situated displays. In particular, we provide the first comparison between touch,

mid-air gestures, and calibration-free gaze using a state-of-the-art authentication concept. In two in-depth user studies (N=37)

we found that the choice of touch or gaze presents a clear trade-off between usability and security. For example, while gaze

input is more secure, it is also more demanding and requires longer authentication times. Mid-air gestures are slightly slower

and more secure than touch but users hesitate to use them in public. We conclude with three significant design implications

for authentication using touch, mid-air gestures, and gaze and discuss how the choice of modality creates opportunities and

challenges for improved authentication in public.
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1 INTRODUCTION

There are many situations in which users have to authenticate on situated displays in public spaces. Examples
include but are not limited to accessing sensitive information (e.g., checking emails at public terminals in Internet
cafes or hotel lobbies), making purchases (e.g., public transport tickets at a vending machine, goods in a retail
store, or making payments above the limit allowed under łtap & payž), as well as secure access (e.g., staff accessing
the security area of an airport). Such situations pose considerable challenges to authentication mechanisms,
since attackers can uncover a user’s login credentials through a variety of means. For example, an adversary
can shoulder-surf a user during authentication [20]. Smudge [6] and thermal attacks [1] can also be effective in
uncovering passwords from the oily residues and heat traces left on touchscreens after authentication.
To resist these attacks, researchers have proposed schemes in which users authenticate by responding to

on-screen cues [10, 34, 56]. We refer to this type of schemes as cue-based authentication. At the same time, novel
sensors enable the security of such schemes to be further enhanced. In particular, motion sensors and eye trackers,
which are available at <100$ and are hence cheaper than some touchscreens, enable using new input modalities
for authentication. Already today, off-the-sheld RGB cameras integrated with many ATMs and public displays.
allow for accurately detecting gestures and gaze [54].

Research in usable security has explored a range of modalities that promise both more secure and usable user
authentication, such as mid-air gestures [5], gaze [21, 39], or combinations of touch and gaze [34]. However,
to date, it remains unclear how these different modalities perform compared to each other. Understanding the
benefits and drawbacks of commonly used authentication modalities is crucial for determining their practical
usefulness and suitability for different settings and contexts. A modality that optimizes for security at the expense
of usability impacts its acceptance, and could limit the contexts of its use to situations where privacy aware users
feel observed [19]. For example, a system may recommend authenticating in a crowded train station using a
secure but less usable method; another modality could be used when it is less crowded.

In this work we report on a comparative evaluation of three implementations of cue-based authentication using
touch, mid-air gestures, and gaze. We extend a state-of-the-art touch-based scheme, SwiPIN [56], to also allow
for input using mid-air gestures and gaze on situated displays. We detect coarse mid-air gestures using a Kinect,
while an eye tracker is used to detect smooth pursuit eye movements [55]. We report on results of (1) a usability
study (N=17) in which participants entered PINs using all three modalities, and (2) a security study (N=20) in
which participants took the role of attackers and tried to observe the entered PINs. Quantitative and qualitative
results show that while gaze input is significantly more secure than touch input, it requires significantly longer
authentication times. We also found that mid-air gestures are slightly slower, more error prone, and more secure
than touch, however users are skeptical towards using them in public. Touch, as the currently most common
input modality, is fastest and least error prone but also least secure. A number of these results is surprising: 1)
Gaze is often argued to be fast [51]. Yet we found that gaze is slower than touch for cue-based authentication. 2)
Despite the larger movements performed by the arms compared to touch, cue-based authentication via mid-air
gestures is more secure due to the larger distance to the display, which complicates shoulder surfing by requiring
the attacker to switch focus between the user and the display. 3) Our results highlight the importance of socially
acceptable authentication. And finally, 4) gaze performs surprisingly well against repeated video attacks while
the vast majority of knowledge-based authentication schemes fail completely against said attacks [56].
In summary, the contributions of this work are three-fold. First, we report on the results of a user study in

which we compared cue-based authentication using touch, mid-air gestures and gaze on a situated display. Second,
we compare the security of the three methods regarding their observation resistance against one-time attacks
and repeated video attacks. Third, we derive a set of design implications to guide researchers and practitioners in
utilizing touch, mid-air gestures, and gaze to build usable and secure authentication schemes.
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2 RELATED WORK

Our work builds on three strands of prior work: (1) interacting using touch, mid-air gestures, and gaze, (2)
authentication using these modalities individually, and (3) cue-based schemes.

2.1 Touch, Mid-Air Gestures & Gaze Interaction

Previous work compared touch, mid-air gestures, and gaze as input modalities. Touch was compared with mid-air
gestures for selecting targets on a large display [28], and with gaze for interacting with an intelligent shop window
[29]. While touch was faster and less error prone, the authors noted promising potential for mid-air gestures
and gaze given that technologies are becoming more robust and accurate. Chatterjee et al. evaluated different
gaze and gesture conditions for a point-and-select task on desktops and found that a combined multimodal
approach outperforms each of them individually [13]. More recently, Mäkelä et al. compared touch, mid-air
gestures, gaze, and a multimodal combination of the latter two for transferring content from public displays to
mobile devices [42]. They found that touch and mid-air gestures are fastest for transferring a single item, while
touch and the multimodal approach are fastest for transferring multiple items. They also found that users favor
gaze over other modalities when discretion about transferred items is desired. In the context of authentication,
Khamis et al. compared PIN entry using touch to a multimodal combination of gaze gestures and touch that they
referred to as GazeTouchPIN [34]. They found that the multimodal GazeTouchPIN is more secure but slower
than touch-based PINs. We are not aware of prior work that compared touch, mid-air gestures and gaze in
authentication scenarios. Additionally, while the approaches we compare build over previous work as we indicate
in the next section, their application on situated displays is novel and therefore resulted in novel insights.

2.2 Authentication Modalities

Acknowledging the need for secure authentication, researchers designed a plethora of authentication schemes to
resist different attacks. Researchers developed methods for touch-based authentication on interactive surfaces
and public displays. For example, Pressure-Grid exploited the low visibility of finger pressure for shoulder-surfing
resistant authentication on a multi-touch surface [37], and mobile devices [38]. Similar to today’s Android Lock
Patterns, PassShapes allows users to authenticate on public terminals using a series of touch gestures [59]. Touch
biometrics can also be exploited to authenticate users as they interact with touchscreens [17, 22].
Compared to other modalities, mid-air gestures are less explored for authentication. George et al. employed

mid-air gestures for authentication in virtual environments [23]. Prior work also exploited biometric approaches
when using mid-air gestures for authentication [5, 26].

The subtle nature of gaze encouraged researchers to exploreways to employ it for authentication. EyePassShapes
uses gaze gestures for authentication [16] while others investigated the use of gaze for secure authentication
using graphical passwords defined on images [12]. EyePIN, GazeTouchPIN, and EyePassword use gaze for PIN
selection [34, 39]. CGP is a cued-recall graphical password scheme where users authenticate by dwelling at
certain positions on given pictures [21]. GTmoPass combines gaze and touch input for authentication on public
displays [33]. Other works exploit eye behavioral biometrics for implicit authentication [52, 53].

In contrast to biometric schemes which often require sharing personal data with third parties, the credentials
in our schemes consist of information that the user knowsÐa four-digit numerical PIN. This makes it is straight
forward to integrate our methods into existing backends that already accept numerical PINs for authentication.
Compared to prior research, this work is the first to compare the three modalities for authentication.

2.3 Cue-based Authentication

Similar to the approach adopted in this work, a body of proposed authentication schemes relied on the user’s
response to cues. For example, Roth et al. developed a scheme where the keypad’s digits were randomly colored
black or white, and users were asked to answer some questions about their PIN by clicking on one of two
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colored buttons [48]. VibraPass used haptic cues based on which users deliberately input incorrect PIN digits
[18]. Bianchi et al. proposed using haptic and audio cues that guide users in entering PINs [10]. Some works
proposed employing gaze for authentication by showing moving objects and tracking the user’s eye movements
to determine which object the user intends to select [14, 47, 55]. The key idea of these concepts is to overload the
attacker by requiring them to track the randomized cues as well as users’ response to them. In our work, we
compare three implementations of cue-based authentication using touch, mid-air gestures, and gaze.

2.4 Authentication on Situated Displays

Multiple approaches were proposed for secure authentication on situated displays. A body of work proposed
knowledge-based schemes, i.e., authentication schemes that rely on łsomething the user knowsž, such as a PIN or
an alphanumeric or a graphical password. Knowledge-based schemes that employ touch [48], mid-air gestures
[45], and gaze [16] were proposed for public terminals. In other works, researchers opted for possession-based
authentication, i.e., relying on łsomething the user has’, such as a key, personal ID, or a verifiable personal
mobile device. For example, several works proposed authenticating users through the MAC addresses of their
smartphones [15, 49], or wearable devices [50], which are detected as users approach the public display. A third
category is biometric authentication, which relies on the inference factor, i.e., łsomething the user isž. Examples
of these are behavioral biometric schemes [17] and facial recognition [25].
The three aforementioned authentication factors can be combined for multi-factor user authentication on

situated displays. The most typical example of those can be seen on ATMs, where the user is required to possess

the ATM card, and to know the PIN. The use of personal mobile devices to interact with pervasive displays has
been researched extensively for several applications. One of the most promising applications of which is the use
of personal mobile devices alongside passwords for secure multi-factor authentication. Examples of such systems
that were deployed for public displays are LuxPass [8], GTmoPass [33], and Tandem authentication [27].

While multi-factor authentication has a lot of advantages, there are many situations in which taking the phone
out of one’s pocket or bag could be cumbersome and could interrupt the interaction flow [42].

3 AUTHENTICATION USING TOUCH, GESTURES & GAZE

In this work we focus on authentication on situated displays, such as public internet terminals, check-in counters,
ticket vending machines, and ATMs. We extended a state-of-the-art scheme, SwiPIN [56], to a situated display
setting (see Figure 2). Although SwiPIN was introduced for touch-based authentication on mobile devices, we
chose it for our setup because (1) it is fast and resilient to observations, (2) it uses PINs as passwords, to which
many users are already accustomed, and can be integrated into existing backends that use PINs for authentication,
(3) its reliance on visual cues and touch-based gestures for input makes its concept applicable to a wider range of
modalities, such as mid-air gestures and gaze, and (4) it was replicated and re-studied in follow up work by other
researchers [60]. In addition to adapting SwiPIN to situated displays, we extended it to accept mid-air gestures
and eye gaze movements as input.

The underlying concept of the examined schemes is to display visual cues on the screen. For touch and mid-air
gestures, arrows are shown to indicate a gesture in the respective direction, while the absence of an arrow
indicates that users have to tap in case of touch, or perform a mid-air gesture to the front. In case of gaze, we
employed Pursuits [55], a state-of-the-art technique for calibration-free gaze interaction. Similar to the work of
Cymek et al. [14], each digit floats in a unique trajectory; eye movements are then compared to the trajectory of
the moving objects to determine which digit the user is looking at without the need for calibration. The cues
are randomly distributed across the digits every time the user provides an input (cf. Figures 1D and 1E). The
user then reacts to the cue associated with the digit she would like to input. Hence, for adversaries to find the
password, they would have to observe (1) the on-screen cues, and (2) the user’s input in response to the cue.



Comparing Touch, Mid-Air Gestures, and Gaze for Cue-based Authentication on Situated Displays •

A B C

D E F

Fig. 1. We report on our implementations of cue-based authentication on situated displays using different input modalities.
We evaluate and compare the use of touch (A, D), mid-air gestures (B, E), and gaze (C, F) to respond to on-screen cues. To
enter ł0ž via touch, the user observes that the cue overlaid at digit ł0ž in Figure D is pointing upwards, hence the user
provides an upward touch gesture in the yellow box. In Figure E, a user performs a mid-air gesture to the left with his left
hand to input ł7ž. In Figure F, each digit moves in distinct trajectory, and a user selects ł3ž by following its circular movement.
The size of the interface was adapted depending on the modality to account for the different interaction distances.

3.1 Touch-based Input

Touch is the baseline in our experiment. Although touch authentication is susceptible to smudge [6] and thermal
attacks [1], it is still one of the most widely used modalities for interaction with situated displays [4].

3.1.1 Concept. In order for a user to input a digit via touch, the user would: (1) observe which cue is shown on
the digit (see Figure 1D); an arrow means a touch gesture to the direction it is pointing to is required (i.e., swipe),
while the absence of an arrow means that the user should tap, (2) perform the respective touch gesture in the red
or yellow box, depending on whether the digit is on the left (red area) or on the right (yellow area). The input is
provided on a 23ž touchscreen. There are no restrictions on which hand to use. For example, in order to select the
digit ł5ž in Figure 1D, the user would swipe to the right in the red box.

3.1.2 Implementation. Touch gestures are detected by (1) logging the point at which the user’s finger touches
the screen, (2) logging the point at which the user’s finger breaks contact with the screen, then (3) measuring the
distance between the two points, and deciding the outcome based on the following equation:

Input =

{

Riдht , i f T < dx
Le f t , i f dx < −T ;

Up, i f T < dy ;

Down, i f dy < −T ;

Tap, otherwise;

(1)

where d is the distance between the touch point and the release point on the x- and y-axes.T defines a threshold
area that was set to 25 pixels (0.62◦ of visual angle) based on pilot tests.

3.2 Mid-air Gestures-based Input

Interaction using mid-air gestures is attractive for public displays, and has hence been studied extensively in
previous work. For example, researchers studied teaching public display users how to perform mid-air gestures
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for input [2, 57], and their suitability for item selection on public displays [58]. The modality is particularly useful
when the display is unreachable (e.g., behind a glass window), or for hygienic contact-free interaction.

3.2.1 Concept. The user starts by raising both hands (see Figure 2). Similar to touch-input, the user selects digits
by performing a mid-air swipe in the direction the overlaid arrow is pointing at (see Figure 1E). The mid-air
gesture is performed using the left hand if the digit is on the left (red area), and using the right hand if it is on the
right (yellow area). In the absence of an arrow, the user performs a forward gesture. For example, in order to
select 6 in Figure 1E, the user would perform a mid-air gesture to the bottom using the right hand.

3.2.2 Implementation. Mid-air gestures are detected with a Kinect One sensor and the Kinect SDK 2.0. The
skeleton closest to the sensor is always tracked for input, and other possible skeletons are ignored. The starting
point for gestural input is situated relative to the user’s elbows, i.e., the hands would be raised so that they are
roughly parallel to the elbows on the x and y axes. A small threshold area (T = 15 cm, determined through pilot
tests) for both hands around this point was defined, inside which no input is triggered. When either hand moves
outside this area, a corresponding gesture is triggered based on Equation 1. After a gesture, both hands need to be
brought back to the starting point before a new gesture is accepted. To accommodate for natural slight changes in
the participant’s stance and hand positions, the starting point is reset each time both hands returned to the area.

3.3 Gaze-based Input

Gaze is increasingly gaining popularity for interaction with public displays. In general, gaze-based interaction
is intuitive and faster than pointing [51]. Additionally, being an indicator of visual attention, and allowing
interaction at a distance, gaze is an attractive modality for public displays [35].

3.3.1 Concept. Rather than implementing a gaze-based version of SwiPIN (i.e., tracking up/down/right/left gaze
gestures) we opted for defining a gaze gesture per digit. The reason is as follows: the original SwiPIN requires
distinguishing two forms of swipes in each direction, e.g., red swipe up vs yellow swipe up. While this is doable
in the touch and mid-air gesture versions of the system by defining an area in which the gesture would be
performed, doing it via gaze would require the user to (1) examine the cue, (2) gaze at the center of the respective
box, and then (3) perform the gaze gesture. Step (2) requires accurate gaze estimation that can only be achieved
after calibration (i.e., a procedure to map eye movements to positions on the screen). Calibration is discouraged
on public displays [46, 55] because it consumes time in a setting where interactions are typically rather short
[44]. Therefore, we employed Pursuits [55], a state-of-the-art technique for calibration-free gaze interaction. The
Pursuits technique relies on displaying moving targets and matching their trajectory to that of the user’s smooth
pursuit eye movements that humans perform when following moving targets with their eyes. The technique
naturally requires an on-screen stimulus to detect input; we exploit this fact by leveraging the stimulus as a cue.
Since the technique does not require accurate on-screen gaze estimations, users can simply walk up to a display
and start interacting without the need for calibration. For example, to select ł5ž in Figure 1F, the user would have
to gaze at the digit that is moving in a linear trajectory across the diagonal of the digit’s square.

3.3.2 Implementation. We use the Pearson correlation coefficient to determine how similar the user’s eye
movements are to the moving stimuli. This is calculated as follows:

corrx =
E[(Eyex − Eȳex )(Stimx − Stīmx )]

σEyex σStimx

(2)

where Eȳex , Stīmx and σEyex , σStimx
are the means and standard deviations of the horizontal eye and stimulus

positions respectively. corry is also calculated in the same way. The final correlation is the mean of corrx and
corry . The stimulus with the highest correlation to the user’s eye movements is deemed to be the one the user
is looking at, as long as the correlation is above a threshold of 0.8. We covered the circular, linear, and zigzag
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Eye Tracker

Kinect

Touchscreen

Fig. 2. We used an Acer T232HL touchscreen, a Tobii eye tracker, and a Microsoft Kinect in the study.

trajectories. The threshold as well as the trajectories of the stimulii were decided based on pilot tests and previous
work about interaction using Pursuits [55].

4 EVALUATION

To compare the performance of the three methods we conducted a usability and a security study. We opted for a
lab study to minimize any external influences and ensure a controlled setting [3].

4.1 Usability Study

We designed a user study in which participants had to provide 16 PINs using each modality. This number was
chosen to ensure comparability with the original study of SwiPIN, where participants entered 15 PINs [56].

4.1.1 Apparatus. We deployed the authentication application on a display in our lab. Participants had to stand
60 cm, 145 cm, and 85 cm from the display when providing input using touch, mid-air gestures, and gaze respec-
tively. The squares that contained the digits were of sizes 64 px, 152.3 px, and 200 px in the touch, mid-air gestures
and gaze conditions respectively (1.59◦, 1.59◦, and 3.54◦ in degrees of visual angle). We used relatively larger
areas in the gaze condition to ensure enough space for distinct trajectories. As shown in Figure 2, we used a
Microsoft Kinect One and a Tobii eye tracker (both 30Hz) for detecting mid-air gestures and gaze. We deployed
the application on a 23ž touchscreen (1920× 1080 pixels).

4.1.2 Participants. We recruited 20 participants (13 females) with ages ranging from 18 to 33 years (M = 24.1,
SD = 3.9). All participants had normal or corrected-to-normal vision, and none of them had used cue-based
authentication before. The heights of participants ranged from 147 cm to 183 cm (M = 168.9 cm, SD = 9.2 cm).
Participant 1 did not perform mid-air gestures well due to unusual standing posture, while participants 8 and 15
did not complete all trials due to the study taking longer than expected. Hence, the results of these 3 participants
were excluded from the analysis.

4.1.3 Study Design. The study was designed as a repeated measures experiment. There was one independent
variable, the input modality, with three conditions that all participants went through: 1) touch-based input, 2)
mid-air gestures, and 3) eye gaze. Each participant went through three blocks in total, one per condition. The
order of blocks was counter balanced using a Latin square.

4.1.4 Procedure. The experimenter started by introducing the study and asking the participant to sign a consent
form. He then started the application. Depending on the Latin square ordering, the participant was presented
with one of the three interfaces. The participant performed four training runs to become acquainted with the
modality. These runs were excluded from further analysis. At each authentication attempt after the training



• M. Khamis et al.

runs, the PIN to be entered by the participant was verbally announced by the system through a speech API
based on a previously defined random list of PINs. The participant had one chance to enter each PIN. After
entering 16 PINs, the participant filled in a NASA TLX questionnaire to asses the perceived workload of the
experienced input modality. The same was repeated for the other modalities. We concluded with a questionnaire
and a semi-structured interview.

4.1.5 Limitations. In our study participants had to remember the PIN they heard until they enter it. Also they had
to authenticate multiple consecutive times. This likely has an influence on the reported feedback and perceived
workload. In a real-world scenario, users would authenticate fewer times and hence we cannot rule out that
the perceived workload is slightly overrated by our participants. Second, the error rates and entry times are
influenced by the setup and our implementation of the modalities. Advances in computer vision algorithms and
tracking hardware will result in better performance of mid-air gestures and gaze in particular. While we do not
claim that rerunning the study in a different setup would yield similar quantitative results, we expect the relative
results to be similar. For example, we expect gaze input to remain more secure yet slower than touch input in
cue-based authentication. A final limitation is that our participants’ performance in the touch condition might be
better due to it being a common input modality on today’s mobile devices.

4.2 Usability Study Results

We logged 16 PINs × 3 input modalities × 20 participants = 960 authentications. We measured 1) the successful
entry rate: the percentage of times the correct input was detected. , 2) the entry time in milliseconds to compare
entry time across the conditions, and 3) the perceived workload using the NASA TLX.

In our analysis, we used repeated measures ANOVA to check for significance. In cases where the assumption
of sphericity is violated, we used Greenhouse-Geisser correction. Post-hoc tests were done using t-tests with
Bonferroni corrected p-values.

4.2.1 Successful Entry Rate. A repeated measures ANOVA revealed a significant main effect of input modality on
successful entry rates (F2,34 = 4.7, p = 0.16, η2p = 0.227). Post hoc Bonferroni corrected t-tests showed significant

differences in success rates between touch (M = 93.38%, SD = 26.05%) and gaze (M = 82.72%, SD = 38.53%),
(p = 0.018). No significant differences were found between mid-air gestures (M = 84.19%, SD = 39.1%) and the
other two modalities (p > 0.05). This means that input using touch is significantly less error prone compared to
gaze. Overall, the results show high successful entry rates for all three modalities (all > 82%). No order effects
resulting from the counter balancing were found (SD=3%). Treating the order as an independent variable, a
repeated measures ANOVA did not show any significant main effect of the order on authentication time (p > 0.05).

4.2.2 Entry Time. We measured the time participants needed to authenticate. A repeated measures ANOVA
revealed a significant main effect of input modality on entry time (F2,34 = 34.6, p < 0.001, η2p = 0.671). Post hoc

Bonferroni corrected t-tests showed significant differences in entry time between touch (M = 3.73 s , SD = 0.98 s)

and mid-air gestures (M = 5.51 s , SD = 3.87 s), (p < 0.001), and between touch (M = 3.73 s , SD = 0.98 s) and
gaze (M = 26.35 s , SD = 22.09 s), (p < 0.001). No significant differences were found in entry time between
mid-air gestures and gaze (p > 0.05). Figure 3a illustrates the distribution of entry times across the different
modalities. This means that entering PINs in cue-based authentication schemes is significantly faster when
using touch than when using mid-air gestures or gaze. We also observed a learning effect; mean authentication
time during the first half of entries across participants decreased in the second half from 3.87 s (SD=1.07 s) to
3.59 s (SD=0.86 s) using touch, from 5.54 s (SD=4 s) to 5.48 s (SD=3.75 s) using mid-air gestures, and from 26.99 s
(SD=23.27 s) to 25.7 s (SD=20.91 s) using gaze. No order effects resulting from the counter balancing were found
(SD=0.88 s). . Our analysis of entry time includes both: correctly entered PINs and incorrectly entered PINs, and
that participants had one chance to enter the PIN (see Section 4.1.4). We chose to incorporate entry time for
incorrectly entered PINs as well since they ultimately contribute to the overall authentication time. The mean
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Fig. 3. The figures illustrate the results of the usability study. Figure 3a shows the entry time in seconds, while Figure 3b
summarizes the perceived workload according to the participants’ responses to the NASA TLX questionnaire.
entry time for successfully entries only is slightly different in case of PINs entered using mid-air gestures and gaze.

By considering the successfully entered PINs only, entry time is fastest when using touch (M = 3.74, SD = 0.98),
followed by mid-air gestures (M = 5.1, SD = 2.04), and then gaze (M = 26.46, SD = 21.82).

4.2.3 Perceived Workload. We used a NASA TLX questionnaire to evaluated the perceived workload. We opted

for NASA TLX because of its demonstrated reliability in measuring perceived workload when using novel

authentication schemes, and for comparability with previous work [9, 10]. We ran multiple repeated measures

ANOVA tests to investigate if there is an effect of the modality on the perceived workload. When significant main

effects were found, post-hoc pairwise comparisons were performed with Bonferroni correction. A significant

main effect was found for modality type on the physical demand (F1.56,29.16 = 16, p < 0.001, η2p = 0.457), tem-

poral demand (F1.55,29.41 = 11.88, p < 0.001, η2p = 0.385), performance (F2,28 = 4.15, p = 0.023, η2p = 0.179), effort

(F2,38 = 7.83, p = 0.01, η2p = 0.292), and frustration (F2,38 = 5.2, p = 0.01, η2p = 0.215). Mauchly’s Tests of Spheric-

ity indicated that the assumption of sphericity had been violated for physical demand χ 2(2) = 6.51,p = 0.039 and
temporal demand χ 2(2) = 6.22,p = 0.045, and thereby the ANOVA’s p-value was corrected using Greenhouse-

Geisser. . Figure 3b shows the mean scores and the pairs that are significantly different. The results show that gaze

and mid-air gestures are more physically and temporally demanding compared to touch. The additional physical

demand is due to having to move the arms or the eyes, while the additional temporal demand is inline with the

measured entry times, which show that authenticating using touch is faster than using the other modalities. Gaze

was also found to be less performant, more frustrating and require more effort than touch.

4.2.4 Qualitative Feedback. We collected feedback through a semi-structured interview and a questionnaire.

Feedback was transcribed and we employed thematic analysis to cluster it based on procedures described by

Guest et al. [24] and Miles et al. [43]. We used an exploratory (content driven) approach that allowed us to

determine frequently discussed topics, concerns and suggestions highlighted by the participants. The codes were

clustered and subcategories from which four main themes emerged1.

Theme 1: Exposure to the Modalities: Participants are frequently exposed to touch input (e.g., personal smart-

phones, ATMs), but 6 indicated to have never used mid-air gestures, and 11 never used gaze. While 11 participants

reported using gestures in private contexts (e.g., gaming consoles such as Nintendo Wii) only one reported using

1The complete data can be downloaded from http://www.mkhamis.com/data/CueAuth-usability-thematic-analysis.pdf

http://www.mkhamis.com/data/CueAuth-usability-thematic-analysis.pdf
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gaze on a personal device. Exposure to gaze (9 participants) and mid-air gestures (3 participants) was mostly
through user studies. The prior exposure and the context of use is reflected in the participants’ preconception of
the interaction technique: Touch was described as familiar (4) and natural (3), whereas mid-air gestures that are
popular for gaming were described as playful (4), funny (2), and interactive(2). In contrast, comments to eye-gaze
where more pragmatic and descriptive, for example. discrete (12), secure (11), and stationary (7).

Theme 2: Perception of the Techniques: We grouped codes with positive and negative connotations to understand
the perception of techniques. The gaze-based method is associated with positive (44) attributes e.g., easy (15), fast
(11). In only 8 instances, participants named negative attributes e.g., unresponsiveness (4) and overtness (2). While
the quantitative results and the Likert questions suggest gestures to be favored over gaze, the highest number of
positive connotations (45) were assigned to gaze (21 instances for gestures), while the highest number of negative
connotations (48) is associated with the gesture-based method (39 instances for gaze). Mid-air gestures were
reported to be easy (5) and fast (4), but suffered from overtness (10) and were called awkward/weird (9), while
gaze input, is e.g., discrete (12) and secure (11) but on the downside it is slow (16) and causes straining eyes (7).
Participants’ attitude towards gestures is influenced by social acceptability.
Theme 3: Usability: In general, participants reported that all input modalities were either feeling natural

and intuitive or are perceived to be easy to learn. P18 felt that the more often she provides input using any
modality, the faster she can authenticate. This observation is backed up the quantitative results (see Section 4.2.2).
Our data shows that touch-based authentication was preferred from the usability perspective. We assigned 38
code instances to the subcategory effortless (5 burden). It is generally perceived as secure, easy and fast, but
participants did not name unique features/advantages. Mid-air gestures were criticized for being exhausting (4),
slow (4), unnatural (4), and the łlack of space for elaborate gestures in crowded stationsž (P12). Some criticized
the hand position required to calibrate the base point and one complained that she would have to put down her
shopping bags when in a mall. On the other hand, participants admired that they do not need to touch the display
when using mid-air gestures; P5 and P18 quoted hygienic advantages. Gaze-based input was criticized for being
slow (16), to cause straining eyes (7) and to be exhausting (6). However, in addition to being perceived as discrete
(12) and secure (11), gaze was praised for not requiring physical movements (7), that it is hands-free (P2, P7), and
that it allows input for people with limited mobility (P10).
Theme 4: Enhancements: This theme summarizes participants’ suggestions for enhancements, that were

clustered in the two subcategories security and interaction. Participants suggested color changes as an additional
security feature (2) for touch input, and criticized that touch input on situated displays requires more pressure
than on smartphones (3). For midair gestures, they suggested to replace the forward movement (2) with an
alternative gesture. They were also concerned with the overtness of mid-air gestures within public spaces (9), and
6 of them suggested using more subtle gestures such as finger gestures (3). For gaze, participants proposed using
different trajectories (3) and the introduction of a slight delay between the digits of a PIN to allow for refocusing
(2). A common theme highlighted across all three input techniques is the users’ demand for a more prominent
(visual or audio) feedback [touch (4), gaze (3), mid-air gestures (2)]. In 3 instances (touch) and 2 instances (mid-air
gestures), participants proposed input correction by providing an undo functionality. While the feasibility of some
recommendations are limited to the availability of appropriate technologies (i.e., better sensors), the majority of
suggestions are valid. In particular, improving feedback and input correction (e.g., undo functionality) can be
considered for future designs.
Questionnaire: Overall, the collected feedback mostly aligns with the answers to the Likert questions (see

Figure 4). When answering the questionnaire, participants indicated that they found touch input to be easier,
more natural, pleasant, faster, and suitable for public use. Although mid-air gestures are preferred over gaze in
the majority of the aspects, gaze was found to be more usable and comfortable in public, and more natural to use.
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Fig. 4. Participants rated aspects of the three modalities on 5-point Likert Scales (1=Strongly Disagree;5=Strongly Agree).

4.2.5 Ranking the Modalities. Through the questionnaire, participants were asked to rank their preference of the
three modalities. The results indicate that the touch-based method is the most preferred one (weighted score =
56), followed by mid-air gestures (weighted score = 33) and finally the gaze-based method (weighted score = 31).
This matches the results from the perceived entry time and error rate (Figure 4) and the measured entry time and
error rate (Sections 4.2.1 and 4.2.2).

4.3 Security Study

To evaluate the methods against possible threats, we designed a study in which participants took over the role of
an attacker, and tried to observe PINs entered using each modality.

4.3.1 Threat Models. We considered two threat models. In both models the attacker knows how the system
works and has an optimal view of the user’s input and the on-screen view. To ensure optimal attacking conditions,
the attacker has a view of both the user’s input and the on-screen cues (see Figure 5B). In a real scenario, this can
be achieved by observing from an optimal angle that shows both the cues and the input, or by using mirrors
and/or video cameras. The exact models are: 1) Single attack: the attacker has a chance to observe the situation
only once, and 2) Repeated video attack: the attacker has unlimited time to perform the attack and can pause the
video, rewind, etc. The latter simulates attacks that involve the use of a video camera, which is a present-day
growing threat [61].

4.3.2 Software Tool. To run the security evaluation we created a software using web-technologies (HTML5,
CSS3, JavaScript PHP). The tool 1) keeps track of the user’s guesses and attack duration, 2) prevents users from
being distracted by switching videos, and 3) collects input and manages the order of conditions.

4.3.3 Apparatus. As shown in Figure 5A, we deployed our application in a computer lab equipped with 21
computers with 24" displays (1920px× 1080px). Pen and draft paper were provided for note taking. The application
shows a tutorial on how to attack the PINs, it displays instructions, and recordings of a user authenticating using
the three modalities. The system automatically alternates between the two threat models: It either displays the
playback controls for the repeated video attacks model (Figure 5C), or auto-plays the recording for the single
attack model (Figure 5D). In both cases, participants see a side-by-side video, showing a participant entering the
PIN and a synchronized close-up of the screen. A single attack automatically starts after 5 seconds and is only
played once without the possibility to control or replay the clip. A repeated video attack allows full control over
the playback (play/pause/rewind) and does not have any time constraints. Participants can enter their guesses on
the interface. The system allowed up to 3 guesses, and did not show feedback about the success of the attack to
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Fig. 5. We invited 22 participants to take the role of attackers in the security study (A). They watched videos of users
authenticating using each modality (B), and provided their guesses through a tool that we developed (B). Our software tool
displayed instructions and the videos to attack. In case of repeated video attacks, video controls were shown to the user (C).
The user could provide up to 3 guesses for each observed PIN. Figure (C) shows a user authenticating via gaze, Figure (D)
shows a user authenticating via mid-air gestures, and Figure (E) shows a user authenticating via touch. Each video showed a
synchronized view of the user’s input on the left, and the screen on the right.

avoid influencing the participant’s perceived difficulty of performing the attack. The counter balancing meant
that no neighbouring participants watched the same video at the same time, which prevented cheating.

4.3.4 Participants. We recruited 22 participants (4 females) with ages ranging from 14 to 43 years (M = 26.9,
SD = 8.1). None had attended the usability evaluation. Participants were compensated with an online shop
voucher. All participants took part in a draw to win an additional voucher. Participants were aware that chances
of winning increased with the number of successfully attacked PINs. We excluded 2 out of 22 participants: P9
and P14 stated after the study that they misunderstood some of the concepts; this was reflected in their poor
performance in all tasks (0 out of 24 successful attacks).

4.3.5 Design. Our study employed a repeated measures design, where all participants went through all conditions.
The study included two independent variables: 1) input modality and 2) threat model. The input modality
incorporates all three conditions assessed previously (touch-based, mid-air gestures, and gaze). The threat model
covers the two types of attacks: single attack and repeated video attack. Each participant went through three
blocks, consisting of 8 attacks per input modality. The type of attack was alternating, resulting in 4 attacks for
each threat model and input method. The order of the input-modalities was counter balanced using a Latin
square. Every block begins with a repeated video attack which is, in addition to the training, an advantage for
the attackers to become familiar with each of the input methods before performing the single attack.

4.3.6 Procedure. The study was conducted in two sessions with 15 and 7 participants respectively. It started with
an introduction, where attackers were tutored about all three input methods and signed a consent form. Each of
the three blocks started by a detailed explanation for the upcoming input method. Participants were encouraged
to ask questions and were strictly advised to only proceed once they fully understood how the current method
works. Each block displayed 8 PINs, alternating between the two threat models. No participant attacked the same
PIN more than once. For each attacked PIN, the participant was allowed to provide up to three guesses and to
rate their confidence of the guesses using a five-point Likert scale. Participants were required to submit at least
one guess and at most three. The study was concluded with a questionnaire and semi-structured interview.

4.4 Security Study Results

Overall, we analyzed 4 PINs× 2 threat models× 3 input methods× 20 participants = 480 attacks.
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Table 1. Single attacks against all three modalities fail almost all the time. Repeated video attacks succeed slightly more
often against touch compared to mid-air gestures, but only 0.05% of gaze-based PINs were uncovered. Attacking gaze-based
PINs require more time compared to other modalities. This is also reflected by the perceived confidence of attackers (5=very
confident;1=not confident at all).

Single attack Repeated-video attack

Success Confidence Success Confidence Duration

Touch 0.00% 1.89 74.00% 3.75 103.91s

Mid-air 0.01% 2.02 64.00% 3.71 91.09s

Gaze 0.03% 1.92 0.05% 2.28 163.41s

4.4.1 Successful Attack Rate. We measured the successful attack rate, i.e., the percentage of times the correct
PIN was guessed by the attacker. Table 1 summarizes the success rates for each threat model and the attacker’s
confidence. Single attacks were mostly unsuccessful with a few exceptions. Repeated video attacks were highly
successful against touch and mid-air gestures, but only 0.05% of PINs entered via gaze were successfully ob-
served. This is also reflected by the attacker’s confidence (see Table 1). A two-way repeated measures ANOVA
revealed a significant effect of the threat model (F1,19 = 144.6, p < 0.001, η2p = 0.884) and the input modality

(F2,38 = 72.36, p < 0.001, η2p = 0.792) on success rate. We also found a significant interaction effect between the

threat and the modality (F2,38 = 95.07, p < 0.001, η2p = 0.833), which led to further analysis to distinguish the
impact of each independent variable. One-way repeated measures ANOVA tests were run to understand the
effect of each modality when used against each of the two threats. In case of the single attack threat model, no
significant effects were found (p > 0.05). On the other hand, we found that the input modality has a significant
main effect on success rate in case of video attacks (F2,38 = 91.35, p < 0.001, η2p = 0.828). Post hoc Bonferroni

corrected t-tests showed that attacks against touch input are significantly more successful (p < 0.001) than attacks
against gaze input (74% vs 0.05%), and that attacks against mid-air gestures are significantly more successful
(p < 0.001) compared to attacks against gaze input (64% vs 0.05%). No significant differences were found in the
third pair. No order effects resulting from the counter balancing were found (SD=4%). Treating the order as an
independent variable, a repeated measures ANOVA did not show any significant main effect of the order on
authentication time (p > 0.05).

4.4.2 Levenshtein Distance. We also measured the Levenshtein distance between every PIN and the guesses against
it, to better understand how far the attacker’s guesses are from the actual PIN. In cases where more than one guess
was provided by the participant, we only considered the guess closest to the actual PIN. A two-way repeated mea-
sures ANOVA revealed a significant effect of both: the type of the threat (F1,19 = 183.92, p < 0.001, η2p = 0.906),

and the modality (F1.464,27.811 = 31.9, p < 0.001, η2p = 0.627). We also found a significant interaction effect be-

tween the threat and the modality (F2,38 = 70.8, p < 0.001, η2p = 0.788), which means that further analysis is
needed to distinguish the impact of each independent variable. Mauchly’s Test of Sphericity indicated that the
assumption of sphericity had been violated for the modality χ 2(2) = 8.214,p = 0.016, but not for threat×modality
χ 2(2) = 2.636,p = 0.268, thus Greenhouse-Geisser correction was applied in case of modality only. The variable
łthreatž has only two levels, thus the test for sphericity is not applicable. We ran one-way repeated measures
ANOVA tests to understand the effect of each modality when used against each of the two threats. We could
not find any significant effect of input modality on the Levenshtein distance in case of single attacks (p > 0.05).
Table 1 shows that participants performed poorly against PINs entered using all modalities. In repeated video
attacks, a repeated measures ANOVA revealed a significant main effect of input modality on Levenshtein distance
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(F2,38 = 5.52, p < 0.01, η2p = 0.225). Post hoc Bonferroni corrected t-tests showed significant differences in Leven-

shtein distance between touch (M = 0.5, SD = 0.97) and gaze (M = 2.63, SD = 1.10), (p < 0.05), and between
mid-air gestures (M = 0.64, SD = 1.11) and gaze (M = 2.63, SD = 1.10), (p < 0.05). The third pair (touch vs
mid-air gestures) was not significantly different (p > 0.05). This means that guesses against gaze-based PINs are
farther from the original PIN compared to those against PINs entered via touch and mid-air gestures. No order
effects resulting from the counter balancing were found (SD=0.35). Treating the order as an independent variable,
we did not find any significant main effect of the order on authentication time (p > 0.05).

4.4.3 Attack Duration. We measured the time taken to perform the repeated video attacks in order to evaluate
the required work to find the PINs compared across the three conditions. A repeated measures ANOVA with
Greenhouse-Geisser correction showed a significant main effect for the input modality on attack duration
(F1.33,28 = 6.48, p = 0.04, η2p = 0.236). Mauchly’s Test of Sphericity indicated that the assumption of sphericity

had been violated for the modality χ 2(2) = 13.778,p = 0.001. Thus, Greenhouse-Geisser correction was used to
correct the ANOVA’s p-value. Post hoc Bonferroni corrected t-tests revealed significant differences between
mid-air gestures (M = 91.1 s , SD = 62.6 s) and gaze (M = 163.4 s , SD = 176.4 s). Mean attack duration in case of
touch input is (M = 103.9 s , SD = 70.5 s). However no significant differences were found between touch, and
either of gaze or mid-air gestures. Overall, the results suggest that gaze requires the longest time to attack.

4.4.4 Attackers’ Confidence. After each attack, participants were asked to indicate how confident they are
about their guess on a 5-point likert scale (5=very confident;1=not confident at all). The mean confidence values
are summarized in Table 1. A repeated measures ANOVA indicated a significant main effect of threat model
(F1,19 = 21.1, p < 0.001, η2p = 0.526) and modality (F1.303,24.753 = 13.536, p = 0.001, η2p = 0.416) on the confidence.
Mauchly’s Test of Sphericity indicated that the assumption of sphericity had been violated for the modality
χ 2(2) = 13.791,p = 0.001, and thus Greenhouse-Geisser correction was applied. The variable łthreatž has only two
levels, thus the test for sphericity is not applicable. Post hoc analysis using Bonferroni corrected t-tests revealed that
participants are significantly more confident about their guesses in repeated-video attacks (M = 3.25, SD = 1.31)

compared to single attacks (M = 1.98, SD = 1.08). In case of single attacks, no significant differences were found
between anymodalities ś confidence is generally low for all threemodalities (see Table 1). In case of repeated-video
attacks, Bonferroni corrected t-tests showed that participants are significantly less confident about their guesses
against gaze-based passwords (M = 2.28, SD = 1.15) compared to touch-based passwords (M = 3.75, SD = 1.09)

(p = 0.003), and to mid-air passwords (M = 3.71, SD = 1.16) (p = 0.004). However no significant differences were
found between mid-air passwords and touch-based passwords (p > 0.05).

4.4.5 Qualitative Analysis. We collected feedback through a questionnaire with open and Likert scale questions,
and a semi-structured interview. We transcribed the feedback and applied thematic analysis.

Unlike the thematic analysis that was done for the usability study, where we were aiming to identify common
topics using an exploratory approach, here we predefined three main areas of interest (themes). The aim was to
get insights into their attacking strategy, their perception of security, and their perception of the input technique.
We grouped all statements related to the themes and extracted the key insights.

Theme 1: Attacking Strategy: Participants reported single attacks to be significantly harder to preform than
repeated-video attacks. Over 2/3 of the participants stated to struggle with the high cognitive and temporal
workload required to map gestures and colors to the PIN. This is backed up by quantitative results that show
that single attacks fail almost every time (see Table 1). Difficulties due to quick interactions were specifically
highlighted for authentication using touch and mid-air gestures. However, participants reported that attack
success can be improved with additional training (11 instances for touch and mid-air gestures, and 2 for gaze).
We could derive two main methods to attack touch and gesture-based input models: 1) Some participants drew
keyboards on paper and tried to write down the arrow positions and movements to construct the PIN after the user
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has authenticated (N=6), 2) others reported to observe finger or hand movements to focus on the corresponding
number range (N=3). In 8 instances, participants reported high confidence for the first and last digit since the
keypad is clearly visible before and after the video sequence. Several participants had difficulties attacking mid-air
gestures. P9 reported that the quick response of the system made it hard to derive the PIN. P17 and P21 stated
that mid-air gestures are harder to observe than touch due to the need to switch attention from the user’s arms to
the screen, which were far apart. In repeated-video attacks, PINs were attacked by pausing and rewinding the clip.
Eye-movements were reported to be very subtle and difficult to distinguish in both the single and repeated-video
attacks. Here, the most common strategy was to estimate the focus point on the screen using the view angle and
head position (11 instances), with only three participants reporting to match eye and screen trajectories. This
suggests that security can be improved if digits are closer to each other.
Theme 2: Perception of Security: The perception of security by the participants derived from their attack

performance and confidence. The majority believed that all three methods are robust against spontaneous
shoulder surfing attacks. However, they speculated that they would perform better over time (11). Participants
perceived gaze to be significantly more secure than touch and mid-air gestures. However, even though participants
implied that touch is easier to attack than mid-air gestures, they believed that touch is safer than gestures. We
believe this perception is rooted in the overtness of gestures. Four participants recommended shielding touch
inputs with the hand, P9 suggests to wear ła capž to prevent camera recordings of the eye gaze.

Theme 3: Perception of the Input Techniques: Overall, participants of the security study share a similar attitude
towards the individual input modalities with participants of the usability study. Since none of the security study
participants took part in the usability study, we see this as confirmation of our previous analysis. Touch input
was described as quick, easy, natural and familiar. Participants were reserved towards the social acceptability of
mid-air gestures. They frequently described the method as too overt (7) and awkward (9). Gaze was perceived to
be very secure and discrete, but was also criticized for being slow.

5 DISCUSSION AND DESIGN IMPLICATIONS

In our implementation of the three modalities, authentication via touch is fastest, least error prone, and the most
well perceived by users. Authentication via mid-air gestures is slower and more physically demanding than when
using touch, but it is generally well perceived except for use in public space. On the other hand, gaze-based
authentication is more comfortable in public, yet slower and slightly less accurate than mid-air gestures. Higher
performance of touch input compared to the other modalities can be attributed to the users’ familiarity with touch
input. Gaze, on the other hand, is slower due to the requirement of achieving a high correlation between the user’s
eye movements and the movements of the on-screen cues. The threshold, which is 0.8 in our implementation,
can be reduced to decrease selection time. However decreasing the threshold could also increase the chances that
the system detects wrong selections. The choice of threshold in Pursuits implementations presents a trade-off;
higher thresholds result in higher accuracy but require longer time to reach, while lower ones are less accurate
but are faster to reach [35, 36]. We also found that users authenticate faster as they enter more PINs. But 15 out
of 17 participants achieved fastest entry time after 12 or less entries, suggesting that peak performance is already
achieved in 16 runs.

The results show that all proposed implementations are highly secure against casual shoulder surfing attacks.
This is because the attacker has to keep track of multiple entities. In case of touch, the attacker needs to keep
track of (1) the displayed cues, (2) in which area the input is provided, and (3) the performed touch gesture.
Similarly, in case of mid-air gestures, the attacker needs to keep track of (1) the cues, (2) which hand is used,
and (3) the performed mid-air gesture. Finally, in case of gaze, the attacker needs to keep track of the user’s eye
movements as well as the displayed cues.
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In practice, attacking PINs entered via mid-air gestures and gaze is even more difficult compared to attacking
those entered via touch. The reason is that the larger distance between the user and the display makes it
challenging to simultaneously observe the on-screen cues and the input. A large distance between the user
and the display would split the observer’s attention to the user’s hands/eyes, and the on-screen cues. Splitting
the observer’s attention is known to significantly complicate shoulder surfing attacks [30]. Even though we
accounted for that in our security study and ensured optimal conditions for attackers by providing them with
synchronized videos recorded from optimal angles (Figure 5), mid-air gestures and gaze still outperform touch in
observation resistance in case of repeated video attacks. Attackers also require significantly more time to attack
gaze-based passwords, which implies that the attacks are harder to perform.

5.1 Trade-off between Usability and Security

Although touch input is fast, less error-prone, and generally well-perceived, it is the least secure among the
discussed modalities. We attribute the high performance of touch to the familiarity of users with touch input. The
subtle nature of gaze input makes it secure. However it requires significantly longer authentication times and is
prone to more entry errors due to technical limitations of sensors. In our implementation, we display 10 cues for
Pursuits selection. While Pursuits allows calibration-free gaze interaction, a disadvantage is that its accuracy
drops as more cues are shown simultaneously [55].
While the low usability of gaze-based authentication impacts its adoption, research suggested that privacy-

aware users are willing to take additional measures to increase security [19]. Hence we expect privacy-aware users
to be still willing to use gaze despite being slow. This was echoed by some of our participants who acknowledged
that gaze is slow yet praised its security benefits.

The trade-off between usability and security has been discussed in previous literature: optimizing for security
often results in lower usability, while higher usability is often associated with lower security. Our results indicate
that the choice of touch or gaze presents such a trade-off.

Design Implication 1: Employ touch for cue-based authentication to optimize for usability; and use gaze
input whenever authentication frequency is low and the need for subtle authentication is high.

5.2 At-a-Distance Interactions

The use of mid-air gestures or gaze is particularly useful when the interactive display is not physically reachable.
For example, displays are often deployed behind glass windows. Touchless interaction also comes with hygienic
benefits. In terms of authentication, mid-air gestures are faster yet less secure than gaze.

Design Implication 2: Use mid-air gestures for authentication when displays are unreachable. For increased
security at the expense of longer entry time, allow gaze-based authentication.

5.3 Public Interactions

Authentication via mid-air gestures is faster and less error prone compared to authentication using gaze. On
the downside, some participants of our study reported feeling skeptical towards performing mid-air gestures
in public. This is in-line with previous work, which showed that the use of mid-air gestures in public can be
embarrassing [11]. One participant reported she would not use mid-air gestures when carrying shopping bags.
Mäkelä et al. reported similar challenges when interacting with gesture-controlled displays, where items, such as
coffee cups, sometimes interfered with interaction [40]. In these cases switching to another modality, such as
gaze, can be useful. Gaze is also useful when handicapped users are expected to interact.
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Design Implication 3: Users should be able to opt for alternative modalities, particularly in public areas.

5.4 Further Threat Models

In our work we evaluated the schemes against casual shoulder surfing (single attack) and repeated video attacks.
The usable security literature discusses various other types of attacks, such as smudge and thermal attacks. An
advantage of mid-air gestures and gaze input over touch, is that they are not vulnerable to smudge [6] and
thermal [1] attacks because they do not result in exploitable traces.
Schemes that employ multiple modalities are often evaluated against iterative attacks, in which the attacker

exclusively observes one modality at a time, and then combines the observations [30]. We employed synchronized
videos for both the user input and the system’s output (the cues). This makes our threat models stronger than
iterative attacks because attackers do not have to worry about combining observations from different views.
Another relevant threat model is the insider threat model, in which an attacker can observe the user on

multiple occasions and gradually construct the password [60]. For example, to perform this attack against our
implementation of cue-based authentication using mid-air gestures, the attacker could observe which hands
the user moves in one occasion, then in a second occasion the attacker would observe a particular set of digits,
and so on. Wiese and Roth [60] evaluated SwiPIN [56] against the insider attack model to find that SwiPIN
can be successfully attacked after 6 consecutive observations. This type of attack is likely to succeed against
our implementations of cue-based authentication using touch and mid-air gestures. However, we expect that
performing it against gaze input would still be challenging due to the large number of cues that the attacker
would have to observe, in addition to the eye movements. Another direction for future work is to evaluate our
methods against other observation-based threat models, such as the insider model [60], and the case of having
multiple attackers observation the user simultaneously [31]. The latter is particularly relevant for public displays,
where it is typical that a group surrounds the user during interaction [32].

Finally, recent works showed that computer vision approaches can be employed to uncover authentication
patterns. For example, Abdelrahman et al. analyzed thermal traces to uncover PINs and patterns [1], while Ye et
al. [61] and Aviv et al. [7] tracked the user’s fingers in video-based attacks to uncover Android lock patterns.
Tracking fingers and hands could also facilitate attacks against touch and mid-air gestures. Similarly, an attacker
may run gaze estimation algorithms on recordings of gaze input to determine which digits were looked at.

5.5 PIN Length

In our work, we experimented with PINs of length 4. This makes it easier to compare our results to prior work,
since most evaluations considered passwords consisting of 4 symbols [23, 30, 34, 56]. Furthermore, many existing
systems, such as ATM cards and SIM cards, limit the PIN’s length to 4. However, we believe the observation
resistance of all schemes would be stronger if PIN consists of more digits. An interesting direction for future
work is to investigate the effect of the PIN’s length on each individual input modality. For example, it could be
that entering a PIN of length 10 via touch makes it is equally resilient to shoulder surfing compared to entering a
PIN of length 4 via gaze.

5.6 From Mobile Devices to Public Displays

Concepts for authentication on mobile devices can be used for two-factor authentication on situated displays
[33]. In such systems, the first factor is the łknowledgež of the password to enter on the mobile device, while the
second factor is the łposessionž of the personal mobile device. Two-factor authentication provides an additional
layer of security, since attackers would need to both: find the password (e.g., through shoulder surfing) and get
possession of the mobile device (e.g., via theft). While this is a promising approach for protecting access to highly
sensitive data, it has been shown that requiring users to take out mobile devices from their pockets, purses or bags
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negatively influences the user experience on public displays [41, 42]. A possible approach is to adopt an access
control model where different forms of authentication are required depending on the context. For example, since
cue-based authentication does not require additional devices, it can be preferred over two-factor authentication
when the user is performing certain transactions (e.g., bank transfers less than 500 USD, or purchasing daily
train tickets), while the lower user experience of two-factor authentication can be tolerated when more sensitive
actions are being preformed (e.g., canceling flights, or purchasing annual tickets).

5.7 Future Work

One direction for future work is to investigate the performance and security of multimodal approaches. While
previous work showed that the use of gaze and touch for authentication on mobile devices is more secure than
both gaze only and touch only approaches [33, 34], the use of mid-air gestures in combination with gaze and/or
touch for authentication has not been explored before.

Furthermore, some technical improvements could optimize the performance of some modalities. For example, to
overcome the embarrassment issues associated with authenticating using mid-air gestures in public, future work
can investigate subtle, one-handed interactions. We plan to investigate the use of one-handed pinch-and-drag
interactions for authentication. The user would provide the gestures in one of two regions in mid-air, to indicate
whether the left or right set of digits is being selected. Since the increased number of on-screen cues decreases the
accuracy of Pursuits selections [55], future work can exploit the user’s coarse gaze direction to activate a subset
of the cues. This would result in fewer cues to select from at a time, and hence increase accuracy. Once accuracy
has been improved, different correlation thresholds can be experimented with to reduce the selection time. Future
work could also investigate how to automate design implication 3; using knowledge about the context and current
status of the deployment (e.g., how many people surround the user), the system could dynamically decide which
modality to employ to reduce social embarrassment.

6 CONCLUSION

In this work we compared the use of touch, mid-air gestures, and gaze for cue-based authentication on situated
displays. We compared the usability and security of all three approaches. We found that the choice of touch or
gaze for authentication presents a trade-off between usability and security. Mid-air gestures are more usable than
gaze, and more secure than touch, however they are embarrassing to perform in public. Based on the analysis of
our results and on prior work, we derived three design implications to guide the development of systems for
authentication in public space.
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