CuGaO₂ a promising alternative for NiO in p-type dye solar cells

Adèle Renaud^a, Benoit Chavillon^a, Loïc Lepleux^b, Yann Pellegrin^b, Errol Blart^b, Mohammed Boujtita^b, Thierry Pauporté^c, Laurent Cario^a, Stéphane Jobic^a, Fabrice Odobel^b

^a Institut des Matériaux Jean Rouxel, Université de Nantes, CNRS, 44322 Nantes cedex 03, France

^b CEISAM, Université de Nantes, CNRS, 44322 Nantes cedex 03, France

^c Laboratoire d'Electrochimie, chimie des interfaces et modélisation pour l'énergie, UMR 7575, Chimie-

ParisTech., 75231 Paris cedex 05, France

E-mail: stephane.jobic@cnrs-imn.fr, laurent.cario@cnrs-imn.fr

E-mail : Fabrice.Odobel@univ-nantes.fr

Experimental details

5

10

15 Electrochemical impedance spectroscopy (EIS) measurements.

Pellets for electrochemical impedance spectroscopy (EIS) measurements were formed from CuGaO₂ nanoparticles pressed under 100 bars and sintered at 450°C for 3 hours in nitrogen atmosphere. The back side was painted with a silver glue and contacted with copper coil before being mounted in a polypropylene tube using chemically resistant epoxy. EIS measurements were carried out with a potentiostat/galvanostat model VSP from Biologic Sciences Instruments on polished samples (used SiC-Paper, grit 1200 and 4000 (Struers)) in an electrolyte composed of 1 M LiClO₄ in water (pH ~ 6.3) with a platinum counter-electrode and a saturated calomel reference electrode (SCE).

Prepration of the CuGaO₂ photocathode.

5

The doctor Blade paste is composed of $CuGaO_2$ nanoparticles ball milled in an adapted mixture of organic ingredients to have a suitable rheology to homogeneously spread $CuGaO_2$ on FTO (Solems 10 Ohm TEC7) (see table S1).

	Component	Quantity
Semiconductor	CuGaO ₂	100 mg
Binder	PEG 300 (Aldrich)	20.5 mg
Rheological agent	Ethylcellulose (Aldrich)	4 mg
Acidifying agent	4-hydrobenzoic acid (Merck)	2 mg
Solvant	2-ethyl-1-hexanol (Aldrich)	750 μL

Table S1. Detailed composition of the paste for doctor blading.

The as-obtained electrodes were then dipped at room temperature for 48 hours into an acetonitrile solution, containing either perylene monoimide (PMI) or perylene monoimide sensitizer connected to a naphtalene diimine electron acceptor (dyad PMI-NDI). The dyed electrodes were thoroughly rinsed with acetonitrile.

Fig. S1. Photoresponse under AM1.5 illumination (1000 W/m²) of solar cells constructed from CuGaO₂ p-SC with dyad PMI-NDI or PMI as sensitizer, and I/I_3^- or Co²⁺/Co³⁺ in PC as redox mediator.

10