
CueFlik: Interactive Concept Learning in Image Search
James Fogarty†, Desney Tan‡, Ashish Kapoor‡, Simon Winder‡

†Computer Science & Engineering
DUB Group, University of Washington

Seattle, WA 98195
jfogarty@cs.washington.edu

‡Microsoft Research
One Microsoft Way

Redmond, WA 98052
{desney, akapoor, swinder}@microsoft.com

ABSTRACT
Web image search is difficult in part because a handful of
keywords are generally insufficient for characterizing the
visual properties of an image. Popular engines have begun
to provide tags based on simple characteristics of images
(such as tags for black and white images or images that
contain a face), but such approaches are limited by the fact
that it is unclear what tags end-users want to be able to use
in examining Web image search results. This paper presents
CueFlik, a Web image search application that allows
end-users to quickly create their own rules for re-ranking
images based on their visual characteristics. End-users can
then re-rank any future Web image search results according
to their rule. In an experiment we present in this paper,
end-users quickly create effective rules for such concepts as
“product photos”, “portraits of people”, and “clipart”. When
asked to conceive of and create their own rules, participants
create such rules as “sports action shot” with images from
queries for “basketball” and “football”. CueFlik represents
both a promising new approach to Web image search and
an important study in end-user interactive machine learning.

Author Keywords
Web image search, interactive concept learning, CueFlik.

ACM Classification Keywords
H5.2. Information interfaces and presentation: User Interfaces;
H1.2. Models and Principles: User/Machine Systems.

INTRODUCTION AND MOTIVATION
Although the number of images available on the Web
continues to explode, driven by a combination of
technological advances and the development of new uses
for that technology, image search on the Web remains a
challenging problem. Web image search is difficult in part
because a handful of keywords are generally insufficient for
characterizing an image. Visually different images can have

the same keywords, or visually similar images could be
labeled by very different keywords. If a person seeks an
image with visual characteristics that cannot be easily
expressed in keywords, or if their attempts to use keywords
to describe visual characteristics of an image are
ineffective, they are generally left to scroll through large
numbers of results in search of a desired image.

Widely used Web image search engines have begun to
provide tags that can be used to filter results according to
certain characteristics. The most common of these can be
used to automatically detect and exclude pornographic
content from results, but several engines also support
queries based on image size (small, medium, or large
images), whether an image is in color or in black and white,
and whether an image contains a face. The computer vision
research community has explored identification of a
number of other characteristics of images, such as indoor
vs. outdoor scenes [21], city vs. landscape scenes [8], and
photos vs. graphics [17]. But it is hard to successfully apply
such work to Web image search, in part because it is
unclear what concepts will be valuable to Web search users.

In this paper, we present CueFlik, a Web image search
application that allows end-users to quickly create their own
rules for re-ranking images based on their visual
characteristics. To use CueFlik, end-users provide examples
of images each rule should match and examples of images
the rule should reject. CueFlik learns the common visual
characteristics of examples, and the end-user can then
re-rank any future Web image search according to the
learned concept.

Figure 1 presents an example sequence of interaction with
CueFlik surrounding a rule for the concept Scenic. An
image search for “Mountain” yields reasonable results, but
the top results include images that the end-user is not
interested in, such as a movie poster and a picture of a dog.
They create a new rule by dragging several of the scenic
mountain images to the rule panel, then use the rule editing
interface to provide positive and negative examples until
satisfied with how the rule re-ranks the mountain images.
When this rule is then applied, the top results are now all
scenic images. Future searches can then be re-ranked using
the scenic rule, and examples are shown here for “Water”
and for “Scenic” (which includes several photos of a car,
the Renault Scénic).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00

Image
Search for
“Scenic”

Image
Search for

“Water”

Image Search for
“Mountain” Creating a “Scenic” Rule

Apply the “Scenic” Rule

Apply the
“Scenic” Rule

Apply the
“Scenic” Rule

Figure 1. CueFlik enables the interactive creation and application of rules based on the visual properties of images.
In this case, a “Scenic” rule is created from a query for “mountain” and then applied to queries “water” and “scenic”.

We present an experiment exploring the effectiveness of
CueFlik in light of several design decisions that confront
such systems. This experiment shows that participants can
quickly create effective rules for identifying such concepts
as “product photos”, “portraits of people”, and “clipart”.
When asked to conceive of and create their own rules,
participants create such rules as “sports action shot” with
images from queries for “basketball” and “football”.

Our experiment also has broader implications for end-user
interactive concept learning. An end-user provides CueFlik
with examples of images that each rule should match, is
shown the rule that CueFlik has learned, and then continues
to provide CueFlik with examples of images that should be
matched or rejected until they are satisfied with the learned
rule. We examine six approaches to presenting this
interactive inference process. We find that an interface
condition that shows only the best and worst matches (as

opposed to showing an entire ranking of a set of matches)
leads participants to create better rules, based on fewer
examples, in less time. This suggests that such split
presentations should be considered in future applications
based on interactive concept learning.

The next section briefly discusses some related work. We
then present CueFlik’s implementation, including details of
how CueFlik learns by weighting potential distance metrics.
We next discuss our design of an experiment to examine
end-user interactive concept learning in CueFlik. The
experiment compares six interface conditions to examine
their effect on end-user interactive concept learning, then
examines how participants re-use rules across queries, how
they formulate queries to build rules, and what rules they
choose to build on their own. Finally, we discuss CueFlik as
a new approach to Web image search and as a case study of
end-user interactive concept learning.

RELATED WORK
A number of systems have explored query-by-content
approaches to image search [13, 19, 20]. Such systems are
based in retrieving images according to low-level features,
such as color or texture. A user specifies a desired set of
features either abstractly (as in “images with blue in the
upper-left corner”) or concretely (via an example image),
and the system returns images with similar features. While
CueFlik also analyses low-level image features, CueFlik is
not a query-by-example system. CueFlik learns a rule by
analyzing a set of example images, and can then apply that
rule to re-rank any future set of images. In contrast,
query-by-example generally requires a new demonstration
of the desired characteristic with every query.

Other systems have explored approaches to image
searching or browsing that are based in clustering or
otherwise grouping images according to some criteria [1, 2,
4, 16, 22]. Clustering algorithms are fundamentally based
on the specification of a distance metric, as the chosen
notion of distance (or, inversely, similarity) controls what
images are clustered together. A system’s distance metric is
generally chosen by the developer, but CueFlik is distinct in
that each rule is based in learning a distance metric
according to the examples provided by an end-user. This
allows CueFlik to learn the relevant visual properties of a
user-specified concept.

Yee et al. present the use of faceted metadata for image
search and browsing [24]. Although CueFlik is currently
based in re-ranking query results, our approach to end-user
interactive concept learning could likely be applied to
faceted search and browsing. The same concerns discussed
in our introduction, that it is generally unclear what
distinctions between images are best included in Web
image search interfaces, also apply to faceted approaches.
An interesting possibility, therefore, is supporting end-user
interactive specification of facets based on the visual
properties of images.

A variety of other work has explored interactive machine
learning. For example, Crayons supports the interactive
creation of pixel-level classifiers for use in camera-based
interfaces [3]. Exemplar supports designer creation of
simple sensor-based recognizers through the direct
manipulation of a dynamic time warping algorithm [9].
CueTip supports interactive intelligent correction of errors
in handwriting recognition [18], while Kristjannson et al.
examine intelligent interactive correction of an information
extraction system [11]. Finally, Arnauld learns an
individual user’s preferences for how automatically
generated interfaces should be presented by examining the
tradeoffs and choices that the generation algorithm
encounters in creating interfaces for a particular platform
[5, 6]. Although this variety of work addresses a wide range
of problems using approaches that are very different from
the approach taken by CueFlik, all are focused on creating
truly usable end-user interfaces that leverage the application
of machine learning algorithms and techniques.

CUEFLIK IMPLEMENTATION
CueFlik is currently implemented as a desktop application
that retrieves images from a keyword-based Web image
search engine. CueFlik enables the re-ranking of image
search results according to rules based on visual
characteristics of the images. Each rule is defined as a
nearest-neighbor classifier, computing a score that indicates
how similar an image is to the examples that were used to
train that rule. The training of such rules requires learning a
distance function from the examples provided by an
end-user. In order to help end-users provide informative
examples that help CueFlik determine what rule the user is
creating, CueFlik implements two active learning criteria.
This section discusses each of these aspects of CueFlik.

Image Queries
CueFlik retrieves images using queries to Microsoft’s Live
Image Search. A format parameter in the query indicates
that the engine should return its results list in an XML
format, and CueFlik downloads the thumbnail for each
image. Due to a limitation of the search service, a
maximum of 1000 images are obtained for each query. The
visual characteristics of each image are analyzed as they are
downloaded, and the resulting images are ranked according
to any active rules.

Ranking Image Results
Images are re-ranked by applying a set of end-user created
rules. Users can enable and disable rules in their library by
moving them between the Active and Available panes of
CueFlik’s interface (see Figure 1). A slider control on each
active rule allows control of the relative weighting of
multiple rules. Every active rule computes a score for each
image, and scores are multiplied by a weighting between
-1 and 1. Images are thus ranked by weighted sum of scores:

() ()iscoreweightiImageScore rr
RulesActiver

∗= ∑
∈

Applying Concept Rules
Each CueFlik rule is a nearest-neighbor classifier. The rule
is defined as a set of positive examples (images illustrating
what the rule should match), a set of negative examples
(images illustrating what the rule should reject), and a
distance metric. Given these, a rule scores a new image by
computing the distance between that image and each
positive or negative example, then dividing the distance to
the nearest positive example by the sum of the distance to
the nearest positive and nearest negative example:

()
NP

P
r mindistmindist

mindist
iscore

+
−=1

Note that scorer(i) ranges between 0 and 1, approaching 1
when i is near a positive example and far from negative
examples, having value .5 when i is equally close or far
from the nearest positive and negative examples, and
approaching 0 when i is near a negative example and far

from positive examples. For its distance metric, CueFlik
uses a weighted sum of a set of several component distance
metrics:

() ()j i,distanceweightj i,Distance mm

Metricsm

∗= ∑
∈

Given this approach, the core of CueFlik’s ability to re-rank
images according to their visual characteristics lies in a set
of component distance metrics and CueFlik’s ability to
learn how to weight those different metrics.

CueFlik’s Distance Metrics
CueFlik currently implements image distance metrics based
on histograms of the hue, saturation, and luminosity of
pixels, an edge histogram, a global shape histogram, and a
texture histogram. CueFlik computes and stores these
histograms with each image, using them to efficiently
compute distances between images.

The hue, saturation, luminosity, and edge histograms are
computed over the pixels in each thumbnail image and
normalized to account for thumbnails of varying size. Two
distance metrics are defined for each histogram. The first is
the quadratic distance between two histograms, a measure
of histogram distance that accounts for the similarity
between different bins in the histogram [13]. In the case of
the luminosity histogram, for example, an image entirely of
luminance 1.0 is considered more similar to an image
entirely of luminance 0.8 than it is to an image entirely of
luminance 0.4 (the simpler Euclidean comparison would
treat the two images as equally dissimilar from the first,
provided the three luminosity values are in different
histogram bins). The second metric for each image’s
histograms is the difference in histogram entropy.

We compute a histogram representing the overall structure
of each image by applying a shape descriptor to the entire
image [23]. This descriptor sums local image gradients into
bins over a log-polar target-shaped region covering the
entire image, normalizing the resulting histogram. Similar
histograms (using Euclidean distance) correspond to images
with similar overall structure, and the descriptor offers a
degree of invariance to illumination, translation, scale, and
rotation. Less formally, this distance metric will generally
indicate that two frontal close-ups of a face are similar and
that two driver-side views of a car are similar. It will also
generally indicate that a close-up of a face is different from
a view of a car. The shape descriptor does not consider
color, and so it complements our color histogram metrics.

Finally, we compute a texture histogram that preserves less
geometric information than the global shape histogram but
allows discrimination between the distribution of structures
present in an image without regard to their arrangement.
This is a bag-of-words approach [12], and requires
sampling a number of patches from the image. For
efficiency, we sample on a regular grid of partially
overlapping blocks and compute a descriptor for each block

[23]. An offline recursive clustering analysis of a large
image database is used to learn a set of discriminative
textures [14], and a histogram is computed at runtime by
resolving each sampled block to a bin based on the
identified discriminative textures. Less formally, this metric
considers images similar if they contain similar patches. It
might consider images of two different city skylines to be
similar, while the previously discussed global shape
descriptor might consider the two skylines different.

CueFlik’s Concept Learning over Distance Metrics
CueFlik learns rules from positive and negative examples 1
of images that rule should match or reject. Given a set of
positive examples, there are many concepts a person might
be attempting to specify. In most applications of
nearest-neighbor algorithms, the developer of a system
carefully tunes a distance function based on their
knowledge of the problem being solved. In our case,
however, we do not know beforehand what notion of
similarity will be appropriate for an end-user’s rule. If we
attempt to treat all distance metrics equally, the curse of
dimensionality guarantees a very large number of images
will be required in order to specify even the simplest rules
[10]. It also seems inappropriate to ask end-users to directly
manipulate the weights controlling rule formulation.

CueFlik therefore defines a concept learning problem as a
matter of learning a set of weights based on which distance
metrics best correspond to the provided examples. CueFlik
can learn, for example, whether a set of images are similar
because of their color histogram, their global shape
descriptor, or a combination of the two. Our method for
learning these weights is inspired by the work of Globerson
and Roweis [7], and is described next.

Given a set of positive and negative examples, CueFlik
learns a set of distance metric weights such that the distance
between two images with the same label (positive or
negative) is minimized and the distance between two
images with different labels is maximized. Specifically, we
minimize an objective function that separates the two
classes as much as possible while keep examples of the
same class close together:

() () ()∑ ∑∑∑
∈ ∈∈∈

−++=
Alli AlljNegjiPosji

weights jiDejiDjiDf ,ln,,)(
,,

The first two terms correspond to within-class distances,
thus the minimization of the function favors weights that
minimize the distance between data of the same class. The
third term considers all examples and favors maximum
separation. The combination of terms thus favors weights

1 In the case where an end-user has provided only positive
examples, CueFlik randomly samples negative examples from
the current image set under the assumption that, on average,
these will serve as reasonable temporary negative examples.
These provide a point of comparison against the images the
end-user has selected as positive, and they are only used until
the end-user provides negative examples.

that collapse each of the classes while maximizing the
distance between data with different labels. The function is
convex, and the unique global minimum is efficiently found
using standard non-linear optimization techniques [15].
Less formally, CueFlik learns what notions of distance are
relevant based on the examples that a person has provided.
If all of the provided positive examples are mostly yellow,
and they have no other common characteristics, and the
negative examples are not mostly yellow, CueFlik will
learn that hue histogram similarity is the relevant distance
(giving it a large weight and other distance metrics small
weights). The resulting rule will give high scores to images
with hue histograms similar to those of the positive
examples used to train the rule. In a situation where the
positive examples have multiple characteristics in common,
those characteristics will each receive some weighting.

Active Learning in CueFlik
Because it might sometimes be difficult to determine what
images an end-user should provide as examples in order to
help CueFlik learn the correct concept, CueFlik uses active
learning to identify images that are likely to provide the
most information about the rule a person is creating. We
focus here on the heuristics used to identify images for
labeling, while the next section examines the effects of
different presentations of identified images.

CueFlik’s first active learning heuristic identifies images
that, given the current set of learned distance weights, are
closest to the boundary between positive and negative.
These are the images about which CueFlik is most
uncertain, so labeling them provides information within the
space defined by the current distance weights. Formally,
CueFlik selects images with the smallest value:

() ()NP mindistmindistabsiuncertain −=

This is complemented by a second heuristic that identifies
images that will result in the exploration of new weightings
of the distance metrics. Although the active selection of
examples for a given distance metric (as with our first
heuristic) is a well-explored problem, the active selection of
examples to inform the learning of a distance metric has not
been well explored. For CueFlik, we have designed a
heuristic based on data density and uncertainty, selecting
images with the smallest value:

() () ()iuncertainmindistmindistianceactivedist NP ∗+=

The intuition behind this heuristic is to find images that are
in dense portions of the space (near other labeled examples)
but are still very uncertain. The first term captures density,
as the distance to positive and negative examples will be
lower in dense portions of the space. The second term
captures uncertainty, as discussed in the previous
paragraph. We select images with low scores, and labeling
those images gives CueFlik new information to use in
finding a weighting of distance metrics that pushes positive
and negative examples away from each other.

EXAMINING INTERACTIVE CONCEPT LEARNING
In order to examine end-user interactive concept learning in
CueFlik, we designed an experiment exploring whether
end-users would create effective rules, how the presentation
of images in and the rule editing panel would affect
interaction with CueFlik, and how the presentation of
images identified by active learning algorithms would
affect interaction with CueFlik.

Interface Conditions
In considering the design of CueFlik as an example of an
application based on interactive concept learning, we
identified two dimensions of the rule editing interface that
deserve careful attention. The first, Editing Presentation, is
how the interface presents the effect of a rule on the current
image query while that rule is being edited. The second,
Active Learning Presentation, is how the interface presents
the examples identified by our active learning algorithms.
Crossing these two dimensions yields the six interface
conditions tested in our experiment.

Editing Presentation
As a rule is being edited, CueFlik needs to present what rule
has been learned. Presenting the positive and negative
examples that form the basis for the rule is straightforward.
The learned distance metric weights are illustrated by
showing the images in the current query ranked according
to the rule being edited. Editing Presentation considers
whether CueFlik should show the entire set of images as
they are ranked by the rule that is being edited (Single), or
show only a small subset of the images, those that rank at
the very top and those that rank at the very bottom (Split).
The Single approach provides the end-user with access to
the entire set of images from the current query, so they have
more images to choose from in training the rule. But the
rule is unlikely to ever be completely perfect, so a person
may become overly focused on the noisy boundary between
positive and negative images, continuing to provide training
examples that are no longer noticeably improving a rule.
The Split approach avoids this possibility, as end-users can
provide training examples only until the small subset of
images displayed from the top of the ranking match the
desired concept and the small subset of images displayed
from the bottom of the ranking are examples of images that
have been correctly rejected. This comes at the cost that
fewer images are available to choose from when providing
training examples.

Active Learning Presentation
A similar tradeoff is explored in considering how to present
images selected by CueFlik’s active learning algorithms.
These images, by definition, will exist in the most uncertain
regions of the image query space. They may therefore either
help a participant to quickly find effective examples, or
their presence may lead a participant to continue providing
examples even after they are no longer noticeably
improving a rule. Active Learning Presentation considers
whether CueFlik should place active learning images in a

separate pane (Explicit), randomly distribute active learning
images near the top and bottom of a set of results in the
hope being visually distinct from the nearby images may
lead active learning images to be selected for use as a
positive or negative example (Embedded), or rely only
upon the ranked query results (None).

Figure 2. Target images for the concept “product photo”
taken from a Web image query “stereo.”

Figure 3. Top 20 results from a Web image query “stereo.”

Interface Condition Descriptions
Crossing these two dimensions yields the six interface
conditions tested in our experiment. They are:

Split-Explicit. Uses three scrollpanes. They present the 50
top-ranked results, 10 results selected by CueFlik’s active
learning algorithms, and the 50 bottom-ranked results.

Split-Embedded. Uses two scrollpanes. The first presents
the 50 top-ranked results, as well as 5 randomly-seeded
active learning results. The second presents the 50
bottom-ranked results, as well as 5 randomly-seeded active
learning results.

Split-None. Uses two scrollpanes. They present the 50
top-ranked results and the 50 bottom-ranked results.

Single-Explicit. Uses two scrollpanes. 10 active learning
results are displayed in one scrollpane. The other displays
the remainder of the ranked query images.

Single-Embedded. Uses one scrollpane. Seeds the top and
bottom of the rankings with active learning results using the
same algorithm as Split-Embedded, then displays the entire
modified ranking in one scroll pane.

Single-None. Uses one scrollpane. It displays all of the
ranked query images.

Tasks
Participants performed four sets of related tasks. Each
session started with Rule Creation, where we tested how
well participants were able to create rules with CueFlik.
The second task was Rule Transfer, where we tested
whether rules created by participants worked well when
applied to new queries. The third task was Query Creation,
where we observed as participants issued their own search
queries to create rules we had specified. The final task was
Concept Creation, in which participants used CueFlik in a
freeform manner, conceiving of and creating a rule of their
own choice using their own Web queries.

For each trial in the Rule Creation task, participants were
given ten target images (printed on a sheet of paper) labeled
with a common target property. Figure 2, for example,
shows target images for the concept “product photo” in a
Web image query for “stereo.” The system issued a
pre-determined query, and the participant used CueFlik to
build a rule that, when applied, would be expected to rank
the target images as high as possible. We chose target
concepts, search keywords, and target images such that
(a) the Web query returned enough results for us to have
very near to 1000 images; (b) there were minimal duplicate
images within this set of 1000 images; (c) the property of

interest applied to between a quarter and a third of the
images; and (d) the images matching the property of
interest were not already ranked near the top or the bottom
of the results. Target images were well distributed across
the ranking of the original result set, as we selected one
target from each tenth of the images. The target images
were filtered from the query results, so participants could
not see how their rule ranked the target images. Our final
set of concepts included six color-based concepts (red,
orange, yellow, green blue, violet) and six non-color
concepts (portraits of people, brightly color images, quiet
scenery, product images, cluttered images, and clipart). The
color concepts were used only in the earliest portion of the
experiment, and each was associated with a single query.
The non-color concepts were for the bulk of the experiment,
and so each was associated with four queries.

The Rule Transfer task was similarly structured around sets
of target images for pre-determined queries, with the
exception that participants performed sets of three related
queries sequentially. The target property was identical
across the three queries, but the queries themselves varied
significantly. This task was based on the non-color
concepts, using keywords participants had not yet seen.

The Query Creation and Concept Creation tasks had users
issue their own queries. In the Query creation task,
participants created a rule for one of our non-color concepts
and were given a small set of stop words they could not use
as queries (for example, they could not use the query
“clipart” in building the clipart rule). In the Concept
Creation task, participants chose their own target concept
and issued queries to build the most robust rule they could.
We included these tasks to see how users might construct
specific rules in the wild, to observe ecologically valid
end-to-end usage, and to gather suggestions as to the types
of rules end-users might like to construct.

Design and Procedure
We ran participants in pairs, with each participant working
on an identical 2.4 GHz dual-core HP4300 machine with a
21” Samsung SyncMaster 214B display. Participants used a
Microsoft Optical Intellimouse and Microsoft Ergonomic
keyboard for input. Before beginning the experiment,
participants received a short tutorial introducing CueFlik.
They were informed that some of the interfaces they would
see during the experiment would present information
slightly differently and told how to interact with each of
these. They were led through a small example rule building
exercise (a simple rule that favored images with a vertical
aspect ratio) and then built a rule on their own (identifying
maps within a query for “Seattle”). All participants were
able to build a reasonable rule within two minutes.

Participants performed the Rule Creation task using all six
interface conditions. The order of conditions was
counterbalanced using a Latin square design. They
performed two trials with each interface, a color trial
followed by a non-color trial. We kept the order of target
concepts and queries constant because we did not expect
concepts would lead directly to ordering effects and
because we wanted to ensure balanced coupling of interface
to concept and query. For each trial, participants were given
the sheet of paper containing the target images and clicked
on a button to begin. Participants were told to perform the
task as quickly and accurately as possible, and they clicked
a button on the interface to advance to the next trial when
they thought their rule was not getting any better. In order
to keep the experiment to a reasonable length, we also
imposed a 2.5 minute time limit after which the task would
self advance. Participants received visual warning 10
seconds before this happened so that they could complete
any pending actions. After each trial, a dialog appeared, the
participant was given a new page of targets, and they would
click on the button to begin the next trial.

Because the remainder of the experiment does not explicitly
compare interfaces, each participant completed the final
three tasks in a single interface condition (the condition
they used in their final Rule Creation trial). Because we had
six conditions and there were twelve participants, each
interface was used by exactly two participants for the latter
three tasks. In the Rule Transfer task, participants created

rules for two sets of three related queries. One set was done
independently (as in Rule Creation), and one set was done
with the rule persisting across the three queries. In the latter
condition, the rule persisted and was automatically applied
to the result sets for the second and third queries.
Participants could choose to accept the rule if it was good
enough or could augment it with more examples if they felt
they could improve the rule. The task was based on two
random non-color concepts that had not yet been used with
the current interface condition. The order of the two
conditions was counterbalanced across participants.

For the Query Creation task, we chose another random
non-color concept that had not yet been used with the
current interface condition. During both Query Creation and
Concept Creation, we logged the queries that participants
issued and took notes on usage behavior. We did not
impose the 2.5 minute time limit, and all participants built a
reasonable rule within 10 minutes for each of these tasks.

Participants
Twelve individuals from the Greater Puget Sound area
volunteered for this experiment. Most were daily computer
users, none were colorblind, and all had 20/20 or corrected
to 20/20 vision. While recruiting, we screened half of the
participants to be image search novices and half to be image
search experts. Novices reported performing no more than
one image search every week, and experts reported
performing more than five searches weekly. The
experiment lasted approximately 90 minutes, and
participants were given a software gratuity for their time.

One participant experienced multiple software crashes and
logs were incomplete for their session. We excluded this
participant’s data, discarding it at the end of the participant’s
session, and used a thirteenth participant as a replacement.

RESULTS
We present the results of our experiment in three parts. We
first explore the effect of the interface conditions in the
Rule Create task. We then examine the Rule Transfer task,
comparing the independent creation of rules to the transfer
of a previously created rule. We end with qualitative
observations based on all of the tasks.

We analyzed all our quantitative data at the summary level,
taking the mean of multiple trials when appropriate. Our
dependent variables were the number of examples provided
to each rule, trial time, and the change in the mean rank of
target images. For the latter metric, we calculated the
difference between the starting and final rank for each
target image for each trial, then took the mean of the
differences for the ten target images for each trial. This
provides a measure of the quality of the rule based on how
it increased the rankings of the participant’s target images.
As previously noted, target images were filtered from query
results so participants could not see how their rule ranked
the target images. We also logged how many times the
participant switched in and out of edit mode within each

0

50

100

150

200

250

300

Split Single

Im
pr

ov
em

en
t i

n
R

an
k

Editing Presentation

Average Ranking Quality

N
on

e

E
m

be
dd

ed

E
xp

lic
it

N
on

e

E
m

be
dd

ed

E
xp

lic
it

0

5

10

15

20

25

30

Split Single

N
um

be
r o

f E
xa

m
pl

es

Editing Presentation

Total Training Examples

N
on

e

E
m

be
dd

ed

E
xp

lic
it

N
on

e

E
m

be
dd

ed

E
xp

lic
it

0
20
40
60
80

100
120
140
160

Split Single

Ti
m

e
(s

ec
on

ds
)

Editing Presentation

Average Trial Time

N
on

e

E
m

be
dd

ed

E
xp

lic
it

N
on

e

E
m

be
dd

ed

E
xp

lic
it

Figure 4. The number of training examples provided, task time, and average improvement in ranking.
Participants using a Split Editing Presentation created results of higher quality, using fewer example images, in less time.

trial. We found no effects of gender or expertise, nor any
interaction between task and our conditions, so we leave
these factors out in our final analyses for simplicity.

Rule Creation Task
We performed a 2 (Editing Presentation: Split vs. Single) x
3 (Active Learning Presentation: Explicit vs. Embedded vs.
None) repeated measures analysis of variance
(RM-ANOVA) for each of our dependent measures. We
found significant effects of Editing Presentation, with Split
interface conditions resulting in participants creating rules
of higher quality (F(1,11) = 5.16, p ≈ .044) 2, using fewer
examples (F(1,11) = 8.77, p ≈ .013), and completing the
trial in less time (F(1,11) = 6.90, p ≈ .024) than when using
Single condition interfaces. See Figure 4 for plots of our
dependent measures. This provides converging evidence
that the Split condition of Editing Presentation is more
effective for Rule Creation. This performance benefit
existed even though participants entered and exited edit
mode significantly more in Split conditions (F(1,11) = 6.04,
p ≈ .024), perhaps to check the overall quality of a rule as it
was applied to all image results (because they could not see
the entire set of images results in Split edit conditions).

We also found a main effect of Active Learning
Presentation (F(2,22) = 4.79, p ≈ .019), with posthoc tests
suggesting that participants took significantly more time in
Explicit conditions than Embedded conditions (p ≈ .049).
This is somewhat difficult to interpret, but in the absence of
any performance differences, this might be attributed
simply to the fairly small size of the scrollpane used to
display active learning results, since this led to more
scrolling than in other conditions. We saw no other
significant effects or interactions.

Rule Transfer Task
We performed paired t-tests for dependent measures in the
Rule Transfer task, comparing the Independent Creation
condition to the Persistent Rule condition. We found
significant main effects, with participants in the Persistent
Rule condition providing significantly fewer example
images (17.4 images in the Persistent Rule condition vs.

24.2 images in the Independent Creation condition,
t(11) = 2.898, p ≈ .01) and spending less time creating their
rule (119.0 seconds in the Persistent Rule condition vs.
133.7 seconds in the Independent Creation condition,
t(11) = 3.256, p ≈ .01). We found no significant difference
in the quality of the resulting rules (an average ranking
improvement of 246.1 in the Persistent Rule condition vs.
an average ranking improvement of 214.2 in the
Independent Creation condition, t(11) = 1.56, p ≈ .14).
These results suggest that rules transferred between queries
relatively well, and that persistent rules can indeed be more
efficient than creating new filters within each query.

Qualitative Results
We now report on participant qualitative experiences, as
observed by the experimenter, by examining usage logs,
and from participant comments on a post-experiment
questionnaire and in a post-experiment debrief.

Participants expressed general satisfaction with the
interface itself as well as CueFlik’s approach to re-ranking
images. Without being prompted, at least five participants
explicitly expressed the desire to see an offering like
CueFlik in their Web search engines. Three others wanted
the software to be able to search through personal picture
repositories on their hard drive. All participants were able
to learn the interface within the short tutorial and practice
trial, each of which ran under 2.5 minutes (because they
were implemented using the same timeouts used in the
primary task trials). All but two of the participants also
commented on how effective the system was in helping
them rank the images, making comments like “it seemed
very easy to get the pictures I wanted”, “it’s quick, it’s
visual”, “drag-and-drop was easy”, or “it quickly intuits my
selections”.

2 As additional validation, we also repeated our analyses using
mean average precision, a common information retrieval
statistic. The same results reported here were obtained, namely
that Split interface conditions resulted in participants creating
rules of higher quality (F(1,11) = 5.53, p ≈ .038).

Participants in the Query Creation tasks took varying
approaches to formulating queries. Some participants issued
sequences of very similar queries, such as “cartoon”
followed by “licensed cartoons” and then “cartoon
characters”. These participants seemed to be searching for
more examples that possessed a specific property. This
behavior may have been partially prompted by the fact that
CueFlik returned only 300 images per query in the Query
Creation and Concept Creation tasks (we reduced the
number of images returned per query in order to ensure that
our current implementation was sufficiently responsive in
the face of queries that could not be pre-cached). Other
participants issued queries that were relatively diverse, such
as “anime” followed by “cartoon” and then “mega man”.
These participants seemed more concerned with the
robustness of the rule and were trying to provide as diverse
a set of examples as possible.

When asked to create their own rules in the Concept
Creation task, participants chose a number of interesting
concepts according to which they wanted to rank images.
Example concepts include “sports action shots”,
“underwater images with fish in them”, and “religious
iconography”. In creating these rules, participants did not
seem to distinguish between semantics and visual
properties. Although CueFlik currently makes no use of the
keywords associated with Web query results and so we
would not expect CueFlik to capture semantics, many of
these concepts worked surprisingly well. This seems to be
because the set of images returned for a given Web query
are not homogenously distributed in visual space, and so
correlations exists between the visual properties of images
and their semantics. Though CueFlik cannot detect the level
of sports activity per se, it can identify differences in the
visual characteristics of images returned from a Web query
for “football” or “basketball”. Action shot images might,
for example, be close-ups of a person, might contain fairly
little of the characteristic colors of the field or court, or
might include a large region of solid color corresponding to
a player’s jersey. Such rules are possible only through a
tight coupling of semantic keyword search with CueFlik’s
visual rules, as current keyword-based engines cannot
address such visual concepts and CueFlik does not address
semantics. The complementary nature of keyword search
and visual rules seems powerful and intriguing, and further
exploiting it is a promising direction for future work.

The one situation where we noticed that the lack of
distinction between semantics and visual properties was
problematic occurred when participants had built a good
visual rule, then decided to refine the rule with additional
semantic properties. As they provided more examples with
related semantics, but explicitly different visual properties,
the system would re-rank images in a manner that seemed
unpredictable to participants, as they expected that the
visual properties would remain fixed and the semantics
would only add additional information. Exploring how to
express this distinction is another direction for future work.

DISCUSSION
This paper has presented CueFlik, a novel approach to Web
image search based in end-user interactive concept learning.
CueFlik allows end-users to quickly create rules for
re-ranking images according to their visual characteristics.
In contrast to query-by-example approaches, CueFlik users
can maintain a library of rules that they have developed,
applying them to re-rank the results of future Web image
searches. While existing clustering-based approaches to
image search and browsing are based on pre-determined
notions of similarity included by a system’s developer,
CueFlik rules and their underlying notions of similarity are
interactively defined by end-users.

CueFlik explicitly does not attempt to solve computer
vision problems related to the semantic recognition of
image contents. We instead complement existing
keyword-based Web image search functionality with a new
approach to re-ranking images according to their visual
characteristics. Our approach therefore seems have the best
advantages of two approaches, in that (1) semantic image
recognition remains a hard research problem, but keywords
are available for many images, and (2) the visual
characteristics of images can be difficult to describe in
keywords, but low-level image features can support
example-based approaches to interactive concept learning.
Interestingly, our experiment revealed that the results of a
Web image search sometimes include correlations between
semantics and visual characteristics, so CueFlik may appear
to learn a semantic concept even though it is actually
learning the visual characteristics of images with those
semantics within the particular space defined by the result
of a keyword-based Web image search. Promising
directions for future work are suggested by this finding and
by the possibility of adding keyword-based semantic
similarity to the distance metrics considered by CueFlik.

Finally, our examination of strategies for presenting the
interactive inference of a concept from examples has
important implications for future work addressing end-user
interactive machine learning. Interfaces that showed only
the best and worst matches for a rule led participants to
create better rules, using fewer examples, in less time than
interfaces that presented an entire ranking of the current
images according to the rule. One explanation for this might
be that the Split conditions encouraged participants to focus
on whether a rule was mostly correct, stopping when the
top and bottom of a ranking corresponded to the desired
concept. In contrast, the conditions that presented an entire
ranking allowed participants to examine the more uncertain
portions of the ranking (the middle images), and may have
led participants to find relatively minor inconsistencies in
this region of greater uncertainty which then prompted them
to continue adding examples to refine their rule. This would
explain participants providing more examples and taking
more time, and we believe it might also explain the lower
quality of the resulting rules. This is because the later
training examples (those taken from the more uncertain

middle portion of the ranking) may be of lower quality than
the initial examples, as something about them has made it
difficult for CueFlik to accurately rank them. As more of
these types of examples are provided, CueFlik may begin to
learn weights that correspond to irrelevant aspects of those
images. In the context of such possibilities, our findings
suggest careful consideration of how end-user interactive
machine learning applications solicit examples and other
evidence from end-users, as well as future research on how
to determine when an end-user has encountered such a
turning point in an interactive machine learning process.

ACKNOWLEDGMENTS
We would like to thank Sumit Basu, Matthew Brown, Mary
Czerwinski, Susan Dumais, Eric Horvitz, Gang Hua, Dan
Liebling, John Platt, Michael Revow, Ying Shan, Patrice
Simard, and Larry Zitnick for both their stimulating
discussions and for their support and feedback on this work.

REFERENCES
1. Bederson, B.B. (2001). PhotoMesa: A Zoomable Image

Browser Using Quantum Treemaps and Bubblemaps.
Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST 2001), 71-80.

2. Cai, D., He, X., Li, Z., Ma, W.-Y. and Wen, J.-R. (2004).
Hierarchical Clustering of WWW Image Search Results
Using Visual, Textual, and Link Information. Proceedings
of the ACM Conference on Multimedia (Multimedia
2004), 952-959.

3. Fails, J.A. and Olsen, D.R. (2003). Interactive Machine
Learning. Proceedings of the International Conference on
Intelligent User Interfaces (IUI 2003), 39-45.

4. Fass, A.M., Bier, E.A. and Adar, E. (2000). PicturePiper:
Using a Re-Configurable Pipeline to Find Images on the
Web. Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST 2000), 51-62.

5. Gajos, K. and Weld, D.S. (2004). SUPPLE: Automatically
Generating User Interfaces. Proceedings of the
International Conference on Intelligent User Interfaces
(IUI 2004), 93-100.

6. Gajos, K. and Weld, D.S. (2005). Preference Elicitation
for Interface Optimization. Proceedings of the ACM
Symposium on User Interface Software and Technology
(UIST 2005), 173-182.

7. Globerson, A. and Roweis, S. (2005). Metric Learning by
Collapsing Classes. Proceedings of the Conference on Neural
Information Processing Systems (NIPS 2005), 451-458.

8. Gorkani, M.M. and Picard, R.W. (1994). Texture
Orientation for Sorting Photos 'At a Glance'. Proceedings
of the International Conference on Pattern Recognition
(ICPR 1994), 459-464.

9. Hartmann, B., Abdulla, L., Mittal, M. and Klemmer, S.R.
(2007). Authoring Sensor-Based Interactions by
Demonstration with Direct Manipulation and Pattern
Recognition. Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI 2007), 145-154.

10. Hastie, T., Tibshirani, R. and Friedman, J. (2001). The
Elements of Statistical Learning. Springer.

11. Kristjannson, T., Culotta, A., Viola, P. and McCallum, A.
(2004). Interactive Information Extraction with
Constrained Conditional Random Fields. Proceedings of
the National Conference on Artificial Intelligence (AAAI
2004), 412-418.

12. Li, F.-F. and Perona, P. (2005). A Bayesian Hierarchical
Model for Learning Natural Scene Categories.
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2005), 524-531.

13. Niblack, C.W., Barber, R., Equitz, W., Flickner, M.D.,
Glasman, E.H., Petkovic, D., Yanker, P., Faloutsos, C.
and Taubin, G. (1993). QBIC Project: Querying Images
by Content, Using Color, Texture, and Shape.
Proceedings of the Conference on Storage and Retrieval
for Image and Video Databases 173-187.

14. Nistér, D. and Stewénius, H. (2006). Scalable Recognition
with a Vocabulary Tree. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR 2006), 2161-2168.

15. Nocedal, J. and Wright, S.J. (2006). Numerical
Optimization. Science Press.

16. Platt, J.C., Czerwinski, M. and Field, B.A. (2003).
PhotoTOC: Automatic Clustering for Browsing Personal
Photographs. Proceedings of the IEEE Pacific Rim
Conference on Multimedia 6-10.

17. Schettini, R., Ciocca, G., Valsasna, A., Brambilla, C. and
De Ponti, M. (2002). A Hierarchical Classification
Strategy for Digital Documents. Pattern Recognition
35(8). 1759-1769.

18. Shilman, M., Tan, D.S. and Simard, P. (2006). CueTIP: A
Mixed-Initiative Interface for Correcting Handwriting
Errors. Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST 2006), 323-332.

19. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A.
and Jain, R. (2000). Content-Based Image Retrieval at the
End of the Early Years. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22(12). 1349-1380.

20. Smith, J.R. and Chang, S.-F. (1997). VisualSEEK: A
Fully Automated Content-Based Image Query System.
Proceedings of the ACM Conference on Multimedia
(Multimedia 1997), 87-98.

21. Vailaya, A., Figueiredo, M., Jain, A. and Zhang, H.J.
(1999). Content-Based Hierarchical Classification of
Vacation Images. Porceedings of the IEEE International
Conference on Multimedia Computing and Systems
(ICMCS 1999), 518-523.

22. Wang, S., Jing, F., He, J., Du, Q. and Zhang, L. (2007).
IGroup: Presenting Web Image Search Results in Semantic
Clusters. Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI 2007), 587-596.

23. Winder, S.A. and Brown, M. (2007). Learning Local
Image Descriptors. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR
2007), 1-8.

24. Yee, K.-P., Swearingen, K., Li, K. and Hearst, M. (2003).
Faceted Metadata for Image Search and Browsing.
Proceedings of the ACM Conference on Human Factors
in Computing Systems (CHI 2003), 401-408.

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION AND MOTIVATION
	RELATED WORK
	CUEFLIK IMPLEMENTATION
	Image Queries
	Ranking Image Results
	Applying Concept Rules
	CueFlik’s Distance Metrics
	CueFlik’s Concept Learning over Distance Metrics
	Active Learning in CueFlik

	EXAMINING INTERACTIVE CONCEPT LEARNING
	Interface Conditions
	Editing Presentation
	Active Learning Presentation
	Interface Condition Descriptions

	Tasks
	Design and Procedure
	Participants

	RESULTS
	Rule Creation Task
	Rule Transfer Task
	Qualitative Results

	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES

