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Abstract. We introduce a CUDA GPU library to accelerate evaluations
with homomorphic schemes defined over polynomial rings enabled with a
number of optimizations including algebraic techniques for efficient eval-
uation, memory minimization techniques, memory and thread scheduling
and low level CUDA hand-tuned assembly optimizations to take full ad-
vantage of the mass parallelism and high memory bandwidth GPUs offer.
The arithmetic functions constructed to handle very large polynomial
operands using number-theoretic transform (NTT) and Chinese remain-
der theorem (CRT) based methods are then extended to implement the
primitives of the leveled homomorphic encryption scheme proposed by
López-Alt, Tromer and Vaikuntanathan. To compare the performance
of the proposed CUDA library we implemented two applications: the
Prince block cipher and homomorphic sorting algorithms on two GPU
platforms in single GPU and multiple GPU configurations. We observed
a speedup of 25 times and 51 times over the best previous GPU imple-
mentation for Prince with single and triple GPUs, respectively. Similarly
for homomorphic sorting we obtained 12-41 times speedup depending on
the number and size of the sorted elements.

Keywords: Homomorphic evaluation, GPU acceleration, large polyno-
mial arithmetic.

1 Introduction

Fully homomorphic encryption (FHE) has gained increasing attention from cryp-
tographers ever since its first plausible secure construction was introduced by
Gentry [18] in 2009. FHE allows one to perform arbitrary computation on en-
crypted data without the need of a secret key, hence without knowledge of origi-
nal data. That feature would have invaluable implications for the way we utilize
computing services. For instance, FHE is capable of protecting the privacy of
sensitive data on cloud computing platforms. We have witnessed amazing num-
ber of improvements in fully and somewhat homomorphic encryption schemes
(SWHE) over the past few years [2–4][19][11][20]. In [21] Gentry, Halevi and
Smart (GHS) proposed the first homomorphic evaluation of a complex circuit,
i.e. a full AES block. The implementation makes use of batching [32, 33], key
switching [2] and modulus switching techniques to efficiently evaluate a leveled
circuit. In [28] a leveled NTRU [25][34] based FHE scheme was introduced by



López-Alt, Tromer and Vaikuntanathan (LTV), featuring much slower growth
of noise during homomorphic computation. Later Doröz, Hu and Sunar (DHS)
[12] used an LTV SWHE variant to evaluate AES more efficiently. More re-
cently, Ducas and Micciancio [16] presented an efficient implementation of the
bootstrapping algorithm.

At the same time researchers have also started investigating how to best
put these new homomorphic evaluation tools to use in privatizing applications.
In particular, in [29] Lauter et al. analyzed the problems of evaluating aver-
ages, standard deviations, and logistical regressions which provide basic tools
for a number of real-world applications in the medical, financial, and advertising
domains. Later in [26], Lauter et al. demonstrated the viability of privatized
computation of genomic data. In [15], Doröz et al. used an NTRU based SWHE
scheme to construct a bandwidth efficient private information retrieval scheme.
Bos et al. in [1] showed how to privately perform predictive analysis tasks on en-
crypted medical data. Graepel et al. in [22] showed that it is possible to execute
machine learning algorithms on privatized data. Cheon et al. [7] presented an
implementation to homomorphically evaluate dynamic programming algorithms
such as Hamming distance, edit distance, and the Smith-Waterman algorithm on
encrypted genomic data. Çetin et al. [6] analyzed the complexity and provided
implementation results for homomorphic sorting.

Despite the rapid advances, HE evaluation efficiency remains as one of the
obstacles preventing it from deployment in real-life applications. Given the com-
putation and bandwidth complexity of HE schemes, alternative platforms such
as FPGAs, application-specific integrated circuits (ASIC) and graphics processor
units (GPU) need to be employed. Over the last decade GPUs have evolved to
highly parallel, multi-threaded, many-core processor systems with tremendous
computing power. Compared to FPGA and ASIC platforms, general-purpose
computing on GPUs (GPGPU) yields higher efficiency when normalized by
price. For example, in [13] an NTT conversion costs 0.05 msec on a $5, 000
FPGA, whereas takes only 0.15 msec on a $200 GPU (NVIDIA GTX 770). The
results of [35][9, 10] demonstrate the power of GPU-accelerated HE evaluations.
Another critical advantage of GPUs is the strong memory architecture and high
communication bandwidth. Bandwidth is crucial for HE evaluation due to very
large evaluation keys and ciphertexts. In contrast, FPGAs feature much sim-
pler and more limited memory architectures and unless supplied with a custom
memory I/O interface design the bandwidth suffers greatly.

For CPU platforms Halevi and Shoup published the HElib [23], a C++ library
for HE that is based on Brakerski-Gentry-Vaikuntanathan (BGV) cryptosystem
[2]. More recently, Ducas and Micciancio [16] published FHEW, another CPU
library which features encryption and bootstrapping. In this paper, we propose
cuHE: a GPU-accelerated optimized SWHE library in CUDA/C++. The library
is designed to boost polynomial based HE schemes such as LTV, BGV and DHS.
Our aim is to accelerate homomorphic circuit evaluations of leveled circuits via
CUDA GPUs. To demonstrate the performance gain achieved with cuHE, by



employing the DHS scheme [12], along with many optimizations, to implement
the Prince block cipher and a homomorphic sorting algorithm on integers.

Our Contributions

– The cuHE library offers the feasibility of accelerating polynomial based ho-
momorphic encryption and various circuit evaluations with CUDA GPUs.

– We incorporated various optimizations and design alternative methods to
exploit the memory organization and bandwidth of CUDA GPUs. In par-
ticular, we adapted our parameter selection process to optimally map HE
evaluation keys and precomputed values into the right storage type from
fastest and more frequently used to slowest least accessed. Moreover, we also
utilized OpenMP and CUDA hybrid programming for simultaneous compu-
tation on multiple GPUs.

– We attain the fastest homomorphic block cipher implementation, i.e. Prince
at 51 msec (1 GPU), using the cuHE library which is 25 times faster than
the previously reported fastest implementation [9]. Further, our library is
able to evaluate homomorphic sorting on an integer array of various sizes
12-41 times faster compared to a CPU implementation [6].

2 Background

2.1 The LTV SWHE Scheme

In this section we briefly explain the LTV SWHE [28] with specializations in-
troduced in [12]. We work with polynomials in ring R = Z[x]/(m(x)) where
degm(x) = n. All operations are performed in Rq = R/qR where q is an odd
modulus. Elements of Zq are associated with elements of {−

⌊
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}. A
truncated discrete Gaussian distribution χ is used as an error distribution from
which we can sample random small B-bounded polynomials. The primitives of
the public key encryption scheme are Keygen, Enc, Dec and Eval.

Keygen We generate a decreasing sequence of odd moduli q0 > q1 > · · · > qd−1

where d denotes the circuit depth and a monic polynomial m(x). They define
the ring for each level. m(x) is the product of l monic polynomials each of which
defines a message slot. In [12] more details about batching are explained. Keys
are generated for the 0-th level, and are updated for every other level.

The 0-th level Sample α, β ← χ, and set sk(0) = 2α + 1 and pk(0) =
2β(sk(0))−1 in ring Rq0 = Zq0 [x]/〈m〉 (re-sample if sk(0) is not invertible in
the this ring). Then for τ ∈ Z⌈⌈log q0⌉/w⌉ where w 6 log qd−1 is a preset value,

sample s
(0)
τ , e

(0)
τ ← χ and publish evaluation key {ek

(0)
τ | τ ∈ Z⌈⌈log q0⌉/w⌉} where

ek
(0)
τ = pk(0)s

(0)
τ +2e

(0)
τ +2wτsk(0). The i-th level Compute sk(i) = sk(0) (mod qi)

and pk(i) = pk(0) (mod qi) in ring Rqi = Zqi [x]/〈m〉. Then compute evaluation

key {ek
(i)
τ | τ ∈ Z⌈⌈log qi⌉/w⌉} where ek

(i)
τ = ek

(0)
τ (mod qi).

Enc To encrypt a bit b ∈ {0, 1} with public key (pk(0), q0), sample s, e← χ, and
set c(0) = pk(0)s+ 2e+ b in Rq0 .



Dec To decrypt a ciphertext c(i), multiply the ciphertext with the corresponding
private key sk(i) in Rqi and then compute the message by modulo two: b =
c(i)sk(i) (mod 2).

Eval We perform arithmetic operations directly on ciphertexts. Suppose c
(i)
1 =

Enc(b1) (mod qi) and c
(i)
2 = Enc(b2) (mod qi). The XOR gate is realized by adding

ciphertexts: b1 + b2 = Dec(c
(i)
1 + c

(i)
2 ). The AND gate is realized by multiplying

ciphertexts. However, polynomial multiplication incurs a much greater growth in
the noise. So each multiplication step is followed by relinearization and modulus

switching. First we compute c̃(i) = c
(i)
1 ×c

(i)
2 in Rqi . To obtain c̃(i+1) from c̃(i), we

perform relinearization on c̃(i). We expand it as c̃(i) =
∑⌈⌈log qi⌉/w⌉

τ=0 2τ c̃
(i)
τ where

c̃
(i)
τ takes its coefficients from Z2w . Then set c̃(i+1) =

∑⌈⌈log qi⌉/w⌉
τ=0 ek

(i)
τ c̃

(i)
τ in Rqi .

To obtain c(i+1) in Rqi+1
, we perform modulus switching: c(i+1) =

⌊

qi+1

qi
c(i)

⌉

2

and then we have m1 ×m2 = Dec(c(i+1)).

2.2 Arithmetic Tools

Schönhage-Strassen’s Multiplication Here we very briefly introduce the
polynomial multiplication scheme by Schönhage-Strassen [30]. Given two poly-

nomials f =
∑n−1

k=0 akx
k and g =

∑n−1
k=0 bkx

k, we compute f̂ =
∑2n−1

k=0 âkx
k,

where [â0, â1, . . . , â2n−1] = NTT ([a0, a1, . . . , an−1, 0, . . . , 0]). One multiplication
of two degree n polynomials consists of two 2n-point NTTs, one coefficient-wise
multiplication and one 2n-point inverse transform (INTT):

– Inputs: f =
∑n−1

k=0 akx
k, g =

∑n−1
k=0 bkx

k;

– NTT Conversion: f → f̂ =
∑2n−1

k=0 âkx
k, g → ĝ =

∑2n−1
k=0 b̂kx

k;

– Output: f × g = INTT
(

∑2n−1
k=0 âk b̂kx

k
)

.

CRT We introduce the CRT to handle large integer computation. We generate
t prime numbers {p0, p1, . . . , pt−1} with Bp < 32 bits. We further compute,
for each level, qi = p0p1 · · · pti where 0 < ti < ti−1 < t as in [21]. Then, we

have Rqi
∼= Rp0

× · · · × Rpti
. Given a polynomial f =

∑n−1
k=0 akx

k in ring Rqi ,
we compute a vector of polynomials F = [f(0), f(1), . . . , f(ti−1)] as its CRT

representation: f(j) =
∑n−1

k=0 ak(j)x
k ∈ Rpj

, where ak(j) = ak (mod pj), j ∈ Zti .
For all f, g ∈ Rqi where i ∈ Zd, and F = CRT(f), G = CRT(g), we have
f ◦ g = ICRT(F ◦ G), where F ◦ G = [f(0) ◦ g(0), . . . , f(ti−1) ◦ g(ti−1)]. Given a
polynomial modulus m and M = CRT(m), for all f , we have f (mod m) =
ICRT(F (mod M)). Other than CRT and ICRT, no large integer operation is
needed.

2.3 CRT, NTT

In our implementations, the degree of modulus m is 8192, 16384 or 32768. And
q0 has more than 256, 512 or 1024 bits, respectively. Coefficient independent op-
erations, e.g. polynomial addition, can provide sufficient parallelism for a GPU



realization. Still, two problems remain to be solved: how to compute large in-
tegers on CUDA GPUs; and how to efficiently implement operations that are
not coefficient independent, e.g. polynomial multiplication. Those problems are
handled by using CRT and NTT together.

3 GPU Basics

GPUs are powerful but highly specialized devices that require careful coding to
take full advantage of the massive parallelism offered. Specifically, the program-
ming model and memory organization is much different from in CPUs. Here we
present a concise overview.

3.1 Programming Model

In general, a GPU-accelerated scheme offloads compute-intensive portions of the
application to the GPU, while the remainder of the code still runs on the CPU.
A GPU has its own on-chip memory. We call the CPU and memory “host”, while
GPU and its on-chip memory “device”. A normal GPU computational task in-
cludes 3 operations: copying essential data from host to device (memcpy h2d),
initializing computation (a kernel) on device, copying result from device to host
(memcpy d2h) when necessary. A CUDA kernel is executed by an array of se-
quential threads. All threads run the same code, with an ID to compute memory
addresses and make control decisions. On a GPU with warp size of 32, the ker-
nel is executed in groups of 32 threads. Threads are further grouped into blocks.
Only threads within a block can cooperate or synchronize. A kernel launch de-
fines a grid of thread blocks. The dimension of a grid and that of each block
determine how computing resource is assigned to program. The computation
complexity of a kernel and the amount of data transferred between host and
device depend on the details of an implementation.

3.2 Stream Management

A stream is a sequence of operations that execute in issue-order on the de-
vice. A default stream is created by CUDA on each device when no stream is
specified. On a single stream, any operation will wait until the previous one
completes. However, some operations, e.g. a kernel and a memcpy (without data
dependency), are not necessarily sequential. We create extra streams so that
operations on different streams can run concurrently and be interleaved. This
not only allows a more flexible execution order, but also improves performance.
Figure 1 gives an example of how using multiple streams makes a difference. We
can hide the latency of memcpy behind a kernel execution. Alternatively, we may
further break down one kernel launch into several parts in order to create con-
currency. Every stream belongs to its own device. To have streams on different
devices run concurrently and synchronize as needed is multi-GPU computing.
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Fig. 1: Improving performance by using multiple streams

However, merely using streams to launch tasks on different devices creates ex-
pensive latency. Using OpenMP along with streams is a better solution. The goal
of stream management is to achieve the best possible utilization of computing
resources.

3.3 Memory Management

A significant ingredient to the performance of a program is memory management.
The effect is particularly strong on GPUs since there are many different types
of memory to store data and since the GPU-CPU interface tends to be slow.
The GPU memory architecture is represented in Table 1. Memory types are
listed from top to bottom by access speed from fast to slow. Before executing a
kernel, we need to feed constant memory and global memory with data, and bind
texture memory if needed. Other than using streams to overlap data transfer and
computation, we optimize these data transfers in following methods: minimizing
the amount of data transferred between host and device when possible, batching
many small transfers into one larger transfer, using page-locked (or pinned)
memory to achieve a higher bandwidth. Towards an efficient application, kernels
should be designed to take advantage of the memory hierarchy properties:

– Constant memory is cached and fast. Due to its limited size, e.g. 64 KB, it
is only suitable for repeatedly requested data.

– Global memory is not cached, expensive to access, and huge in size, e.g. 2
GB. Data that is only read once, or is updated by kernels is better allocated
in global memory. The pattern of memory access in kernels also matters.
If each thread in a warp accesses memory contiguously from the same 128

Table 1: GPU memory organization
Memory Cached Access Scope Lifetime

Register N/A R/W One thread Thread
Constant Yes R All thread + host Application
Texture Yes R All thread + host Application
Shared N/A R/W All threads in a block Block
Local No R/W One thread Thread
Global No R/W All thread + host Application



B chunk, it is called coalesced memory access. A non-coalesced (strided)
memory access could make a kernel hundreds of times slower.

– Texture memory is designed for this scenario: a thread is likely to read from
an address near the ones that nearby threads read (non-coalesced). It is
better to use texture memory when the data is updated rarely but read
often, especially when the read access pattern exhibits a spatial locality.

– Shared memory is allocated for all threads in a block. It offers better per-
formance than local or global memory and allows all threads in a block to
communicate. Thus it is often used as a buffer to hold intermediate data, or
to re-order strided global memory accesses to a coalesced pattern. However,
only a limited size of shared memory can be allocated per block. Typically
one configures the number of threads per block according to shared memory
size. The shared memory is accessed by many threads, so that it is divided
into banks. Since each bank can serve only one address per cycle, multiple
simultaneous accesses to a bank result in a bank conflict. If all threads of
a half-warp access a different bank (no bank conflict), the shared memory
may become as fast as the registers.

4 Our Contribution: A CUDA Polynomial Arithmetic

Library

In this section we explain how the basic polynomial arithmetic operations, such
as multiplication, addition and polynomial modular reduction are implemented
efficiently on CUDA GPUs. Our design is optimized for the device NVIDIA
Geforce GTX 680, one of the Kepler architecture GPUs. It has 1536 CUDA
cores, 2 GB memory, 64 KB constant memory, 48 KB shared memory per block,
CUDA Capability 3.0 and warp size of 32. On a device with better specifications,
the program is believed to provide a better performance, yet has room to improve
if configured and customized for the device.

4.1 Overview

Interfacing with NTL. We build our library to interface with the NTL li-
brary by Shoup [31]. Most implementations of polynomial based HE schemes
are built on NTL. We provide an interface to NTL data types, in particular to
the polynomial class ZZX so that GPU acceleration can be achieved with very
little modification to a program. Another reason is that we only support very
limited types of polynomial operations. Therefore, until non performance critical
operations, e.g. a polynomial inversion in a polynomial ring, are implemented
we may still utilize the NTL library.

Polynomial Representation. Suppose we work within the i-th level of a cir-
cuit. To store an n-degree polynomial in Rqi in GPU memory, we use an array
of n ⌈⌈log qi⌉ /32⌉ 32-bit unsigned integers, where every ⌈⌈log qi⌉ /32⌉ integers



Table 2: Polynomial Representation on
a GPU.

Domain Word Type # of Words

RAW
unsigned int

32-bit
n ⌈⌈log qi⌉ /32⌉

CRT
unsigned int

32-bit
nti

NTT
unsigned int

64-bit
nti

RAW

CRTNTT

RAWZZX

MUL
ADD

RELIN

C
R

T
IC

R
T

NTT
INTT

To GPU

GPUCPU

Fig. 2: Four representation domains
for polynomials

denote a polynomial coefficient. We call a polynomial of this form in RAW do-
main. In the background section, we introduced two techniques: CRT and NTT,
which give a polynomial CRT and NTT domain representations. Table 2 lists the
structure and storage size of a polynomial in each domain. Figure 2 illustrates
basic routines of operations on polynomials. Due to mathematical properties,
each domain supports certain operations more efficiently as shown in Figure 2.
In other words, to perform a certain operation, the polynomial should first be
converted to a specific domain unless it is already in the desired domain. As
shown in Table 2, the CRT domain representation requires more space than
the RAW domain. However, having polynomials stay in the CRT domain saves
one CRT conversion in every polynomial operation and one ICRT conversion
in every operations except relinearization. Moreover, the sequence of operations
might also create unnecessary latency if there are conversions that could have
been spared.

4.2 CRT/ICRT

CRT prime numbers are precomputed based on the application settings and
are stored in constant memory. ICRT conversion for a coefficient x is x =
∑ti−1

j=0
qi
pj
· (( qipj

)−1 · x(j) (mod pj)) (mod qi) where qi =
∏ti−1

j=0 pj . To efficiently

compute ICRT, constants: qi, {
qi
pj
} and {( qipj

)−1 (mod pj)}, where j ∈ Zti , are

also precomputed and stored in constant memory. Given the coefficients of a
RAW domain polynomial [a0, . . . ,an−1], the number of 32-bit unsigned inte-
gers we use to represent each coefficient ak ∈ Zqi is |ak| = n ⌈⌈log qi⌉ /32⌉. Its
CRT domain representation is {[a0(j), . . . ,an−1(j)] | j ∈ Zti}. A straightforward
CRT kernel design is to have every thread handle the CRT of one coefficient ak,
as in Figure 3a. However, that exhibits strided global memory access. Instead, we
use shared memory to build a buffer as in Figure 3b. Not only do we reorder all
accesses to global memory as coalesced, but also we avoid bank conflicts when
reading or writing to shared memory. The ICRT kernel operation is designed
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Fig. 3: Using shared memory to avoid strided access to global memory.

similarly. Moreover, we make wide use of registers in ICRT kernel with assembly
code for a better performance.

4.3 NTT/INTT

NTT is performed on a polynomial in Rpj
. We take an array of 2n elements,

A = [a0, . . . , an−1, 0, . . . , 0], which are n coefficients appended with n zeros, as
input. We obtain a new array Â = [â0, . . . , â2n−1] by performing a 2n-point
NTT on A. Given ti CRT prime numbers, to convert a CRT domain polynomial
to NTT domain, we need ti NTTs. We follow the approach of Dai et al. [9]
to build an NTT scheme on GPU. According to FHE scheme settings, we only
support NTTs of 16384, 32768 and 65536 points. Let N = 2n be the size of
NTT. We construct three CUDA kernels to adopt the four-step Cooley-Tukey
algorithm [8]. As shown in Algorithm 1, an N -point NTT is computed with
several smaller size NTTs. What is not shown in Algorithm 1 is that a 64-point
NTT is computed with 8-point NTTs. In [17] the benefit of working in finite field
FP is demonstrated where P = 0xFFFFFFFF00000001. In such a field, modulo
P operations may be computed efficiently. Besides, 8 is a 64-th primitive root
of P . By using 〈8〉 ⊂ FP , 64-point NTTs can be done with shifts rather than
requiring 64-bit by 64-bit multiplications. We build inline device functions for
arithmetic operations in FP in assembly code. In kernels we use shared memory
to store those points. That ensures coalesced global memory accesses and fast
transpose computation. We precompute 2N twiddle factors and bind them to
texture memory since they are constant and are too large for constant memory.
INTT is basically an NTT with extra steps. Given Â = [â0, . . . , â2n−1], we

first re-order the array as Â′ = [â0, â2n−1, â2n−2, . . . , â1]. Then we compute
A = 1

NNTT(Â
′

) (mod pj).

4.4 Polynomial Multiplication

Polynomial multiplication takes NTT domain inputs or first converts inputs to
NTT domain. Algorithm 2 shows the four steps needed to compute a multipli-
cation. The coefficient-wise multiplication DOTMUL has high parallelism, which
is very suitable for GPU computing. Compared to NTTs and INTTs, DOTMUL



Algorithm 1 N -point NTT

1: N samples: 4096 rows (consecutive) by N/4096 columns
2: for N/4096 columns do ⊲ 1st kernel
3: 4096 samples: 64 rows by 64 columns
4: for 64 columns do
5: 64-point NTT
6: end for
7: Transpose
8: Multiply twiddle factors of 4096-point NTT
9: for 64 columns do ⊲ 2nd kernel
10: 64-point NTT
11: end for
12: end for
13: Transpose
14: Multiply twiddle factors of N -point NTT
15: for 4096 columns do ⊲ 3rd kernel
16: N/4096-point NTT
17: end for

Algorithm 2 Polynomial Multiplication

1: Input NTT domain polynomials F̂ and Ĝ
2: Ĥ = F̂ · Ĝ ⊲ coefficient-wise multiplication
3: H ← INTT(Ĥ) ⊲ convert to CRT domain
4: Output H (mod M) ⊲ polynomial modular reduction

is almost negligible in terms of overhead. Since the product is a (2n− 2)-degree
polynomial in CRT domain, it is followed by modular reductions over Rpj

, for
all j ∈ Zt.

4.5 Polynomial Addition

Polynomial addition is essential for two functions in homomorphic circuit eval-
uation. One is in the homomorphic evaluation of an XOR gate which is simply
implemented as a polynomial addition. For this the addition operation is carried
out in the CRT domain. It provides sufficient parallelism for a GPU to process
and also yields a result in the ring Rqi without the need of coefficient modu-
lar reduction. The other computation that needs polynomial addition is in the
accumulation part of relinearization. We will discuss this in detail later.

4.6 Polynomial Barrett Reduction

Polynomial computation is in ring Rqi = Zqi/m, where degm = n. Given a
computation result f with deg f > n, a polynomial reduction modulo m is
needed. In fact, deg f 6 2n− 2 always holds in our construction. We implement
a customized Barrett reduction on polynomials by using our polynomial multi-
plication schemes as in Algorithm 3. We precomputed all constant polynomials



Algorithm 3 Polynomial Barrett Reduction

1: procedure Precomputation(m)
2: u = ⌊x2n−1/m⌋
3: StoreM = CRT(m)
4: Store M̂ = NTT(M)
5: Store Û = NTT(CRT (u))
6: end procedure
7: procedure BarrettReduction(F)
8: Q = trunc(F , n− 1) ⊲ input in CRT domain
9: Q̂ = NTT(Q) ⊲ 1st multiplication
10: Q̂ = Q̂ ∗ Û
11: Q = INTT(Q̂)
12: Q = trunc(Q, n)
13: Q̂ = NTT(Q) ⊲ 2nd multiplication
14: Q̂ = Q̂ ∗ M̂
15: Q = INTT(Q̂)
16: R = F −Q ⊲ subtraction
17: if degR > degM then
18: R = R−M
19: end if
20: Return R ⊲ output in CRT domain
21: end procedure

generated from the modulus, and stored them in the GPU memory as described
in the procedure “Precomputation”. The goal of Barrett reduction is to compute
r = f (mod m). We take the CRT domain polynomial as input and return CRT
domain polynomial as output.

4.7 Supporting HE Operations

To evaluate a leveled circuit, besides operations introduced above, we need other
processes to reduce the introduced noise, e.g. by multiplication. An AND gate is
followed by a relinearization. All ciphertexts are processed with modulus switch-
ing to be ready for next level. In our implementation Keygen is modified for
a faster relinearization and parameters are selected to accommodate our GPU
implementation.

Relinearization. A relinearization computes products of ciphertexts and eval-
uation keys. It then accumulates the products. By operating additions in the
NTT domain we reduce the overhead of INTT in each multiplication. Given

a polynomial c(i) in RAW domain we first expand it to c̃
(i)
τ where τ ∈ Zηi

and ηi = ⌈⌈log qi⌉ /w⌉. We call w the size of relinearization window. Then we

need to compute c̃(i+1) =
∑ηi

τ=0 ek
(i)
τ c̃

(i)
τ in Rqi which is equivalent to com-

puting C̃(i+1) = INTT
(

∑ηi

τ=0 ÊK
(i)

τ
ˆ̃C
(i)
τ

)

. We find a way to precompute and

store evaluation keys for all levels. In Keygen, we convert evaluation keys of
the 0-th level to NTT domain and store them. For every τ ∈ Zη0

compute



Algorithm 4 Modulus Switching

1: A = {a(0), . . . , a(ti−1)} ← CRT(a(i))
2: for k ← 1, do
3: a∗ ← a(ti−k)

4: if a∗ = 1 (mod 2) then
5: if a∗ > (pti−k − 1)/2 then
6: a∗ = a∗ − pti−k

7: else
8: a∗ = a∗ + pti−k

9: end if
10: end if
11: A = (A− a∗)/pti−k (mod pti−k)
12: end for
13: a(i+1) = ICRT(A) = ICRT

(

{a(0), . . . , a(ti+1−1)}
)

ek
(0)
τ

CRT
−−−→ EK(0)

τ
NTT
−−−→ ÊK

(0)

τ . Then {ÊK
(0)

τ | τ ∈ Zη0
} is stored in GPU global

memory. We no longer need to update the evaluation keys for any other level,

observing that ÊK
(i)

τ ⊆ ÊK
(0)

τ , for all i ∈ Zd and τ ∈ Zηi
. Here what matters the

most is the overhead of expanding and converting the ciphertexts. To convert

c̃
(i)
τ to ˆ̃C

(i)
τ for all τ ∈ Zηi

, we need ηi CRTs and ηiti NTTs. However, if we set

w < log pj , then for all j ∈ Zt0 we have c̃
(i)
τ ∈ R2w ⊂ Rpj

, i.e. C̃
(i)
τ = {c̃

(i)
τ }. In

such a setting, we only need ηi NTTs to convert c̃
(i)
τ to the NTT domain.

Based on these optimizations, we build a multiplier and accumulator for
NTT domain polynomials. Suppose we have sufficient memory on GPU to hold

all ÊK
(0)

τ . Only one kernel that uses the shared memory to load all ˆ̃C
(i)
τ will

suffice. We also provide solutions when the evaluation keys are too large for the
GPU memory to hold. On a multi-GPU system, we evenly distribute the keys
on devices. When the keys on another device are requested, copy them from
that device to the current device. This is the best solution for two reasons: the
bandwidth between devices is much larger than that between the device and
host; accesses to memory on another device in a kernel yield roughly 3 times less
overhead, compared to accessing the current device’s memory.

Double-CRT Setting. According to [12], to correctly evaluate a circuit of
depth d and to reach a desired security level, we can determine the lower bounds
of n and log q0, and that δq 6 log qi

qi+1
=

∏ti−1
j=ti

pj where i ∈ Zd. LetBp be the size

of CRT prime numbers, i.e. Bp = log pj . Then we know that 2Bp <
√

P/n < 232.

To simplify, we set ti = d−i−1, Bp > δq. Then we have δq 6 Bp < log
√

P/n.We
select Bp = δq. Then we select the relinearization window size such as w < Bp.
In these settings, we reach the desired security level with minimal computation.

Modulus Switching. In [21] Gentry et al. proposed a method to perform
modulus switching on ciphertexts in CRT domain (double-CRT), by gener-
ating qi = p0p1 · · · pti−1 where i ∈ Zd. Since modulus switching is a coeffi-



Table 3: Precomputation

Item
Memory Size (Bytes)
Type Equation Prince Sorting(8) Sorting(32)

P constant 4d 100 52 60
qi constant 4⌈(d− i)Bp/32⌉ 6 80 6 36 6 44
Q∗

i constant 4(d−i)⌈(d−i−1)Bp/32⌉ 6 1, 900 6 416 6 600

Q†
i

constant 4(d− i) 6 100 6 52 6 60

P−1 constant 2d(d− 1) 1, 200 312 420
M texture 4dn 1, 638, 400 425, 984 491, 520

M̂ texture 16dn 6, 553, 600 1, 703, 936 1, 966, 080

Û texture 16dn 6, 553, 600 1, 703, 936 1, 966, 080

ÊK
(i)

τ
global 16dn⌈dBp/w⌉ 262, 144, 000 28, 966, 912 41, 287, 680

cient independent operation, to simplify, we represent it on a single coefficient.
Given a coefficient a(i) ∈ Zqi where i ∈ Zd, modulus switching is designed
as in Algorithm 4 to obtain a(i+1) ∈ Zqi+1

such that a(i+1) = a(i) (mod 2)

and ǫ = |a(i+1) − qi+1

qi
a(i)| where −1 6 ǫ 6 1 always holds. We precompute

p−1
j (mod pk) for all k ∈ Zt0 \ Ztd−1

and j ∈ Zk. These values are stored as a
lookup table in constant memory.

Precomputation Routine. For a circuit with depth d, we select parameters
with a sequence of constraints: d → n → δq → Bp → w. We generate a set of d
prime numbers with Bp bits P = {p0, . . . , pd−1} as CRT constants. For each level

i ∈ Zd of the circuit we generate ICRT constants: qi =
∏i−1

j=0 pj , Q
∗
i = { qipj

| j ∈

Zi} and Q
†
i = {(

qi
pj
)−1 (mod pj) | j ∈ Zi}. We also generate Modulus Switching

constants for all levels: P−1 = {p−1
j,k = p−1

k (mod pj) | j ∈ Zi \ {0}, k ∈ Zj}. P

and P−1 are stored in GPU constant memory. However, we store Q = {qi | i ∈

Zd}, Q
∗ = {Q∗

i | i ∈ Zd} and Q
† = {Q†

i | i ∈ Zd} in CPU memory at first. We
update ICRT constants for ICRT conversions in a new level by copying qi, Q

∗
i

and Q†
i to GPU constant memory. We generate an n degree monic polynomial m

as polynomial modulus and compute u = x2n−1/m ∈ Rq0 for Barrett reduction.

Their CRT and NTT domain representations M, M̂ and Û are computed and
bound to GPU texture memory. Table 3 is a summary of precomputed data,
showing storage memory types and sizes. Besides general expressions of size in
bytes, we also list the memory usage of three target circuits: Prince stands for
the Prince block cipher that has [d = 25, n = 16384, Bp = 25, w = 16].
Sorting(8) is a sorting circuit of 8 unsigned 32-bit integers, with parameters set
to [13, 8192, 20, 16]. Similarly, Sorting(32) sorts 32 unsigned integers and has
parameters [15, 8192, 22, 16].

Keygen As explained in background, for all levels, we generate secret keys sk(i)

and public keys pk(i). Based on those, we compute ekτ (i) as evaluation keys.
We then convert and store their NTT domain representations ÊKτ (i) in GPU
memory.



Table 4: Testing Environment
Item Specification Item Specification

CPU Intel Core i7-3770K GPU NVIDIA GeForce GTX690
# of Cores 4 # of Cores 1536× 2
# of Threads 8 GPU Core Freq. 1020 MHz
CPU Freq. 3.50 GHz GPU Memory 2 GB× 2
Cache 8 MB GPU NVIDIA GeForce GTX770
System Memory 32 GB DDR3 # of Cores 1536
NTL 9.2.0 GPU Core Freq. 1163 MHz
GMP 6.0.0a GPU Memory 2 GB

Table 5: Performance of Basic Operations on Polynomials (d, n, dBp) where
Bp = 24

Functions
Latency (ms)

(15, 8192, 360) (25, 16384, 600) (40, 32768, 960)

CRT / ICRT 0.70 / 0.54 4.00 / 3.73 21.31 / 17.94
NTT / INTT 0.84 / 0.98 1.78 / 2.09 6.24 / 6.86
MULADD 0.06 0.11 0.19
BARRETT 5.10 10.00 32.63

ADD 0.10 0.67 0.92

5 Implementation Results

We implemented the proposed algorithms on two target GPU platforms: NVIDIA
GeForce GTX770 and GTX690. Note that the GTX690 consists of two GTX680
GPUs. We programmed the GTX690 in both single GPU, i.e. GTX 680, and in
multi-GPU modes. The testing environment is summarized in Table 4. We show
performance of our library and compare it to CPU implementations using the
NTL library (v9.2.0) which is adopted by DHS-HE [12] and HELib [24].

5.1 Performance of GPU Library Primitives

Table 5 shows the latency of the basic polynomial operations. MULADD stands
for the multiplier and accumulator for NTT domain polynomials. ADD denotes
polynomial addition in CRT domain. The latencies in the table of NTT con-
versions, whose speed is solely affected by n, consist of d iterations. Figure 4a
shows the performance of relinearization. Doröz et al. [12] use the NTL library
with an optimized polynomial reduction method. As shown in Figure 4b, the
speedup is at least 20 times, and increases as the coefficient size increases, up to
160 times for 960 bit coefficients. Note that Dai et al. [9] did not fully implement
relinearization on the GPU but rather relies on NTL/CPU for coefficient and
polynomial reduction. For instance, for Prince parameters with coefficient size
of 575 bits, our relinearization takes only 18.3 msec whereas Dai et al.’s takes
890 msec on GPU plus an additional 363 msec for reduction on the CPU. This
yields a speedup of 68 times.



(a) (b)

Fig. 4: Performance of relinearization (a) latency with growing coefficient size
(b) speedup over [12]

5.2 Performance of Sample Algorithms

To demonstrate the performance gain obtained by the cuHE library we im-
plemented the Prince block cipher, and homomorphic sorting algorithms with
array sizes 4, 8, 16, 32. The homomorphic evaluation performance is summarized
in Table 6. We updated and reran Doröz et al.’s homomorphic Prince [14] with a
16-bit relinearization window. With cuHE library, we achieve 40 times speedup
on a single GPU, 135 times on three GPUs simultaneously, over the Doröz et al.
CPU implementation. Also compared to Dai et al.’s [9] the speedup is 25 times
on the same GPU device.

Finally we would like to note that the proposed Prince implementation is
the fastest homomorphic block cipher implementation currently available. For
instance, Lepoint and Naehrig evaluated homomorphic SIMON-64/128 in 2.04
sec with 4 cores on Intel Core i7-2600 at 3.4 GHz [27] for the n = 32, 768 setting.
Our homomorphic Prince is 40 times faster for n = 16, 384, and 20 times for
n = 32, 768.

Table 6: Performance of Implemented Algorithms (“1/1024” means this is an
amortized performance achieved by computing 1024 operands simultaneously,
so does “1/630”; “×” marks the speedup achieved)

Platform
Prince Sorting 8 Sorting 16 Sorting 32

1/1024 × 1/630 × 1/630 × 1/630 ×

CPU (1-bit) [14] 3.3 sec 1 n/a n/a n/a n/a n/a n/a
GTX 680 (1-bit) [9] 1.28 sec 2.6 n/a n/a n/a n/a n/a n/a
CPU (16-bit) [14, 5] 1.98 sec 1.7 944 ms 1 4.28 sec 1 18.60 sec 1

GTX 680 (1 GPU) 51 ms 64 62 ms 15 291 ms 15 1.52 sec 12
GTX 770 (1 GPU) 45 ms 72 55 ms 17 256 ms 17 1.35 sec 14
GTX 690 (2 GPUs) 32 ms 103 34 ms 27 162 ms 26 864 ms 22
GTX 690/770 (3 GPUs) 24 ms 134 23 ms 41 108 ms 39 678 ms 27



Acknowledgment

Funding for this research was in part provided by the US National Science Foun-
dation CNS Award #1319130.

References

1. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted med-
ical data. Journal of biomedical informatics 50, 234–243 (2014)

2. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference. pp. 309–325. ACM (2012)

3. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) Advances in Cryp-
tology CRYPTO 2011, Lecture Notes in Computer Science, vol. 6841, pp. 505–524.
Springer Berlin Heidelberg (2011)

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM Journal on Computing 43(2), 831–871 (2014)
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34. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over
ideal lattices. In: Paterson, K.G. (ed.) Advances in Cryptology EUROCRYPT
2011, Lecture Notes in Computer Science, vol. 6632, pp. 27–47. Springer Berlin
Heidelberg (2011)

35. Wang, W., Hu, Y., Chen, L., Huang, X., Sunar, B.: Accelerating fully homomorphic
encryption using GPU. In: High Performance Extreme Computing (HPEC), 2012
IEEE Conference on. pp. 1–5 (2012)


