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Graphical abstract 

 

 

A novel TiO2/CuInS2 hybrid is synthesized by an in-situ hydrothermal approach, with the 

TiO2 naonfibers coated by few-layer CuInS2 nanoplates. A direct Z-scheme heterojunction is 

generated between TiO2 and CuInS2 which results in superior photocatalytic activity for CO2 

reduction under irradiation.   

 

Highlights 

 

1. In-situ deposition of CuInS2 nanoplates onto TiO2 nanofibers.  

2. Direct Z-scheme TiO2/CuInS2 heterostructure was generated. 

3. The prepared photocatalyst with enhanced photocatalytic CO2 reduction activity. 

4. The photocatalytic mechanism investigated by XPS and DFT calculation. 

 

Abstract  

Photocatalytic CO2 reduction into solar fuels over photocatalysts has theoretically and 
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practically become a hot research topic. Herein, we fabricated a novel hybrid TiO2 nanofiber 

coated by CuInS2 nanoplates through a hydrothermal method. The materials were 

characterized by X-ray diffraction, electron microscopes, UV-vis absorption spectra, nitrogen 

sorption, X-ray photoelectron spectroscopy and electrochemical impudence spectroscopy. 

The resulting TiO2/CuInS2 hybrid nanofibers exhibit superior photocatalytic activity for CO2 

reduction under irradiation, due to the generation of direct Z-scheme heterojunction between 

TiO2 and CuInS2. This work may provide an alternate methodology to design and fabricate 

multicomponent TiO2-based photocatalyst for high-efficiency CO2 photoreduction. 

 

Keywords: TiO2 nanofiber, CuInS2 nanoplates, direct Z-scheme heterojunction, photocatalytic 

CO2 reduction  

 

1. Introduction 

Photocatalytic CO2 reduction over well-designed catalysts has been considered an emerging 

way for recycling CO2 back to renewable fuels, e.g., CH4 and CH3OH with the aid of solar 

energy, which is regarded as one of the most promising strategies to overcome the energy and 

environmental crises [1-7]. For example, metal-organic frameworks (MOF), a type of 

micro-mesoporous hybrid materials, are recently emerging as a new category of materials for 

CO2 photo-reduction due to their special structural characteristics and remarkable adsorption 

capability for CO2 [8-10]. Besides, TiO2 as a typical semiconductor photocatalyst, has been 

frequently studied for CO2 reduction due to its high stability, nontoxicity and abundant 
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availability [11-14]. However, TiO2 can only absorb UV-light because of its large band gap 

[15, 16]. Moreover, it shows a fast recombination of the photogenerated electron-hole pairs, 

which leads to low photocatalytic performance [17-19]. Several approaches have been 

explored to improve the photocatalytic activities of TiO2, including noble metal deposition 

(e.g. Pt, Au, Pd, Ag) [20-24], nonmetal doping (e.g. N, C) [25-28], surface sensitization [29, 

30], coupling with narrow-bandgap semiconductors (e.g. CdS, g-C3N4, Cu2O) [31-36] and so 

on. Among these, hybridizing TiO2 with other semiconductors is believed to be an effective 

method to broaden the light absorption and meanwhile improve the separation and extraction 

of the photogenerated carriers.  

Differing from TiO2, CuInS2 has a narrow direct band gap of 1.50 eV, close to the optimal 

band gap (1.45 eV) for solar light harvesting [37-39], and meanwhile shows an ultrahigh 

absorption coefficient (1×105 cm–1). Besides, CuInS2 shows a pronounced defect tolerance 

and exceptional radiation hardness as compared to other semiconductors [40-42]. CuInS2 

does not contain any toxic heavy metals and has been investigated for photovoltaics [43], 

bioimaging [44], and photocatalytic water splitting [45]. For instance, Kudo and coworkers 

have prepared a ZnS-CuInS2-AgInS2 ternary solid solution which exhibited 7.4% quantum 

yield of hydrogen production under 520 nm irradiation [45]. In addition, CuInS2 has been 

combined with other semiconductors to make composite photocatalysts, such as 

MoS2/CuInS2 [46], g-C3N4/CuInS2 [47], Bi2WO6/CuInS2 [48] and ZnO/CuInS2 [49, 50], for 

enhanced H2 generation from water splitting or organic pollutants degradation. In these cases, 

CuInS2 was presented as nanosheets or quantum dots. It is also reported that CuInS2 thin 

films can function as cathodes for photoelectrochemical reduction of CO2 [51]. However, 
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CuInS2 involved photocatalysts for direct CO2 reduction have been rarely demonstrated and 

more efforts are required to improve the solar driven CO2-to-fuel conversion efficiency.  

Herein, we report the facile synthesis of TiO2 nanofibers sensitized with CuInS2 nanoplates 

through an in-situ hydrothermal process. The obtained TiO2/CuInS2 hybrid nanofibers show 

increased optical absorption and enhanced charge separation, and thus improved 

photocatalytic CO2 reduction was achieved. Based on the experimental data and DFT 

calculation, we propose a direct Z-scheme heterojunction formed between the TiO2 nanofiber 

and the CuInS2 nanoplates.  

2. Experimental details 

2.1. Materials and synthesis of electrospun TiO2 nanofibers 

Poly(vinyl pyrrolidone) with an average molecular weight of 1300000 was purchased from 

Tianjin Bodi Chemical Co., Ltd. The other chemicals were of analytical grade and purchased 

from Shanghai Chemical Company. Electrospun TiO2 nanofibers were prepared according to 

our previous work [11]. Typically, 2.0 g of Tetrabutyl titanate (TBT) and 0.75 g of PVP were 

dissolved in the solvent containing 10.0 g of ethanol and 2.0 g of acetic acid. The mixture 

became a transparent light yellow solution after magnetically stirring for 5 h at room 

temperature. The solution was then poured into a 10 mL syringe in the electrospinning setup. 

The steel needle had a distance of 10 cm and a voltage of 15 kV with respect to the static 

collector. And the solution feeding rate is maintained at 2.5 mL·h–1. The collected electrospun 

samples (TiO2 precursors) were calcinated at 550 °C in air for 2 h with a ramping rate of 

2 °C·min–1.  

2.2. Preparation of TiO2/CuInS2 heterostructures 
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TiO2 nanofibers were first chemically etched to increase surface roughness. Briefly, TiO2 

nanofiber was immersed in a concentrated NaOH solution (10 M) at 160 °C for 15 min, and 

washed with dilute HCl solution and water for several times. As-etched TiO2 fibers were then 

annealed at 450 °C in air for 1 h with a ramping rate of 2 °C min–1. The rough TiO2 

nanofibers are labeled as T.  

TiO2/CuInS2 heterostructures were synthesized through a hydrothermal method. Typically, 

a transparent solution was formed by mixing 0.0125 mmol Cu(NO3)2 (the mass ratio of 

CuInS2 was 1 wt. %), 0.0125 mmol In(NO3)2 and 0.025 mmol L-cysteine hydrochloride with 

80 mL deionized water. Then 0.1 g TiO2 nanofibers were added to the above solution under 

vigorous stirring. The obtained suspension was transferred to a Teflon cup of 100 mL inner 

volume in a stainless steel-lined autoclave. The autoclave was maintained at 160 °C for 12 h 

and then was allowed to cool to room temperature. The solid product was washed with 

deionized water and ethanol several times and dried at 80 °C for 4 h to obtain TiO2/CuInS2 

heterostructures. For comparison, TiO2/CuInS2 samples with various mass ratios of CuInS2 

were synthesized by varying the amount of Cu(NO3)2 from 0.03, 0.06 to 0.12 mmol while 

fixing the molar ratio of Cu(NO3)2 : In(NO3)2 : L-cysteine hydrochloride at 1:1:2. The 

nominal mass ratios of CuInS2 were 2.5 wt.%, 5 wt.% and 10 wt.%, respectively. These 

TiO2/CuInS2 samples were labeled as TCx (x = 1, 2.5, 5, 10). The actual compositions of the 

samples were determined by inductively coupled plasma atomic emission spectrometry 

(ICP-AES) by using a Prodigy 7 spectrometer (see Table 1) 

2.3. Characterization 

The X-ray diffraction (XRD) patterns were recorded on a D/Max-RB X-ray diffractometer 
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(Rigaku, Japan) with Cu Kα radiation (λ = 0.15418 nm) with a scan rate (2) of 0.05 °·s–1. 

The morphology was observed on a JSM 7500F field emission scanning electron microscope 

(FESEM). Transmission electron microscopy (TEM) images and energy dispersive X-ray 

(EDX) spectrometer were recorded on a Titan G2 60-300 electron microscope. Nitrogen 

adsorption-desorption data were recorded on a Micromeritics ASAP 3020 nitrogen adsorption 

apparatus (USA) at 77 K. Prior to measurements, the samples were degassed at 150 °C for 12 

h. The specific surface areas (SBET) calculated by the Brunauer-Emmett-Teller (BET) method 

using adsorption data in a relative pressure range from 0.05 to 0.3. The total pore volumes 

were estimated from nitrogen adsorption volume adsorbed at the relative pressure of 0.97. 

The pore size distributions were calculated from desorption data of isotherms using the 

Barret-Joyner-Halender (BJH) method. UV-visible diffuse reflectance spectra of samples 

were recorded on a Shimadzu UV-2600 UV-visible spectrophotometer (Japan) using BaSO4 

as a reference. X-ray photoelectron spectroscopy (XPS) measurements were conducted on a 

Thermo ESCALAB 250Xi instrument with Al Kα X-ray radiation. The binding energy was 

calibrated with reference to C 1s signal (284.8 eV). 

2.4. Photoelectrochemical measurements 

The photoelectrochemical measurements were conducted in 0.5 M Na2SO4 aqueous solution 

on a CHI660C electrochemical workstation (Shanghai CH Instruments), with a 3W LED 

lamp (365 nm) as the light source. A Pt wire and saturated Ag/AgCl electrode were used as 

counter and reference electrodes, respectively. For preparing the working electrode, 80 mg of 

the photocatalysts (T, TC1, TC2.5, TC5 and TC10) were ground with 1.0 mL ethanol to form 

a slurry. The slurry was blade-coated onto a 2 cm × 1.5 cm F-doped SnO2-coated (FTO) glass 
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with an active area of 1 cm2, followed by drying at 100 °C for 1 h. All the electrodes used had 

a similar thickness. The EIS measurements was carried out by applying the bias of the open 

circuit potential and recorded over a frequency range of 0.01-105 Hz with an ac amplitude of 

10 mV. 

2.5. Analysis of hydroxyl radicals (·OH) 

A terephthalic acid (TA) fluorescence probe method was used to quantitatively analyze the 

production of ·OH. Typically, 0.1 g of photocatalyst was dispersed in a 20 mL solution 

containing 0.5 mM TA and 5 mM NaOH. The suspension was placed in a 

dish with a diameter of 9 cm. A 350 W Xe arc lamp (Zhenjian Silver Jewelry Chemical, 

China) was positioned 25 cm above the dish. The light intensity on the solution was measured 

to be 2.0 mW cm–2 with a UV radiometer with the peak intensity of 365 nm (model: UV-A, 

Photoelectric Instrument Factory of Beijing Normal University). TA easily reacts with ·OH 

and produces a highly fluorescent 2-hydroxyterephthalic acid (TAOH). The amount of ·OH 

was determined by measured the concentration of TAOH (fluorescence peak at 425 nm with 

an excitation wavelength of 315 nm) using a Hitachi F-7000 fluorescence spectrophotometer 

after centrifugation.  

2.6. Photocatalytic reduction of CO2 

The photocatalytic reduction of CO2 was carried out in a 200 mL home-made Pyrex reactor 

with two openings. A 350 W simulated solar Xe arc lamp was used as the light source and 

positioned 10 cm above the reactor. A suspension was firstly placed in the reactor by 

ultrasonically mixing 50 mg of the catalyst and 10 mL of deionized water. After drying at 

80 °C for 2 h, the catalyst formed a uniform film coating on the bottom of the reactor. Prior to 
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irradiation, the reactor was purged with nitrogen for 30 min to ensure an anaerobic 

circumstance. CO2 together with H2O vapor was in-situ produced through the reaction of 

NaHCO3 (0.12 g, introduced into the reactor before seal) and the injected H2SO4 solution 

(0.25 mL, 2 M). The product (1 mL) was automatically collected at given intervals (1 h) and 

analyzed using a Shimadzu GC-2014C gas chromatograph (Japan) equipped with an FID 

detector and a methanizer. Blank experiments in the absence of CO2 or light irradiation 

confirmed the CO2 and light were the key factors for the CO2 reduction. Control experiment 

was also performed to determine whether the carbon resource came from CO2.  

13CO2 isotope tracer experiment was conducted to verify the carbon source of the products 

by using 13C isotope-labelled sodium bicarbonate (NaH13CO3, Cambridge Isotope 

Laboratories Inc., USA) and H2SO4 aqueous solution for the photocatalytic examinations. 

After 1 h of photocatalytic reaction, 500 μL of mixed gas was taken out from the reactor and 

examined by a gas chromatography-mass spectrometer (GC-MS) (6980N network GC 

system-5975 inert mass selective detector, Agilent technologies, USA) to analyze the 

products. 

2.7. Computational details 

The density functional theory (DFT) calculations were performed by using the Cambridge 

Serial Total Energy Package (CASTEP). Generalized gradient approximation (GGA) with the 

Perdew-Burke-Ernzerhof (PBE) functional was utilized to describe the exchange-correlation 

interaction. The energy cutoff and Monkhorst-Pack k-point mesh were set to as 440 eV and 7 

× 7 × 1, respectively. During the geometry optimization, the convergence tolerance was set as 

1.0 × 10–5 eV/atom for energy and 0.03 eV/Å for maximum force. For the construction of 
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surface models, a vacuum of 20 Å was used to eliminate interactions between periodic 

images. The geometric structures of TiO2 (101) surface and CuInS2 (004) surface are 

illustrated in Figure 1. The work function is defined as Φ = EV – EF, where EV and EF are the 

electrostatic potentials of the vacuum and Fermi levels, respectively. 

 

Figure 1. Geometric structure of (a) TiO2 (101) surface and (b) CuInS2 (004) surface. The 

grey, red, orange, brown and yellow spheres stand for Ti, O, Cu, In and S atoms, respectively. 

3. Results and discussion 

3.1 Crystalline phase and morphology of materials 

Figure 2 shows the XRD patterns of the resultant samples with various loadings of CuInS2. 

For the original TiO2 nanofibers, the diffraction peaks can be assigned to anatase TiO2 

(JCPDS file No. 21-1272) or rutile TiO2 (JCPDS file No. 21-1276). No other diffraction 

peaks were observed for TC1 and TC2.5 because of the quite low loading of CuInS2. In 

contrast, TC5 and TC10 which had higher loadings of CuInS2 show a new diffraction peak at 

around 32.1°, which correspond to the (004) plane of tetragonal CuInS2 (JCPDS file 

No.85-1575). The results confirm the formation of CuInS2 by hydrothermal deposition, which 
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can be further verified by TEM observation below.  

 

Figure 2. XRD patterns of the samples: (a) T, (b) TC1, (c) TC2.5, (d) TC5 and (e) TC10. 

The morphologies of the resultant samples were investigated by SEM and TEM. The SEM 

image of the pristine TiO2 before and after NaOH etching was shown in Figure 3a and b, 

illustrating nanofibers with diameters around 150 nm and lengths of tens of micrometers. 

After the hydrothermal growth, CuInS2
 nanoplates were deposited onto the TiO2 nanofibers, 

as shown in Figure 3c and d. The very thin CuInS2 nanoplates had high surface area and more 

active sites can be exposed, which will be highly favourable for the photocatalytic reactions. 

The microstructure of the TiO2/CuInS2 hybrid can be further revealed by TEM image (Figure 

3e), showing a TiO2 nanofiber coated by CuInS2 nanoplates with thickness of ca. 10 nm.  
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Figure 3. SEM images of (a-b) T and (c-d) TC2.5. TEM image (e) and HRTEM image (f) of 

TC2.5. EDX element mappings of (g) Ti, O, Cu, In and S elements for TC2.5.  

The crystalline phase of the hybrid material was also examined by high-resolution TEM 

(HRTEM). As shown in Figure 3f, the lattice fringes with a spacing of 0.352 and 0.324 nm 

corresponded to the (101) plane of anatase TiO2 and (110) plane of rutile TiO2, respectively. 

In addition, lattice fringes with a spacing of 0.279 nm were also observed, which was 

attributed to the (004) plane of CuInS2. The HRTEM analysis further confirmed the 
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generation of CuInS2 over the TiO2 nanofibers, agreeing with the XRD results as above. The 

EDX mapping (Figure 3g) of the nanofiber indicates the co-existence of Ti, O, Cu, In and S 

elements, resulting from the heterostructured TiO2/CuInS2 composite.  

3.2 UV-vis absorption and nitrogen sorption 

UV-vis diffuse reflectance spectra were measured to study the optical absorption properties of 

the samples, as shown in Figure 4. As expected, the pristine TiO2 sample can only absorb UV 

light (wavelength below 400 nm). After deposition of CuInS2, the hybrid nanofibers show 

enhanced visible-light absorption with the increased loading of CuInS2, resulting from the 

low bandgap and strong absorption capability of the CuInS2 nanoplates. The significantly 

improved optical absorption of the hybrid can potentially result in higher photocatalytic 

activity for CO2 reduction, as described below.  

 

Figure 4. Diffuse reflectance spectra of the samples. 

Figure 5 shows the nitrogen adsorption-desorption isotherms and the corresponding pore 

size distribution curves (inset) for T, TC1, TC2.5, TC5 and TC10. All the isotherms can be 

identified as type IV according to the BDDT (Brunauer, Deming, Deming and Teller) 

classification and having H3-type hysteresis loops at P/P0 between 0.45 and 0.9, indicating 
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the presence of narrow slit-shaped mesopores that may originate from the random distribution 

of CuInS2 nanoplates on the TiO2 nanofibers [52]. The inset of Figure 5 shows the 

corresponding pore size distributions of the samples calculated according to the desorption 

isotherms. All the samples show mesoporous structures with the pore size increasing from 

~10 nm to ~20 nm after the coating of to the CuInS2 nanoplates. Table 1 summarizes the 

specific surface areas (SBET), pore volumes and pore sizes of the samples. The SBET of the 

samples shows a volcano shape and reaches the maximum value of 102 m2·g–1 for TC2.5, as 

the loading of CuInS2 was increased.  

 

Figure 5. Left: nitrogen adsorption-desorption isotherms (inset: pore size distributions) of the 

samples. Right (Table 1): specific surface area (SBET), pore volume (PV) and average pore 

size (APS) derived from the isotherms. 
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Figure 6. (a) XPS survey spectra of T and TC2.5. XPS spectra of (b) Ti 2p and (c) O 1s of T 

and TC2.5. XPS spectra of (d) Cu 2p, (e) In 3d and (f) S 2p of CuInS2 and TC2.5. 

  The surface composition and chemical states of the resultant samples were investigated by 

XPS. The survey XPS spectrum (Figure 6a) shows the presence of Cu and In elements for 

TC2.5, in addition to Ti and O, confirming the generation of CuInS2. Figure 6b shows the 

high-resolution Ti 2p spectrum with two symmetrical peaks corresponding to Ti 2p3/2 at 458.8 

eV and Ti 2p1/2 at 464.5 eV, respectively. The O 1s XPS spectra of both samples (Figure 6c) 

can be deconvoluted to lattice oxygen (529.8 eV) in TiO2 and –OH species (531.6 eV). Note 

that the binding energies of both Ti 2p and O 1s for TC2.5 shifted by 0.5 eV to lower values 

as compared to T, suggesting the presence of electron transfer from CuInS2 to TiO2 after 

hybridization, which will build an internal electric field at the interface of the hybrid. The 

directed electron transfer between the two components of the hybrid can be further verified 
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by the DFT calculation shown below. The electron transfer and the associated electric field 

would play a role in the heterojunction formation and hence affect the photocatalytic 

activities for CO2 reduction.  

The Cu 2p XPS spectrum of TC2.5 shown in Figure 6d contained two signals at 932.0 

and 951.5 eV, corresponding to Cu 2p3/2 and Cu 2p1/2, respectively. The two strong 

photoelectron signals at 444.8 and 452.3 eV in the In 3d XPS spectrum (Figure 6e) of TC2.5 

were assigned to In 3d5/2 and In 3d3/2, respectively. For comparison, the XPS of pure CuInS2 

were also measured and shown in Figure 6d-f. The binding energies of Cu and In for TC2.5 

showed clear shift to higher values compared to those of CuInS2, implying the electron 

transfer from CuInS2 to TiO2, which agree with the above analysis and suggest the formation 

of bulid-in electric field and direct Z-scheme heterojunction between them, as detailed below. 

Figure 6f shows the XPS signal of sulfur, which can be assigned to the presence of S2- and 

SO3
2- species. Apparently, S2- derived from the formation of CuInS2, and SO3

2- may be 

generated during the disproportionation of L-cysteine hydrochloride. The results further 

prove the existence of CuInS2 in TC2.5, which are in good agreement with the XRD and 

HRTEM analyses. 

3.4 Photocatalytic CO2 reduction and in-situ DRIFTS measurement 

For the photocatalytic CO2 reduction tests, control experiments were first conducted in the 

absence of photocatalysts, carbon source, irradiation or H2O (N2 was used as the reference 

gas). We found that hydrocarbons were produced only in the presence of the photocatalysts, 

irradiation, H2O and CO2, which verified that the hydrocarbons resulted exclusively from the 

photoreduction of CO2. Here, CO2 can be reduced to CH4 and CH3OH upon the as-prepared 
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materials under Xe lamp irradiation. Figure 7a shows the yields of CH4 and CH3OH after 1 h 

of irradiation over the samples. It can be seen that the hydrocarbon yield increased with the 

loading of CuInS2 and reached a maximum value over TC2.5, with the production rate of 2.5 

mol h–1 g–1 for CH4 and 0.86 mol h–1 g–1 for CH3OH. We consider the improvements 

resulted from the enhanced light absorption, increased surface area and possible improved 

charge separation and extraction after the growth of CuInS2. We note that the generation rate 

of CH4 by TC2.5 almost doubled the generation rate by T, while the yield of CH3OH only 

showed a minor increase. Further rising of the CuInS2 amount would result in a decrease of 

photocatalytic efficiency (sample TC5 and TC10).  

  We note that the product (CH4 and CH3OH) distribution of CO2 reduction over 

TiO2/CuInS2 varied with the loading amount of CuInS2. From the thermodynamic point of 

view, the reduction potential of CO2 → CH4 (-0.24 V vs. NHE, pH7) is more positive than 

that of CO2 → CH3OH4 (-0.38 V vs. NHE, pH7). We speculate that with increasing amount 

of CuInS2, more electrons can be generated and/or transferred to react with CO2 molecules. 

Meanwhile, since the CO2 → CH4 is energetically more favourable than CO2 → CH3OH4 as 

mentioned above, the CH4 generation rate was improved with the loading of CuInS2, and 

meanwhile the generation rate of CH3OH remained unchanged. 
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Figure 7. (a) Photocatalytic activities of the CO2 reduction over different photocatalysts. (b)  

The GC-MS patterns of the produced CH4 over TC2.5 using 12CO2 and 13CO2 as the carbon 

source, respectively. (c) The long-term photocatalytic activities of TC2.5 for CO2 reduction. 

  Further, to verify the real carbon source of the photocatalytic products, isotope tracer 

experiment involving photo-reduction of 13CO2 (12CO2 was also tested as a reference) was 

conducted and examined by GC-MS. As shown in Figure 7b, a strong peak assigned to 13CH4 

(m/z = 17) was clearly observed when using 13CO2 as the carbon source, while the 

corresponding peak using 12CO2 as the carbon source was much weaker. These results 

confirmed that the detected products over the as-prepared photocatalyst originated from the 

CO2 source gas rather than any residual/contaminant carbon species. 

Table 2. Photocatalytic CO2 reduction performances of various TiO2-based photocatalysts. 

Photocatalyst Reductant Light Product 
Yield 

 (mol g-1 h-1 ) 
Ref. 

2.5 % CuInS2/TiO2 H2O vapor 350 W Xe lamp CH4 2.5 This work 

   
CH3OH 0.86 

 
CuIn2S4-0.33/TiO2 H2O vapor 300 W Xe lamp CH4 1.135 [53] 

Pt/TiO2 H2O vapor 300 W Xe lamp CH4 4.8 [54] 

   
CO 0.1 

 
1.5 % Ag/TiO2 H2O vapor 300 W Xe lamp CH4 1.4 [55] 

Pt-Cu2O/TiO2 H2O vapor 300 W Xe lamp CH4 1.42 [56] 

   
CO 0.05 
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Ag-Mn-N/TiO2 H2O vapor 300 W Xe arc lamp CH3OH 0.53 [26] 

5 wt.% GO/TiO2 H2O vapor 500 W Xe arc lamp CH4 0.5 [17] 

   
CO 1.86 

 

   
C2H6 0.05 

 

   
C2H4 0.51 

 
A/R-TiO2 H2O vapor 100 W Xe lamp CH4 1.13 [57] 

TiO2 flakes H2O liquid 300 W Hg lamp Formate 1.9 [58] 

Table 2 shows the photocatalytic CO2 reduction performance of various TiO2-based 

photocatalysts. It can be found that the TiO2/CuInS2 hybrid exhibits higher or comparable 

photocatalytic CO2 conversion activities compared with most of the recently reported 

TiO2-based photocatalysts. There are few materials showing higher CO2 reduction efficiency, 

nevertheless, these photocatalysts were modified with noble metals such as Pt and Ag, which 

increased the cost and limited the large-scale usage. Further, the long-term stability of the 

TiO2/CuInS2 hybrid was checked and we found that the photocatalytic CO2 reduction rate 

was largely remained after 12 hours illumination (Figure 7c). Therefore, the easily-prepared, 

noble-metal-free cocatalyst of CuInS2 can still be of great interest for achieving 

high-efficiency CO2 reduction. 

Further, we conducted in-situ DRIFTS measurement to explore the CO2 photoreduction 

mechanism over TC2.5. As shown in Figure 8, no absorption bands can be found in the 

absence of CO2 and H2O (Figure 8a) in the dark. When CO2 and water vapor were 

introduced into the reactor for 20 minutes in the dark, the molecules can be adsorbed onto 

TC2.5, evidenced by the presence of the monodentate bicarbonate species at 1650 cm–1 

(νas(CO3)) and 1420 cm–1 (νs(CO3)) as well as bidentate bicarbonate species at 1515 cm–1 

(νas(CO3)) and 1395 cm–1 (νs(CO3)) [59-61] (Figure 8b). The absorption spectra showed no 

changes when the exposure time was further increased to 40 and 60 minutes (Figure 8c-d) 
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without illumination. Under the photoirradiation, the intensities of monodentate and 

bidentate bicarbonate species increase with irradiation time (Figure 8e-g) due to the large 

thermodynamic tendency for the conversion of CO2 to CO3
2-. Meanwhile, some new 

absorption bands appear at 1540 and 1340 cm–1, which are attributed to νas(CO2) and 

νs(CO2) of bidentate formic acid species [59]. The absorption bands located at 1456 and 

1365 cm–1 are assigned to νas(COO) and νs(COO) of absorbed formic acid species [60]. The 

bands at 1699 and 1740 cm–1 can be ascribed to νas(CO) of absorbed formate and formic 

acid species, respectively [61]. It can be concluded that formate and formic acid were 

generated as the intermediates on the surface of TiO2/CuInS2 nanohybrids during the CO2 

reduction. 

 

Figure 8. In-situ DRIFTS spectra of TC2.5 under the flow CO2/H2O: (a) in the absence of 

CO2/H2O in the dark, (b-d) after the introduction of CO2/H2O for 20, 40 and 60 minutes in 

the dark, and (e-g) after the photo-irradiation for 20, 40 and 60 minutes. 

3.5 EIS measurement, EPR analysis and DFT calculation 
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Electrochemical impedance spectra (EIS) were measured to investigate the photogenerated 

charge transfer dynamics. Figure 9 shows the EIS spectra of the samples and the semicircles 

observed in the Nyquist plots correspond to the charge transfer resistance in the 

sample/electrode interface. In general, a smaller semicircle implies a better charge transfer 

across this interface. As can be seen, the semicircle became smaller as the content of CuInS2 

was increased, indicating that the hybridization with CuInS2 was able to improve the electron 

transfer which thus led to a significant photocatalytic enhancement for the CO2 reduction. 

 

Figure 9. Nyquist plots of the samples measured in 0.5 M Na2SO4 aqueous solution under Xe 

lamp irradiation. 

  Moreover, terephthalic acid (TA) was used as a probe molecule to examine the ·OH free 

radicals produced over the samples under illumination. The ·OH radicals can easily react with 

TA to produce a luminescent TAOH adduct, with fluorescence emission centered at 425 nm. 

Hence, the corresponding photoluminescence (PL) spectra recorded after UV illumination for 

different time (0~60 min) over TC2.5 were recorded and shown in Figure 10a. The PL 
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intensity boosted with increasing irradiation time, implying the continuous generation of 

hydroxyl radicals upon TC2.5 under illumination. Figure 10b shows the time courses of the 

PL intensity from TAOH for different samples. Clearly, TC2.5 generated the highest amount 

of ·OH as compared to other samples and in contrast, while T showed minor PL increase 

even after 60 min illumination. Based on these results, we proposed a direct Z-scheme 

heterojunction formed between TiO2 and CuInS2, i.e. the photo-generated electrons in the 

conduction band of TiO2 can transfer to the valence band of CuInS2, reducing the 

recombination rate of electron/hole pairs and facilitating the production of ·OH in aqueous 

solution. In the process of CO2 reduction, we suppose that the ·OH radicals were captured 

and quenched by the hydroxyl groups from TiO2 [62, 63]. 

 

Figure 10. (a) PL spectra of TA aqueous solution (5×10–4 M) in the presence of TC2.5 upon 

illumination for 0, 15, 30, 45 and 60 min. (b) PL intensity variation (425 nm) of the TA 

aqueous solution against time in the presence of different samples. 

The Z-scheme charge transfer pathway can be more directly evidenced by in-situ XPS 

measurement under light irradiation. As shown in Figure 6b and c, the binding energies of Ti 

2p and O 1s for TC2.5 under irradiation shifted positively by 0.2 eV as compared to the 
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values in dark. Accordingly, the binding energies of Cu 2p and In 3d (Figure 6d, e) for TC2.5 

showed a negative shift of ca. 0.1 eV under irradiation. Such shifts clearly confirm the 

presence of electron transfer from TiO2 to CuInS2 under light irradiation driven by the direct 

Z-scheme heterojunction, agreeing well with the above analyses. 

DFT calculations further confirm the generation of the Z-scheme heterostructure 

between TiO2 and CuInS2. Generally, electrons will transfer from the semiconductor with 

higher Fermi energy (EF) level to the other semiconductor with lower EF level at the interface 

of two semiconductors. In our case, the EF level of CuInS2 is higher than that of TiO2 (Figure 

11). This means the electrons can transfer from CuInS2 to TiO2 upon contact, creating a 

built-in electric field in the TiO2/CuInS2 interface with the orientation from CuInS2 to TiO2 

upon contact. These analyses agree well with the XPS results as discussed above, that the 

electrons transfer from CuInS2 to TiO2 after hybridization to form a built-in electric field 

resulting from the shift of binding energies of Ti 2p, O 1s, Cu 2p and In 3d. 

 

Figure 11. Calculated electrostatic potentials for (a) TiO2 (101) face and (b) CuInS2 (004) 

face. The red and blue dashed lines denote Fermi level and the vacuum energy level, 

respectively. 

ACCEPTED M
ANUSCRIP

T



 
24 

According to the above results and discussion, we propose a mechanism of the 

photocatalytic CO2 reduction upon the hybrid materials. Under light irradiation, the electrons 

in the valence band (VB) of TiO2 and CuInS2 were excited to the conduction band (CB). 

Owing to the presence of the internal electric field pointing from CuInS2 to TiO2, the 

electrons in TiO2 CB would transfer and recombine with the holes in CuInS2 VB, instead of 

the electrons in CuInS2 CB transfer to TiO2 CB. This Z-scheme configuration can improve the 

separation and extraction of the charge carriers (electrons from CuInS2 and holes from TiO2) 

[64-66]. Therefore, the photo-induced electrons from CuInS2 CB would react with the 

adsorbed CO2 molecules, with the CO2 reduced to CH4 and CH3OH with water as the proton 

source [67-69]. The photocatalytic mechanism and the charge transfer for the TiO2/CuInS2 

Z-scheme heterostructures are schematically illustrated in Figure 12. 

 

Figure 12. Schematic illustration of the charge transfer and separation in TC2.5 under 

simulated sunlight light irradiation. 
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4. Conclusions 

In summary, novel TiO2/CuInS2 core-shell nanofibers were fabricated through an 

electrospinning and subsequent hydrothermal methods. The resulting TiO2/CuInS2 hybrid 

nanofibers exhibit superior photocatalytic activity for CO2 reduction under irradiation, due to 

the enhanced light absorption, increased surface area and most importantly, the generation of 

Z-scheme heterojunction between TiO2 and CuInS2. The formation of the Z-scheme 

heterojunction was verified by XPS measurement, DFT calculation and free radical analysis. 

The direct Z-scheme heterojunction could significantly promote the charge separation and 

extraction upon photo-excitation, resulting in improved hydrocarbon production from CO2 

reduction. Our work provides a new insight into the design and synthesis of TiO2-based 

photocatalysts with Z-scheme pathways for high-efficiency solar-fuel conversion.  
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Table 1. Physical properties of the samples 

Samples 
CuInS2 

(mol%) 

SBET 

(m2/g) 

PV 

(m3/g) 

APS 

(nm) 

T - 43 0.14 10 

TC1 1.4 68 0.18 10.4 

TC2.5 3.1 102 0.45 17.6 

TC5 5.2 83 0.45 21.5 

TC10 9.4 51 0.25 20.1 

PV: pore volume, APS: average pore size 
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