

CueTIP: A Mixed-Initiative Interface for
Correcting Handwriting Errors

Michael Shilman, Desney S. Tan, Patrice Simard
Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA
{shilman, desney, patrice}@microsoft.com

ABSTRACT
With advances in pen-based computing devices, handwrit-
ing has become an increasingly popular input modality.
Researchers have put considerable effort into building in-
telligent recognition systems that can translate handwriting
to text with increasing accuracy. However, handwritten
input is inherently ambiguous, and these systems will al-
ways make errors. Unfortunately, work on error recovery
mechanisms has mainly focused on interface innovations
that allow users to manually transform the erroneous rec-
ognition result into the intended one. In our work, we pro-
pose a mixed-initiative approach to error correction. We
describe CueTIP, a novel correction interface that takes
advantage of the recognizer to continually evolve its results
using the additional information from user corrections.
This significantly reduces the number of actions required to
reach the intended result. We present a user study showing
that CueTIP is more efficient and better preferred for cor-
recting handwriting recognition errors. Grounded in the
discussion of CueTIP, we also present design principles
that may be applied to mixed-initiative correction inter-
faces in other domains.
ACM Classification: H.5.2 [Information Interfaces and
Presentation]: User Interfaces - Graphical user interfaces,
Input Devices and Strategies, Interaction styles, User-
centered design; I.7.m [Document and Text Processing]:
Graphics recognition and interpretation.
General terms: Design, Human Factors, Performance.
Keywords: Correction interface, mixed initiative, hand-
writing recognition, constraints, user study.

INTRODUCTION
The study of handwriting has been a topic of research in
many fields, including psychology, neuroscience, physics,
computer science, anthropology, education, forensic docu-
mentation, and others [11]. Much of this work has led to
significant advances in recognition systems that automati-
cally transform handwritten language into its symbolic rep-
resentation. Because of the inherent ambiguities that exist

in human handwriting, we believe that these systems will
always make recognition errors. While many researchers
continue to work on improving recognizer accuracy, there
has been much less work exploring recovery mechanisms
with which users can correct errors once they are made.
Within this work, researchers have made heuristic and in-
terface innovations that allow users to more efficiently
manually correct text [e.g. 4,7]. Unfortunately, because
correction has traditionally been viewed as an editing task,
these systems often require laborious corrections that derail
the flow of the text input task.
In this paper, we focus on exploring a mixed-initiative ap-
proach that reduces the cost of correction. Rather than
treating correction as a manual editing task to be performed
solely by the user, we construct a system that continues to
assist the user even as they make corrections (see Figure 2
for the augmented correction flow). We characterize rec-
ognition as an optimization process and show that by treat-
ing user corrections as constraints to this optimization, the
system can continue to ‘steer’ its guesses and attain the
right answer in many fewer steps than would be possible
with traditional alternatives (see Figure 1). This allows us
not only to accelerate the correction process, but also to
streamline the interface and interaction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’06, October 15–18, 2006, Montreux, Switzerland.
Copyright 2006 ACM 1-59593-313-1/06/0010...$5.00.

Figure 1: User handwrites some text and in order to
attain the intended phrase, has to (left) split a word
and then join two; (right) correct two letters. Using
standard techniques to correct these same correc-
tions would take many more operations.

f o u n d

f o r m e d

f o r m a l

prediction

correction 1

correction 2

handwriting

formal

forget her

to yet her

prediction

split

join

handwriting

to gather

to gather

f o u n d

f o r m e d

f o r m a l

prediction

correction 1

correction 2

handwriting

formal

forget her

to yet her

prediction

split

join

handwriting

to gather

to gather

323

The contributions of this paper are threefold. First, we pre-
sent CueTIP, a novel mixed-initiative system that dramati-
cally improves handwriting error correction. In this system,
the recognizer updates its recognition results as a function
both of the original handwriting, but also of the implicit
constraints added by each new correction the user makes.
Second, situated in our discussion of the CueTIP interface
and implementation, we describe general design principles
for correction interfaces. These principles may be applied
domains that generate ambiguous interpretations of user
intent, including speech, optical character recognition, and
search. Finally, we report a user study we conducted, sug-
gesting that CueTIP is indeed more effective and better
preferred over a traditional correction interface.

BACKGROUND AND RELATED WORK
Handwriting Recognition
Recognition is the interpretation of ambiguous sensor
measurements into hypotheses about user action or intent.
Handwriting recognition techniques generally fall into one
of two categories, structural and rule-based methods, or
statistical classification methods [14]. In structural and
rule-based methods, the recognizer leverages the idea that
character shape may be described in an abstract manner,
independent of irrelevant variations that occur during exe-
cution. Because finding reliable abstract rules is generally
very difficult, researchers have recently shifted much of
their efforts to exploring the second category, statistical
classification methods. In these methods, the system repre-
sents shape by features on the ink that define a multidimen-
sional space, and creates probability distributions that map
points in this space onto discrete classes.
Many such recognition systems employ some variant of
likelihood maximization, in which the recognizer outputs
the hypothesis that is most likely given the observed inputs
[5]. In likelihood maximization, the goodness of a hypothe-
sis given the input is expressed with a scoring function,
such as probability. Under this formulation, the recognition

process is implemented as an optimization over the output
space with respect to the likelihood scoring function. Many
researchers are working on better scoring metrics, faster or
more accurate optimizations, or techniques that do both at
the same time [5] in order to improve recognition rates.
Improving recognition rates and decreasing errors is ex-
tremely important because error recovery remains an ex-
pensive and frustrating process for the user. In doing this,
researchers have attempted to characterize errors so that
they can specifically address them. For example,
Schomaker described errors as stemming from discrete
noises, badly formed shapes, input legible by humans but
not recognizers, badly spelled words, cancelled material,
and device generated errors [12]. Other researchers have
proposed various schemes in order to address these errors.
For example, Oviatt proposes multimodal interfaces both
for the recognition task as well as the correction [9]. In
such interfaces, the system would take recognition hy-
potheses from one modality (e.g. speech) in order to con-
strain or reorder recognition results from another (e.g.
handwriting). The hope is that the complementary informa-
tion will make recognition more accurate. For more com-
plete surveys of recognition techniques, see [11,14].
Regardless of the recognition technique employed, we do
not believe these systems will ever completely eliminate
errors in interpreting user intent given a set of pen strokes.
Furthermore, small recognition errors often cascade to
much larger ones, each of which the user has to tediously
correct. In fact, even correction gestures are misrecognized,
leading to what Oviatt and VanGent term error spirals, or
series of multiple attempts to correct the same error [10]. In
our work, we focus on designing interfaces that allow users
to efficiently correct errors once they have been made.

Error Correction Interfaces
Error correction is not a new topic. In fact, researchers
have explored error correction mechanisms for misrecog-
nized handwriting within several different domains. Early
work by Goldberg and Goodisman [1] tested a system that
allowed users to correct characters by tapping on options
from an n-best list. They found in informal observations
that searching for the appropriate correction was too ex-
pensive and that users preferred to just tap on the incorrect
character repeatedly to cycle through the list. Alternatively,
if the list was not accurate enough for the user to get to the
correct option quickly, they preferred to simply write over
the error and have the recognizer try again.
Smithies, Novins, and Arvo worked on correcting recogni-
tion errors with handwritten mathematical equations [13].
They provided a modal correction mechanism for stroke
segmentation that allowed users to draw a line over strokes
in order to indicate that they should be recognized as a sin-
gle symbol. They used this mechanism both for joining
strokes as well as splitting them. Users could also click on
individual characters and choose the correct one from an n-
best list. If the list did not contain the correct option, the
user would fall back onto using a soft keyboard.

Recognizer
Ink

Results

Edits

Recognizer
Ink

Results

Constraints

current

proposed

Recognizer
Ink

Results

Edits

Recognizer
Ink

Results

Constraints

current

proposed

Figure 2: (top) While current methods allow users to
make manual edits to fix errors; (bottom) we pro-
pose leveraging the intelligent recognizer to further
assist users as they do this.

324

In their work, Mankoff, Hudson, and Abowd provide a
survey of correction techniques, which they classify into
repetition and choice [7]. They present OOPS, a toolkit that
supports resolution of input ambiguity through mechanisms
that allow the user to specify correct interpretation of their
input. Among other techniques, they demonstrate the utility
of their toolkit with a new interaction that coupled word
prediction with online handwriting recognition. While their
prediction mechanisms were built into the process of writ-
ing (much like T9 Text Input® does with mobile text in-
put), we explore similar prediction ideas while the user is
actually making the correction. Also, we believe that there
are other classes of corrections such as grouping strokes
that are not adequately covered in the repetition/choice
dichotomy. Rather than characterizing the mechanisms by
which corrections are typically made, Huerst, Wang, and
Wiabel classified error repair into overwriting, deletion,
completion, and insertion [4]. In this paper, we extend this
body of work by presenting a mixed-initiative approach to
correction interfaces as well as principles that should be
considered in designing them.

Mixed-Initiative Correction Interfaces
While recognition engines have gotten more ‘intelligent,’
many of the correction mechanisms we have discussed so
far have involved interface innovations made completely
independently of recognizers. These interfaces are designed
so that users can fully (re)specify their intent as efficiently
as possible. We believe that there is potential to signifi-
cantly improve these correction mechanisms by better lev-
eraging the recognizer. Specifically, we propose that the
system should continue to assist the user even as correc-
tions are made, to reduce the number of actions required to
reach the intended result. Such a system builds upon many
of the general principles derived for mixed-initiative inter-
faces, which propose coupling automated services with
direct user manipulation. Horvitz, for example, presents a
set of eleven principles, which includes developing value-
added automation, inferring ideal action in light of costs,
benefits, and uncertainties, as well as employing dialog to
resolve uncertainty, among others [2].
In line with these principles, Kristiansson, Culotta, Viola,
and McCallum introduce the concept of correction propa-
gation, which proposes that after each user correction ac-
tion, the remaining recognition should be re-recognized in
order to yield the best results constrained to match the cur-
rent set of corrections [6]. They apply this to the use of
conditional random fields as a method of performing auto-
matic form filling. As the user corrects mistakes, the sys-
tem continues to make changes to other fields in response
to the actual corrected one. The authors show, using a
simulated quantitative calculation that the number of ac-
tions and, by inference, the effort, that would be required
by the user is drastically reduced with such a system. This
positive result is not surprising given the heavy constraints
that the restricted form schema places on the possible out-
puts. In this paper, we build upon this work by extending it
to the relatively unconstrained problem of handwriting

correction. We present a novel handwriting correction in-
terface, which we call CueTIP, as well as general principles
for thinking about mixed-initiative correction interfaces.
We also conduct a study to examine how the simulated
expectations compare to actual user performance.

CUETIP INTERFACE
The CueTIP system provides an intuitive mixed-initiative
interface that allows users to efficiently correct errors made
by the handwriting recognizer. The interface itself consists
of several graphical components (Figure 3). CueTIP pro-
vides a handwriting entry box in which the user writes.
Below the entry box is the results panel, the region in
which recognition results are presented. To reduce the
number of modes a user has to transition between to make
corrections, all corrections are made directly on the results.
When a user writes into the entry box, the recognizer
builds its prediction of the text and updates this in the re-
sults panel. This is identical to what most current systems
do. We augment this by drawing a purple result bar above
each recognized word in the panel and aligning this to the
ink in the textbox. This allows users to quickly match the
set of handwriting strokes that led to a particular interpreta-
tion in order to help with correction.
If the user finds any errors, they can correct the text di-
rectly in the results pane. The correction operations are
simple (see rest of Figure 3). First, the user can correct
segmentation errors, or errors the recognizer has made in
determining word breaks, by using simple gestures on the
results. To join two or more words, the user simple draws a

Figure 3: (top) The CueTIP interface. (rest) The full
set of correction operations available to the user.

join

split

rewrite

delete

append

join

split

rewrite

delete

append

325

horizontal line connecting the words together. To split a
word in two, the user draws a vertical line through the pur-
ple result bar. The location of the split is approximately the
projection of this line up into the ink in the entry box. We
did this because we thought that it would be easiest for
users to determine where word breaks should occur with
respect to the ink, rather than on the recognized text, which
sometimes does not resemble the intended result.
When a user performs either of these operations, the recog-
nizer is re-invoked with the original handwriting as well as
any correction constraints that the user has specified (e.g.
that a series of strokes were actually one word rather than
two). Having new constraints leads to an adjustment of
recognizer hypotheses and a single user action can lead to
multiple edits within the result. A small number of actions
can often lead to the desired result with high accuracy.
The user can also correct errors within individual words.
To do this, the user first taps on the word to show its indi-
vidual characters, which they can then correct by writing
over. The user can also delete unwanted characters by us-
ing a slashing gesture through a particular character. Fi-
nally, they can extend the recognition result by writing in a
blank character box at the end of the word. As with seg-
mentation corrections, each of these corrections triggers the
recognizer, so that it can take the handwriting and the new
information added by the user and re-recognize the text.
Note that there is no need for an explicit ‘insert’ character
operation in such a scheme. For example, if the user would
like to insert the letter ‘i’ into ‘pan’, they would simply
overwrite the ‘n’ in the word with an ‘i’. Given the original
ink, the recognizer would decide whether to treat this as an
insert and make the word ‘pain’ or as purely an overwrite
and further transform the word, perhaps into ‘pail’.
In order to validate our assertions that CueTIP would re-
duce the number of operations required to correct errors,
we ran simulations to quantitatively evaluate CueTIP early
in our design phase. We randomly selected 5000 handwrit-
ing samples that contained errors from a much larger cor-
pus collected by the Microsoft TabletPC group. First, we
calculated the average string edit distance from the initial
result to the intended result. This is the number of opera-
tions that a user, operating optimally in a traditional inter-
face, would require. This is a lower bound and we show in
our user study that users often do not operate optimally in
such interfaces. We compared this to the number of correc-
tions that would be required with CueTIP, assuming a left
to right correction strategy. We found that CueTIP reduced
the average number of operations by about 30% (from 2.98
edits to 2.07 edits for this corpus). See Figure 4 for exam-
ples of corrections that would require a single correction in
CueTIP but significantly more in a traditional correction
interface.

Optimizations
From early observations of users correcting recognition
errors, we make two assumptions that lead to optimizations
in this system. First, we assume that users generally correct

the segmentation errors before correcting individual words.
This assumption allows us to appropriately scope character
correction constraints to affect only the current word. This
simplifies the propagation of corrections because we do not
have to operate over the entire series of strokes. We believe
that it also leads to a better interface because users gener-
ally do not expect recognition of entire sentences to change
when they correct a single character in a word.
Second, when correcting within a word, we assume that the
user generally corrects from left to right. In fact, when a
user corrects a character, the constraint created is one stat-
ing that all characters up to and including the corrected one
are correct and that the recognizer should try and find hy-
potheses within the ink that match this constraint. This is
exposed to the user by changing the color of character tiles
from blue to pink. Pink tiles indicate a constraint, or that
the system will not try to change these. To create or remove
a constraint, the user simply taps on the tile of interest. We
did not see many users use this functionality beyond initial
exploration of how it works.

HIGH-LEVEL DESIGN PRINCIPLES
Although CueTIP has a relatively simple interface, its spe-
cific design reflects a number of high-level guiding princi-
ples. We believe that understanding these will be useful to
researchers trying to build new mixed-initiative correction
interfaces, both for handwriting correction, but also in
other domains. The key design considerations include:
Minimize decision points by choosing appropriate op-
erators. Current recognition systems provide several op-
tions for users to transform errors into the intended text.
Users can usually rewrite individual characters or words,
type with the stylus on a soft keyboard, or pick words from
an n-best word list [e.g. 14]. Unfortunately, the cognitive
load imposed by such schemes is relatively high, as shown
in speech correction work [2]. This is because users have to
choose between multiple correction strategies, each of
which may be more or less effective in different scenarios.
Then, even within a given strategy, users have to carefully
plan how to do the correction. For example, if a user de-
cides to rewrite individual characters and would like to

CorrectedPredictedOriginal Ink

journalsformals

returnedretread

BaldBabel

inspiredimpend

accidentaudit

CorrectedPredictedOriginal Ink

journalsformals

returnedretread

BaldBabel

inspiredimpend

accidentaudit

Figure 4: With a single character correction (in all of
these examples), CueTIP is able to accurately pro-
pose the intended word, thus significantly reducing
time and effort spent correcting errors.

326

make the minimum number of edits possible, they have to
calculate where to overwrite existing characters or to insert
and delete new ones. In an unpublished internal survey, the
Microsoft TabletPC group found that many expert users
quickly started skipping the correction mechanisms that
entailed rewriting and could lead to ambiguous corrections.
Instead they resorted to retyping the entire word using the
more certain, but less efficient, soft keyboard.
In CueTIP, we reduce the core correction mechanisms
available and provide only two operators with orthogonal
functionality, correcting segmentation and correcting char-
acters. This was derived from informal observations of how
users think about the correction process and we believe
drastically reduces cognitive effort required in our inter-
face. Additionally, we offload the decision of whether the
correction requires an insert or an overwrite to the recog-
nizer, which makes the task easier. At any given point
while correcting a word, the user only has to focus on
overwriting the leftmost error within that word.
Design seamless transition between modes. Similarly, in
cases for which mode switches are required, designers
should try to make transitions as seamless and invisible as
possible. For example, in the early instantiations of
CueTIP, we had a checkbox which allowed users to specify
whether or not they wanted the system to use a dictionary
optimization to constrain available recognition results.
While knowing whether or not to use a dictionary could
theoretically have improved results drastically, users found
it cumbersome to use. Hence, in subsequent iterations we
allowed the system to make this decision, automatically
using a dictionary optimization if it could not attain a rea-
sonable result by looking at the handwriting. Users did not
know the system was doing this, but were much more satis-
fied when using the system with this change.
Provide reachability of all states. We assert that the age-
old HCI principle of “make the most frequently used opera-
tions easy to do, and the rest possible” applies equally well
to transformations required for corrections. When design-
ing CueTIP, we aimed to get the user to the intended text as
quickly as possible. Most of the time, we assumed that the
handwriting contained enough information that the system
could make useful inferences about the result. However,
occasionally, the user would like to transform an arbitrary
word or phrase into another, regardless of the original
handwriting. While we do not optimize for this case be-
cause early observations showed it to be the exception
rather than the rule, we designed CueTIP such that in its
limit, it is no worse than using a manual correction inter-
face in order to get from any state to any other state. This is
not always a natural characteristic of mixed-initiative inter-
faces in which the recognizer is constantly trying to ‘pull’
the answer towards its conception of the right answer.
Appropriately scope cascading changes. Another goal is
to scope the impact of each change so that constraints ap-
plied to one part of the output do not result in sweeping
changes to a distant part of the output. This is important so

that users can mentally map impact of their actions and do
not encounter too many surprising, and hence frustrating,
changes. The two assumptions described above allow us to
appropriately scope changes to the word or words being
operated on and users seemed to find this intuitive.
Expose clear user model. While the system model and
user model often do not and need not agree, we believe that
it is important to provide the user with a clear model of
how they should expect things to work. This increases pre-
dictability while using the interface and provides feeling of
empowerment within the system-user dialog. In CueTIP,
we do not formally expose the underlying constraint-based
recognition system, but we do provide feedback about
which characters the system will not change by appropri-
ately coloring the tiles in which they are displayed. While
constraints require some mathematical understanding of the
system model, knowing which characters the system is
going to help with versus not is intuitive for users.

Possible Correction Strategies
In the abstract correction task, there are several possible
high-level correction strategies, including:
N-Best Selection. The simplest correction strategy is selec-
tion-based, in which the system returns an n-best list from
which the user can select. In handwriting correction, this is
typically an n-best word list for each word in a given seg-
mentation. Unfortunately, an n-best list can usually only
reveal a small portion of the possible output hypotheses.
Furthermore, since recognition results are highly sensitive
to misrecognition of individual characters, even small er-
rors can cause the intended result to fall off the n-best list.
Transformation. A second common correction strategy is
one in which the user applies a set of edits to the output to
transform it into the desired result. In handwriting this in-
cludes inserting, deleting, and modifying characters and/or
spaces in the output string. While this approach guarantees
that the user can get to any point in the output space, this
could require a large number of operations.
Hints. A third option is one in which the user provides
hints to the recognizer, which the recognizer can use to
reinterpret the inputs. For example, in handwriting recogni-
tion, rewriting a word could provide extra evidence of user
intent, but does not guarantee anything about the revised
output (except that perhaps it should be different from the
original output). A hint-based approach has the potential to
maximally leverage the recognizer’s intelligence, but risks
surprising the user, as well as discarding information that
the user may have intentionally specified.
Constraints. A final option is one in which the user creates
constraints, and the recognizer continuously tries to opti-
mize within these constraints. In handwriting this could be
constraining individual characters, words, or segmenta-
tions. This approach combines the best characteristics of
transformations and hints. As the user starts adding con-
straints to the system, the recognizer has considerable free-
dom to help the user ‘jump’ to the right answer. However,
as the user continues to correct, the recognizer becomes

327

over-constrained, and the behavior gracefully transitions to
something more like a transformation-based system.

CUETIP V.1 IMPLEMENTATION
CueTIP is built in .NET C# on top of the Microsoft Tablet
PC Platform SDK, a publicly available toolkit for building
digital ink applications. This toolkit includes a set of facili-
ties for capturing and displaying digital ink as well as ac-
cess to a commercial handwriting recognizer and can be
downloaded at [www.microsoft.com/windowsxp/tabletpc].

Constraints
CueTIP’s correction user interface is designed entirely in
terms of constraints. To simplify the interaction, only two
types of constraints are possible in CueTIP, segmentation
constraints and character constraints. While these specific
constraints are tailored to the handwriting correction task,
we assert that this approach is not specific to handwriting,
and similar sets of operations can be designed for other
optimization-based recognition tasks.
Split / Join. When the user splits a word into multiple
words, or sets of strokes, CueTIP creates a set of segmenta-
tion constraints specifying that all recognition results must
respect the user-specified segmentation. These constraints
do not just apply to the ink that was split or joined, but to
the entire ink stream. This ensures that the segmentation for
other parts of the ink will not change, and therefore en-
forces the scoping design principle. Similarly, when the
user joins multiple words into a single one, CueTIP creates
a segmentation constraint to represent the join.
Rather than constraining segmentation for the entire ink
stream, we had earlier tried constraining only the user cor-
rected words. In informal observations, we observed that
users found this confusing. They did not expect segmenta-
tion changes to propagate through entire lines of text. Both
these versions are easy to implement within our system
simply by choosing whether or not to remove prior seg-
mentation constraints and hence to propagate changes
throughout the input.
Character. Similarly, when the user specifies that the j'th
character of a word represented by the set of strokes should
be the character c, this creates a constraint. The system also
creates a set of segmentation constraints corresponding to
the current segmentation. As in the split or join case, this
scopes the recognition change to the current word.

Cascaded Constrained Recognizer
Unfortunately, the standard recognizer that ships with the
SDK, and in fact most recognizers, do not support specify-
ing constraints. We built the first version of CueTIP on top
of the existing recognizer, and despite its shortcomings
were able to demonstrate a reasonable improvement over
the existing correction interface. At the end of the paper we
describe a more graceful and performant implementation
that involves augmenting the recognizer.
In order to implement CueTIP using the out-of-the-box
Microsoft handwriting recognizer, we had to appropriately
pre-process its inputs and post-process its outputs. The

recognizer accepts a set of strokes as input and returns a list
of hypothesis strings as output, ordered by confidence. It
can be invoked in standard mode, in which it performs
both word segmentation and recognition on the input ink,
or in word mode, in which it only considers the given ink
as a single word.
Additionally, it can be configured to use a custom user
dictionary or to a regular expression (called a factoid) to
further constrain its output. The customized dictionary is
useful for domain-specific word recognition tasks, and fac-
toids are useful for recognizing input with a known struc-
ture, such as telephone numbers, email addresses, or URLs.
When our system first tries to recognize the user’s hand-
writing, it has no segmentation or character constraints, and
the recognizer is called directly. As the user starts correct-
ing, CueTIP adds segmentation and character constraints
and re-invokes the recognizer with these. When segmenta-
tion constraints are added, the system breaks the ink up into
individual words and feeds these words to the recognizer
one at a time. When recognizing each word, CueTIP uses a
cascaded heuristic:
1. The recognizer is initially run unconstrained on the

word strokes. If there are no character constraints for
that ink, the result is returned. Otherwise, the cascaded
recognizer post-processes the output of the recognizer,
iterating through the results until it finds one that
matches the character constraints. Since the recognizer
only emits a maximum of 32 words, we are not guar-
anteed a solution that matches the constraints.

2. If the system does not find a result in the first level of
the cascade, the constraints are run over a dictionary
word list, preprocessing the word list down to a set of
words that match the constraints. This constrained
word list is then used as the custom dictionary for the
recognizer. For example, if the user has overwritten
the first two letters of a word, the recognizer will only
use words that start with those letters. This step is
slow, but typically produces high-quality results.

3. Finally, if the word list in the previous section is
empty, or the most confident match falls beneath a
threshold, the recognizer reverts to a manual editing
mode, where it takes any constraints that have been
added and applies them to its previous output for that
given set of strokes.

This cascaded approach gracefully handles both in and out-
of-dictionary words through a smooth transition between
constraint-based and transformational correction models. In
informal observations of this system, users did not realize
that this was happening and felt like the system was always
doing the right thing. The drawback of this cascading ap-
proach is that it is computationally expensive and time con-
suming, so each correction made using this heuristic pro-
duced considerable lag. We ran a user study with this pro-
totype as proof of concept and to show that further work in
making the system more efficient was indeed warranted.

328

USER STUDY
We conducted a user study comparing the effectiveness of
our mixed-initiative CueTIP interface to traditional correc-
tion mechanisms in current interfaces. These traditional
correction mechanisms include correcting misrecognized
characters by writing over them, correcting segmentation
errors by treating spaces as characters that can be added or
deleted, and correcting incorrect words by selecting options
in a list that contains the recognizer’s n-best guesses of the
writing. We replicated this functionality in a prototype we
call StaTIP (for Standard Tablet Input Panel), which we
implemented in the same framework as our system. See
Figure 5 for a view of the interface within the experimental
apparatus as well as the functionality that it provided.
CueTIP, as described earlier, extends the first two mecha-
nisms by adaptively proposing other changes as the user
corrects characters. It also provides a novel mechanism that
allows users to correct segmentation errors with simple
gestures to either split or join words. These segmentation
corrections, like the character corrections, cause the recog-
nizer to be called with more information and may cause
cascading changes. To test the effects of n-best lists, we
also created a version of CueTIP that adapts its n-best lists
as the user starts to correct characters.
CueTIP incrementally updates its model of user intent and
continually provides assistance (in the form of new recog-
nition hypotheses for the handwriting) at each interaction
within the correction process. Since we expect that each of
these iterations will, on average, bring the user closer to the
intended word or phrase faster than without the assistance,
we hypothesized that users would require a smaller number
of operations to make corrections with CueTIP than with
StaTIP. In fact, since the number of operations is loosely
associated with the amount of time spent on the correction,
we also hypothesized that users would spend less time, on
average, correcting words with CueTIP than with StaTIP,
even with the additional processing time that is required in

our particular implementation to regenerate hypotheses for
each step within the correction interaction in CueTIP.
Similarly, the n-best list could potentially reduce the num-
ber of correction operations to one (simple selection of the
correct option). Since we expected that users would utilize
this functionality when they could, we expected that they
would require a smaller number of operations to make cor-
rections when they had the n-best list. However, it was
unclear what this would, on average, do to completion
time, since there is a cost associated with scanning the list,
especially when the intended word is either late in the list
or not there at all. Additionally, we set out to explore the
effect that CueTIP had on the usage of the n-best list. We
wanted to know if the reduced cost of correction offered by
CueTIP would reduce the use of the list.
To explore these hypotheses, we decomposed the interfaces
into the distinct correction mechanisms, character or seg-
mentation correction as well as choosing results from the n-
best list. We specifically examined only the correction in-
teractions as users utilized the traditional and CueTIP im-
plementations both on single words as well as on phrases.

Participants
Twelve volunteers (5 female) from the Greater Puget
Sound area participated in this study. Users averaged 43.1
years of age (ranging from 29 to 54 years). Users were
screened such that half of them were novice tablet hand-
writing input users who had used this functionality for less
than 3 hours overall, and half were experts, who used it for
at least 3 hours a week over the course of at least the 3
months preceding the study. All users had normal or cor-
rected-to-normal eyesight, and all were physically able to
use the handwriting interfaces for the 1.5 hour study. Users
received software gratuities for their participation.

Tasks and Materials
We used two tasks to examine the various components of
the interfaces. In the first task, we explicitly tested the effi-
ciency of the interfaces for single word correction. For
each trial in this task, we presented users with a target word
in typed text, which they had to input using one of the in-
terfaces. Since we were primarily interested in use of the
correction mechanism and not in the initial handwriting
recognition accuracy, we provided users with a handwritten
sample of the target word that would always lead to an
initial recognition error. Hence, users were forced to make
corrections on every trial in this task. We constructed five
sets of words, one practice and four test sets. The practice
set contained 16 words and test sets contained 12 words
each.
We used a corpus of several hundred thousand text seg-
ments and associated handwriting samples collected by the
Microsoft Tablet PC group to train and test the Windows
Tablet Input Panel. In order to pick the test samples, we
first filtered the corpus to contain only samples that would
lead to an initial misrecognition. We calculated the histo-
gram of string edit distances, or the minimal number of
inserts, deletes, or substitutions, needed to transform the

Figure 5: The StaTIP interface looked similar to the
CueTIP one. As shown, users could delete, rewrite,
insert, and append characters, as well as split and
join. The recognizer did not assist in corrections,
and none of these cascaded to other corrections.
Also notice the n-best list at the bottom.

329

recognized word into the intended one. We then randomly
selected samples to create sets of words that matched the
overall histogram. This led to test sets which had approxi-
mately half of its words with a string edit distance of three
or less, and the rest with a distance of greater than three.
In the second task, we tested the efficiency of the interfaces
when users had to perform phrase correction. This task
included both word as well as segmentation correction. We
used the same procedure as in the first task to force correc-
tions on every trial. We also used an equivalent procedure
to create five sets of words, a practice set with 12 phrases
and four test sets with 8 phrases each. In addition to the
process we used for word selection, we also imposed the
limitation that our phrase samples would contain at least
one segmentation error.
We collected trial times for each correction. Trial time was
the time taken from presentation of the initial incorrect
result until the user corrected and confirmed the word or
phrase. Although this did not include the time of the initial
presentation and recognition of the handwriting, it did in-
clude any time required to recognize correction overwrites
and potentially to generate new hypotheses. We also meas-
ured the number of character or segmentation correction
actions required to get to the desired result. This included
the number of inserts, deletes, word splits and joins, char-
acter toggles, n-best list selects, as well as successful over-
writes. Finally, since we were interested in how users
would utilize the n-best list, we measured the number of
times users invoked this list when it was present.

Setup
Users performed the study on a Toshiba M200 TabletPC
with a 2GHz PentiumM processor and 1GB of memory.
The display ran at a resolution of 1400 × 1050 and was
used in landscape orientation in the slate mode. Users in-
teracted with the system using the stylus that comes with
the tablet. Before beginning the study, users sat at a table
and adjusted their chair as well as the position and orienta-
tion of the tablet so that they were comfortable writing on
it. Some users preferred using the tablet on the desk while
others placed them in their laps or cradled them.

Design and Procedure
The study was a within-subjects design, with each user
performing all the tasks in all four conditions, created by
crossing Interface (StaTIP vs. CueTIP) and n-best list (ab-
sent vs. present). After balancing for expertise, we coun-
terbalanced the order of interface and n-best list independ-
ently across users, with each user having the same order
across both tasks. All users performed the tasks in the same
order, starting with the word correction task on both inter-
faces and moving to the phrase correction task. Test sets
within each task were performed in the same order so that
they would be balanced across interfaces.
At the beginning of the experiment, we instructed users on
how to use each interface in the study. We provided written
instructions, demonstrated the interface, and allowed users
to ask questions they had. Prior to beginning each task, we

further provided written instructions explaining the task to
the user. For each set of trials with each interface, users
practiced on a subset of practice questions, and when they
were comfortable with the interface and task, performed
the task on the test set. After performing each task on both
interfaces, users filled out a questionnaire indicating sub-
jective preference and providing free-form comments for
the interfaces within that particular task. They also filled
out a final subjective questionnaire at the end of the study.

Results
Performance
We analyzed data at the summary level. For each of our
metrics we conducted a 2 (Task: Word correction vs.
Phrase correction) × 2 (Interface: StaTIP vs. CueTIP) × 2
(n-best list: absent vs. present) repeated measures analysis
of variance (RM-ANOVA). We had initially included Ex-
pertise (Novice vs. Expert) as a factor, but dropped this
from our final analysis because we found no effects due to
it. Results remain equivalent without this factor.
The first metric we tested was the average number of op-
erations required to correct the words. For this metric, we
found a significant main effect of Interface (F(1,11)=92.72,
p<.001), with CueTIP requiring fewer operations than Sta-
TIP (2.31 vs. 3.19, respectively). We also found a signifi-
cant main effect of n-best list (F(1,11)=33.175, p<.001),
with the n-best list reducing the number of operations re-
quired (2.49 vs. 3.01). We also saw a main effect of Task
(F(1,11)=33.33, p<.001), reaffirming that phrase correction
required more correction operations than word correction.
Finally, we saw a borderline significant interaction be-
tween Interface and n-best list (F(1,11)=4.683, p=.053).
Paired comparisons using Bonferonni correction indicated
that each condition, except for the CueTIP without n-best
list, was significantly different from all others. See Figure 6
for a summary of these results.
In looking at the number of uses of the n-best list, we
found a significant main effect of n-best list, though this is

0

1

0.5

1.5

2

2.5

3

3.5

4

StaTIP CueTIP

w
ith

 n
-b

es
t

w
ith

ou
t n

-b
es

t

w
ith

 n
-b

es
t

w
ith

ou
t n

-b
es

t

Figure 6: CueTIP required significantly fewer man-
ual operations to make successful corrections. The
n-best list also significantly reduced this number.
Note that the average string edit distance of all trials
was 3. Error bars represent +/- 1 standard error.

330

a relatively uninteresting finding given that the n-best list
was not available in one set of those conditions. We saw no
interactions, indicating either that n-best list was not used
differentially across Task or Interface, or more likely that
users utilized this functionality so infrequently (slightly
under 15% of the time when it was present) that it was not
a very sensitive metric.
Finally, we examined average completion time for each
trial. Here, we found a significant main effect of Interface
(F(1,11)=49.25, p<.001), again with the CueTIP leading to
faster times than StaTIP, on average (18.7 vs. 21.9 s, re-
spectively). This represents about a 15% speed up using
CueTIP. We also observed a significant main effect of
Task (F(1,11)=560.99, p<.001), with phrase correction
taking much longer than word correction (28.4 vs. 12.2 s).
We saw no main effects or interactions with n-best list.
Subjective Preference
After each task, we had users provide ratings on a 5-point
likert scale for efficiency and ease of each interface. The
higher end of the scale represented favorable responses.
We ran a similar 2 (Task) × 2 (Interface) × 2 (n-best list)
RM-ANOVA on this data. We observed a significant effect
of Interface (F(1,11)=12.44, p=.005), with users preferring
the CueTIP interface over StaTIP (mean rating of 3.6 vs.
2.8). We also observed a main effect of Task
(F(1,11)=38.46, p<.001), suggesting that people felt both
interfaces were less efficient in the phrase correction than
the word correction task. When we had users rank order the
interfaces at the end of the experiment, 10 of the 12 users
had one of the CueTIP interfaces (with or without n-best
list) as the top on their list. In fact, CueTIP without the n-
best list topped that list with an average rating of 1.9, fol-
lowed by CueTIP with the n-best list at 2.1. StaTIP with
and without the n-best list were at 2.9 and 3.1 respectively.
When users were asked to comment on the various inter-
faces, many (eight) stated that had been skeptical before
using CueTIP that they would have liked the system mak-
ing indirect changes for them. However, all of these users
claimed to have been pleasantly surprised and the strongest
proponents of the system were in fact the ones who had not
expected it to be very satisfactory. Five of our users
brought up that lining words up with the ink in CueTIP
caused unevenly spaced words and was confusing. Addi-
tionally,,six users commented that they did not like how
they had to match their gesture to the ink when they wanted
to split a word. They wanted to perform the correction en-
tirely within the result and had totally forgotten about the
ink at that point. We will implement and examine these
improvements in future versions of CueTIP.

CUETIP V.2 IMPLEMENTATION
The user study showed our proof-of-concept CueTIP sys-
tem, which implemented a cascaded constrained recog-
nizer, helped users correct recognition errors with fewer
operations and in less time, and was preferred over a tradi-
tional interface. This was extremely encouraging, given
that the specific implementation added considerable com-

putational overhead which resulted in lag at each step in
the correction procedure. In this section, we discuss our
second implementation, which improved efficiency and
generality of the system. Rather than treating the recog-
nizer as a black box, as in the first implementation, we
modified the recognizer to integrate and incorporate con-
straints natively.

Integrated Constrained Recognizer
In this implementation, we established a different abstrac-
tion for the recognizer. Our goal was to be able to commu-
nicate the constraints declaratively, rather than proce-
durally, to allow for greatest flexibility in the implementa-
tion. To see why this makes sense, consider word segmen-
tation constraints. In our first implementation of segmenta-
tion constraints, we divided the ink up into multiple stroke
sets and call the recognizer in word mode for each stroke
set. However, doing this deprives the recognizer of context
that could improve recognition. For example, the recog-
nizer would not be able to leverage its language model that
exploits the frequency of word co-occurrences if it were
being fed ink word-by-word.
As mentioned in the introduction, many recognition algo-
rithms are implemented as optimizations, where the goal of
the algorithm is to find an output that optimizes a likeli-
hood function. In handwriting recognition, the optimization
is over sequences of ink fragments, where each fragment is
created by cutting strokes at their local minima and
maxima. Each fragment is interpreted as a piece of a char-
acter, and the optimization stitches together these interpre-
tations to come up with word hypotheses. Interpretations
that include words that are not in the dictionary are penal-
ized over words that are in the dictionary as a way of en-
coding the language model. There are many ways to per-
form this optimization.
Naïve. With a set of M interpretations for each of N frag-
ments (where M is proportional to the number of characters
in the alphabet), a naïve optimization that tries every com-
bination would consume time proportional to O(MN),
which is impossibly large for any real input.
Viterbi. One common improvement over the naïve ap-
proach is to use dynamic programming, which, for optimiz-
ing over sequences, is the Viterbi algorithm [5]. In Viterbi,
the problem is rephrased as a recurrence relation in which
the optimal interpretation of the whole input sequence is
the best combination of all interpretations of the first frag-
ment with all interpretations of the rest of the fragments.
The computational complexity is therefore O(NM2). This
technique assumes that the cost interaction of interpreting
the first and second fragments must not be dependent on
any other fragments in the input. Unfortunately, fragment
cost interactions are non-local when out-of-dictionary
words are penalized. Techniques exist to adapt Viterbi for
large-dictionary scenarios, but they are O(NV2), where V is
the number of words in the dictionary [5].
Beam. An efficient approach to large-lexicon recognition
is Beam Search [5]. Beam Search is a left-to-right scan

331

across the sequence of fragments, where each new charac-
ter candidate is ranked as an extension to all of the hy-
potheses before it. Beam search is approximate because it
only keeps the top K hypotheses at each point in the se-
quence. It tries to combine the next M hypotheses with the
previous top K previous hypotheses, and takes the top K of
these results. This is an O(NMK) algorithm.
Constrained Beam. In order to implement CueTIP, we
extended Beam Search and constructed a Constrained
Beam Search algorithm, in which character constraints
come into play. For each step in which the result path is
extended, we also check the resulting path for validity
against the character constraints and keep only valid paths
in the beam. When added to the existing beam search im-
plementation, this extension is extremely efficient and
causes negligible performance slowdown. Furthermore, the
left-to-right character constraint assumption that we have
built into the recognition interface interacts very well with
beam search because it ensures that the correct answer
stays “on the beam” as it scans left to right.

CONCLUSION AND FUTURE WORK
In this paper, we have presented a mixed-initiative ap-
proach to designing correction interfaces. We have de-
scribed CueTIP, a novel interface for correcting handwrit-
ing recognition errors. Grounded in our discussion of this
interface, we have presented design principles that may be
generalized and applied to interfaces in other domains for
which users have to correct ambiguous interpretations of
their input. We have also shown in a user study that even
the inefficient implementation of such a system allows us-
ers to more effectively correct errors, and as a result, have
built the more efficient implementation.
In future work, we plan on refining CueTIP based on study
feedback and observations. Users seem to forget about the
ink once they have written it and expressed preference for
correcting entirely within the result domain. It is not obvi-
ous how to implement an output-only solution for specify-
ing and leveraging segmentation constraints, but this is
something we plan to explore. We have also observed that
misrecognized character corrections are extremely frustrat-
ing. We hope to modify to the character recognition algo-
rithm that is biased on its word context in order to mini-
mize these errors. We also plan to explore efficient ways to
leverage character n-best lists to make the character correc-
tion task completely unambiguous. Finally, we hope to
build upon these results and design similar mixed-initiative
interfaces in other domains.

ACKNOWLEDGMENTS
We would like to thank Ahmad Abdulkader, Kumar Chel-
lapilla, Mary Czerwinski, Eric Horvitz, Keywon Chung,
and the Microsoft TabletPC group for engaging discussions
and invaluable assistance through the course of this project.

REFERENCES
1. Goldberg, D., & Goodisman, A. (1991). Stylus User

Interfaces for Manipulating Text. Proceedings of
Fourth Annual ACM Symposium on User Interface
Software and Technology, 127-135.

2. Halverson, C., Horn, D., Karat, C., Karat, J. (1999).
The Beauty of Errors: Patterns of Error Correction in
Desktop Speech Systems. Proceedings of Interact
1999, 133-140.

3. Horvitz, E. (1999). Principles of Mixed-Initiative User
Interfaces. Proceedings of CHI 1999 Conference on
Human Factors in Computing Systems, 159-166.

4. Huerst, W., Yang, J., & Waibel, A. (1998). Interactive
Error Repair for an Online Handwriting Interface. Pro-
ceedings of CHI 1998 Conference on Human Factors
in Computing Systems, 353-354.

5. Jelinek, F (1997). Statistical Methods for Speech Rec-
ognition. The MIT Press.

6. Kristjansson, T., Culotta, A., Viola, P., & McCallum,
A. (2004). Interactive Information Extraction with
Constrained Conditional Random Fields. Proceedings
of the 19th AAAI International Conference on Artifi-
cial Intelligence, 412-418.

7. Mankoff, J., Hudson, S.E., Abowd, G.D. (2000). Inter-
action Techniques for Ambiguity Resolution in Rec-
ognition-based Interfaces. Proceedings of Thirteenth
Annual ACM Symposium on User Interface Software
and Technology, 11-20.

8. Microsoft Tablet Input Panel. Retrieved 1 April 2006:
www.microsoft.com/windowsxp/using/tabletpc/pen/co
rrecttext.mspx.

9. Oviatt, S.L. (2000). Taming Recognition Errors with a
Multimodal Interface. Communications of the ACM,
43(9), 45-51.

10. Oviatt, S.L., & R. VanGent (1996). Error Resolution
During Multimodal Human-Computer Interaction.
Proceedings of the 1996 International Conference on
Spoken Language Processing, 1, 204-207.

11. Plamondon, R., & Srihari, S. (2000). On-line and Off-
line Handwriting Recognition: A Comprehensive Sur-
vey. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 22(1), 63-84.

12. Schomaker, L.R.B. (1994). User-interface Aspects in
Recognizing Connected-Cursive Handwriting. Pro-
ceedings of the IEE Colloquium on Handwriting and
Pen-based Input, 1994/065, 8/1-8/3.

13. Smithies, S., Novins, K., & Arvo, J. (1999). A Hand-
writing-Based Equation Editor. Proceedings of Graph-
ics Interface, 84-91.

14. Tappert, C.C., Suen, C.Y., & Wakahara, T. (1990).
The State of the Art in On-Line Handwriting Recogni-
tion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 12(8), 787-808.

332

