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Abstract

Electromicrobiology is an emerging field investigating and exploiting the interaction of

microorganisms with insoluble electron donors or acceptors. Some of the most recently

categorized electroactive microorganisms became of interest to sustainable bioengineering

practices. However, laboratories worldwide typically maintain electroactive microorganisms on

soluble substrates, which often leads to a decrease or loss of the ability to effectively exchange

electrons with solid electrode surfaces. In order to develop future sustainable technologies, we

cannot rely solely on existing lab-isolates. Therefore, we must develop isolation strategies for

environmental strains with electroactive properties superior to strains in culture collections. In

this article, we provide an overview of the studies that isolated or enriched electroactive

microorganisms from the environment using an anode as the sole electron acceptor (electricity-

generating microorganisms) or a cathode as the sole electron donor (electricity-consuming

microorganisms). Next, we recommend a selective strategy for the isolation of electroactive

microorganisms. Furthermore, we provide a practical guide for setting up electrochemical

reactors and highlight crucial electrochemical techniques to determine electroactivity and the

mode of electron transfer in novel organisms.

Supplementary material for this article is available online

Keywords: electroactive microorganisms, electrotroph, electrogen, microbial fuel cells,

microbial electrosynthesis, bioelectrochemical systems

(Some figures may appear in colour only in the online journal)

Introduction

Living things conserve energy by translocating electrons from

an organic food substrate (electron donor) to a terminal elec-

tron acceptor (e.g. oxygen) via redox reactions in a respiratory

chain. During classical respiration, these redox reactions are

intracellular. In electroactive microorganisms, electron transfer

reactions extend beyond the cell surface in a process called

extracellular electron transfer (EET) [1–4]. EET is a unique

metabolic feature that enables electroactive microorganisms to

use solid-state electron donors or acceptors located outside the

cell, which would otherwise remain inaccessible. Electroactive

microorganisms have the unparalleled capability to ‘release’ or

‘retrieve’ electrons from a solid-state extracellular substrate.

Microorganisms ‘releasing’ electrons onto a solid-state extra-

cellular electron acceptor are electrogens whereas micro-

organisms that ‘retrieve’ electrons from an extracellular

electron donor are electrotrophs. Electrogens are capable of

electron release onto an electrode/anode surface, which is

quantifiable as a positive electric current whereas electrotrophs

retrieve electrons from a poised electrode/cathode surface,

which is quantifiable as a negative electric current [5].
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Electroactive microorganisms (electrogens and electro-

trophs) employ different mechanisms of EET, which are

direct EET or indirect/mediated EET (figure 1).

During direct EET, cells establish physical contacts usually

via electron-conductive proteins, which transfer electrons across

cell membranes [2–4, 6–8] such as outer-membrane multiheme

c-type cytochromes (MHC) [1, 9–11], extracellular MHC wire-

extensions [12, 13], [Fe–S] proteins [14], conductive pili

[8, 15–19] or periplasmic extensions [20, 21] (figure 1). The

mechanisms of direct EET vary significantly between different

species of electroactive microorganisms suggestive of these

organisms evolving comparable traits via convergent evolution

in order to adapt to similar ecological niches in the environment.

During facilitated EET, diffusible redox-active molecules

act as electron carriers and link redox reactions happening inside

and outside of the cell [6, 22]. Facilitated EET includes EET

mediated by redox shuttles, as well as EET mediated by extra-

cellular enzymes producing diffusible chemicals (figure 1).

Some examples of microorganisms that secrete and engage

shuttles in EET are the Gram-positive Listeria monocytogenes

[23], the Gram-negative Pseudomonas [24–26] and Shewanella

[27–31]. Generally, secreted shuttles are two-electron carriers

like flavins [23, 27–31] or phenazines [24–26]. However, an

unusual soluble menaquinone (2-amino-3-carboxy-1,4-naphtho-

quinone) was recently linked to EET in Shewanella oneidensis

[32]. Besides shuttles, EET can be facilitated by extracellular

enzymes that prompt the recycling of electrons from an extra-

cellular surface in certain methanogens and acetogens. For

example, the methanogen Methanococcus maripaludis and

acetogens of the genus Sporomusa, or Acetobacterium use Ni–

Fe-hydrogenases and/or heterodisulfide reductase [33–36] to

retrieve electrons from the surface of an electrode or of metallic-

iron (figure 1).

Electroactive microorganisms have earned considerable

attention in the field of applied microbiology. Accordingly,

bioengineering technologies have been developed to match

the direction of the electron flow to cells (microbial electro-

synthesis) and from cells (microbial fuel cells), independent

of the electron transfer mechanism. There are two focus areas

in the application of electroactive microorganisms that can be

distinguished by the direction of electron flow: electron-

releasing bioanodes when cells remove electrons from the

feed to be ‘released’ onto an anode; and electron-retrieving

biocathodes when cells ‘retrieve’ electrons from a cathode to

use them as feed.

Some of the earliest bioelectrochemical systems dealt

with bioanodes in microbial fuel cells (MFC) where microbes

converted chemical energy from food substrates into electrical

energy by transferring electrons to an anode [37, 38]. In

MFCs, microorganisms oxidize simple/complex organics

(e.g. glucose) or mixed organics from wastewaters [39], while

producing high anodic current densities with coulombic

efficiencies as high as 100% [38, 40–42]. The effectiveness of

MFCs for the production of electrical energy remains a matter

of debate [43, 44]. Nevertheless, MFCs were successfully

applied to purify wastewater [39], to bioremediate toxic

chemicals [45], or to adjust the redox balance of a fermen-

tation broth [46–48]. These properties make MFCs a tech-

nology of interest, especially for remote geographic locations

where access to water purification and bioremediation tech-

nologies is limited [49].

On the other hand, bioelectrochemical systems that deal

with biocathodes are microbial electrosynthesis systems

(MES), where microorganisms retrieve electrons from a

cathode and convert electrical energy into chemical energy to

be stored in synthesis products. In MES, autotrophic micro-

organisms use cathode-derived electrons to convert CO2 to

platform chemicals (e.g. acetate) [50–53], fuels (e.g. methane)

[54–57], bioplastics (e.g. polyhydroxyalkanoates) [58], or

bio-detergents (e.g. rhamnolipids) [59]. Additionally, catho-

dic electrons could be used to drive microorganisms to

recover metals from metallurgy waste streams [60].

The success of bioelectrochemical applications depends

on the electrochemical setup as much as on the electroactivity

of microorganisms. In 2016, Koch and Harnisch listed 94

species as electroactive [61] with electroactivity confirmed

beyond the Geobacter and Shewanella genera, in almost all

tested metal-reducers including the Betaproteobacterium—

Rhodoferax ferrireducens [62]; the Chloroflexi—Ardentica-

tena maritima [63] or the hyperthermophilic Archaea—

Figure 1. Schematic representation of four varieties of extracellular electron transfer. Direct electron transfer via pili and outer membrane
c-type multiheme cytochromes (Geobacter) or membrane extensions containing multiheme c-type cytochromes (Shewanella). Electron
transfer facilitated by extracellular shuttles and enzymes.
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Feroglobus placidus and Geoglobus ahangari [64]. Further-

more, electroactivity was confirmed in iron oxidizers like

Acidithiobacillus ferooxidans [65], nitrate reducers like

Pseudomonas alkaliphila [66], sulfate reducers like Desulfo-

bulbus propionicus [67], acetogens like Sporomusa ovata

[51, 53, 68, 69], methanogens like Methanosarcina barkeri

[56, 70] and photoautotrophs like Rhodopseudomonas

palustris [71] or Prosthechocloris aestuari [72].

Until now, electroactivity testing and downstream bio-

technology applications rely mostly on laboratory strains

isolated and maintained on soluble substrates. Nevertheless,

strains adjusted to soluble substrates adapt to a (non-EET)

non-selective metabolism by decreasing the expression or by

losing components for EET. On the other hand, their envir-

onmental analogs maintain EET competence in order to

function in a selective EET environment (e.g. mineral rich

sediments). For example, two G. sulfurreducens strains iso-

lated with bioelectrochemical methods (table 1) led to higher

power outputs than laboratory strains of the same species

[73, 74]. Moreover, lab cultivation on diffusible substrates

(H2) led to diminished cathodic electron use in M. mar-

ipaludis, which lost the entire genomic island relevant for

EET [36]. In extreme cases, we may be deceived on the

electroactivity of a species by studying solely culture col-

lection strains maintained on soluble substrates. This was the

case for the culture-collection strain Rhodopseudomonas

palustris ATCC 17001, which could not use an anode as

electron acceptor whereas a same species isolate from an

MFC, R. palustris DX-1, did produce anodic current [75].

Since electroactive microorganisms lose their EET-cap-

abilities when grown under non-specific conditions in the

laboratory, enrichment of biotechnologically relevant and

effective electroactive microorganisms requires an electro-

chemical isolation approach. Throughout an electrochemical

isolation procedure, electrical current (negative or positive)

will provide the selective pressure for the isolation of elec-

troactive microorganisms. In this review, we provide an

overview of (table 1) and suggest a strategy for (figure 2)

enrichment and isolation of environmental isolates with

innate electroactivity. We provide a guide for the isolation of

electroactive microorganisms in a standardized microbial

electrochemical system (box 1), particularly suited for anae-

robes, and finally offer an overview of essential methodolo-

gies to detect electroactivity and distinguish between direct

and facilitated electron transfer.

Niches for electroactive microorganisms

It is anticipated that electroactive microorganisms occur in

environments where a solid-state extracellular electron

acceptor or donor is naturally abundant, offering a positive

selective pressure for an electroactive metabolism to dominate

such a specialized ecological niche. Surprisingly, in a pre-

vious review, authors did not find a specific ecological niche

for electroactive microorganisms [61]. Most electroactive

species described have been isolated on soluble substrates.

However, their natural distribution is not suggestive of niche

partitioning [61], likely because these species typically do not

perform EET in their environment. In other words, species

easily isolated on soluble substrates that preserve their EET

properties are unsurprisingly not exhibiting EET-niche parti-

tioning, probably because they adopted a generalist behavior

and are adjusted to a variety of soluble substrates typical of

their environment.

Environments with a predominance of solid-state elec-

tron donors and acceptors include:

(i) Iron-rich minerals. Iron is the most abundant metal on

Earth, so microorganisms have adapted to use iron from

minerals such as magnetite or pyrite, as a source or sink

of electrons (see below) [76, 77];

(ii) Metallic iron (Fe0). Unalloyed Fe0 is rare in the Earth’s

crust (e.g. in serpentinite; iron ores), unless mined and

enriched for human use (mild-steel infrastructure).

Nevertheless, during the Anthropocene microorganisms

adjusted to using Fe0 as an electron donor [78];

(iii) Carbonaceous materials. Some non-metallic materials

occur in the environment, have the property to conduct

charge and can therefore be used as donors or acceptors

by microorganisms. Examples of carbonaceous materi-

als are chars [79] and humic acids, the later includes the

majority of undegradable organics in sediments and

soils [80]. Chars are especially abundant in areas

affected by forest fires [81] or are added to agricultural

soils to stimulate plant or the decontamination of

toxins [82];

(iv) Other cells act as electron donors and acceptors

carrying thermodynamically synchronized metabolic

interactions by sharing electrons via extracellular

molecular electrical conduits (see below) [56, 83–85].

Cell-to-cell interactions in aquatic sediments may also

strictly rely on naturally abundant conductive minerals

to transfer electrons in between metabolically co-

dependent microorganisms [86].

Some natural occurrences of iron rich-minerals are the

conductive structures found in hydrothermal vent chimneys

or serpentinizing springs, aquatic sediments and soils

[87–89]. Environments where conductive minerals abounded

dominated throughout Earth’s history. Ancient oceanic

environments were iron-rich [90] and likewise are present

analogs (e.g. lake Matano Indonesia, lake La Cruz, Spain)

[91, 92]. One environment where electroactive microorgan-

isms may have adapted over long evolutionary time scales

[93] to electrically conductive surfaces are hydrothermal

chimney walls [94–96], which are thought to spontaneously

generate electricity [94, 95]. In fact, hydrothermal vent

isolates were capable of EET with insoluble electron donors

like rocks/minerals [97–100] or electrodes [101, 102].

Last but not least, some microbial species can exchange

electrons with each other by transferring electrons from an

electrogen to an electrotroph via direct interspecies electron

transfer (DIET) [56, 83–85]. During DIET, the electrogen is

provided with an electron donor for oxidative metabolism, but

without any of its electron acceptor, whereas the electrotrophs

is provided only with an electron acceptor. Thus, by coupling

3

Nanotechnology 31 (2020) 174003 M O Yee et al



Table 1. Overview of microorganisms isolated with the aid of bioelectrochemical systems.

Organism Inoculum source
Bioelectrochemical
enrichment Other enrichment approach Isolation method Reference

ANODIC

Clostridium butyricum EG3 Starch processing
wastewater

Wastewater EDs and an anode no set poten-
tial (TEA)

None Dilution plating on agar-media with glucose
(ED) and Fe(III)citrate (TEA)

[162]

Aeromonas hydrophila PA3 Undefined inoculum Acetate (ED) and an anode no set poten-
tial (TEA)

None Dilution plating on agar-media with acetate
(ED) and Fe(III)pyrophosphate (TEA)

[163]

Geopsychrobacter electrodiphilus Marine Sediment Sediment organics (ED) and a sediment-
anode no set potential (TEA)

Primary: Liquid dilution series with acetate
(ED) and insoluble Fe(III)oxide (TEA) 3x

[164]

Secondary: Plated with acetate (ED) and Fe(III)
pyrophosphate (TEA)

Tertiary: Liquid dilution with acetate/benzoate
(ED) and Fe(III)pyrophosphate (TEA)

Ochrobactrum anthropi YZ-1 Primary clarifier
wastewater

Acetate (ED) and an anode no set poten-
tial (TEA)

None Serial dilution MFCs with acetate (ED) and an
anode no set potential (TEA). 5x

[126]

Rhodopseudomonas palustris DX-1 Undefined inoculum Aetate (ED) and an anode no set poten-
tial (TEA)

None Dilution series (roll-tubes) with acetate (ED)

and amorphous Fe(III) (TEA)

[75]

Thermincola potens JR Thermophilic anaerobic
digestor

Anode no set potential (TEA) and acet-
ate (ED)

None Primary: Liquid dilution series with acetate
(ED) and AQDS (TEA)

[40, 165]

Secondary: Dilution series (agar shakes) with
acetate (ED) and AQDS (TEA)

Brevibacteria sp. (2 strains) Domestic wastewater Glucose /wastewater organics (EDs) and an
anode no set potential (TEA)

None Primary: Liquid dilution series on LB media,
O2 (TEA); 6x

[139]

Secondary: Dilution series in LB agar slants,
O2 (TEA)

Arcobacter sp.(2 species) Marine sediment Acetate (ED) and an anode no set poten-
tial (TEA)

None Dilution plating with organics (ED yeast, blood
etc) under aerobic (O2; TEA) or anaerobic
(fermentative) conditions

[140]

Aeromonassp. Wastewater Glucose (ED) and an anode no set poten-
tial (TEA)

Dilution plating with glucose (ED) and ferric
citrate (TEA). 3x

[166]

Shewanella marisflaviEP1 Marine Sediment Primary: Lactate (ED) and an anode no set
potential (TEA)

Secondary: Anode biofilm+lactate
(ED) and Fe(III)citrate (TEA)

Dilution series (roll-tubes) with lactate (ED)

and ferric citrate (TEA). 3x

Comamonas denitrificans DX-4 Wastewater Acetate (ED); anode no set potential (TEA) None Serial dilution MFCs with acetate (ED) and an
anode no set potential (TEA). 3x

[146]

Citrobactersp. SX‐1 Wastewater Acetate (ED); anode no set potential (TEA) None Dilution plating with acetate (ED) and ferric
citrate (TEA)

[167]

Geobacter bremensis (5 strains) Garden compost Primary: acetate (ED) and 12 sediment-
anodes at +0.7 V (TEA)

Secondary: Anode biofilm with ethanol
or lactate (ED) and AQDS, Fe(III)
citrate or Fe(III)NTA (TEA)

Primary: Liquid dilution series (3x) with etha-
nol/lactate (ED) and AQDS, Fe(III)citrate/
Fe(III)NTA (TEA)

[168]

Secondary: Dilution plating: same substrates as
above

Bacillus pseudofirmus MC02 Undefined inoculum Primary: Unknown EDs; anode no set
potential (TEA)

Secondary: Anode biofilm with acetate
(ED) and AQDS (TEA). 3x

Dilution plating on LB-agar, O2 (TEA) fol-
lowed by colony re-streaking on LB agar, O2

(TEA)

[141]

Tolumonas osonensis OCF 7 Anaerobic sewage
sludge

Glucose (ED); anode no set potential (TEA) None Dilution plating with glucose (ED) and Fe(III)
citrate (TEA)

[169]

Geobacter sulfurreducens D8 Rice paddy soil Primary: anode at +0.544 V (TEA) and
undefined EDs from the soil

None Dilution to extinction prior to plating onto agar-
media with acetate (ED) and amorphous
Fe(III) (TEA). 10x

[170]
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Table 1. (Continued.)

Organism Inoculum source
Bioelectrochemical
enrichment Other enrichment approach Isolation method Reference

Secondary: Bioanode with acetate (ED) and
poised at +0.544 V (TEA)

Raoultella electrica Wastewater Glucose (ED); anode no set potential (TEA) None Dilution plating onto LB agar, with O2 (TEA) [142]

Enterobacter sp. R2B1 Precond. activated
sludge

Acetate (ED); anode no set potential (TEA) None Dilution series (roll-tubes) with acetate (ED)
and insoluble Fe(III)oxides (TEA)

[127]

Geobacter sp. SD-1 Domestic wastewater Formate (ED); anode no set potential (TEA) None Serial dilution MFCs with acetate (ED) and an
anode 0.7 V across the circuit (TEA). 5x

[125]

Klebsiellasp. MC-1 Undefined inoculum Glucose (ED)+cyanide and an anode no set
potential (TEA);

None Dilution series in liquid and solid with glucose
(ED)+cyanide and Fe(III)citrate (TEA)

[171]

Citrobacter freundii Z7 Aerobic sewage sludge Primary: Glucose (ED) and an anode no set
potential (TEA)

Secondary: anode biofilm in LB broth
with Fe(III)citrate (TEA) and O2

(TEA)

Dilution plating onto agar plates; with O2

(TEA)
[137]

Desulfuromonas soudanensis WTL Deep subsurface aquifer Primary: In situ borehole anode (TEA)

Secondary: Bioanode transferred with acetate
(ED) and set at +0.24 V (TEA)

None Primary: Liquid dilution series with acetate
(ED) and insoluble Fe(III)oxide (TEA)

[117]

Secondary: Liquid dilution series with acetate
(ED) and fumarate (TEA)

Tertiary: Plating with acetate (ED) and fuma-
rate (TEA)

Delftia sp. WE1-13
Azonexus sp. WE2-4

Deep subsurface aquifer Secondary: H2 (ED); anode (TEA) at one of
the voltages +0.272/0.372/0.472/
0.572 V

Primary: Sponge reactor with H2 (ED),
ferrihydrite+Mn(IV)-oxides (TEA)

Plating onto R2A agar; O2 (TEA) [122]

Quaternary: acetate (ED); anode (TEA) at
one of the voltages +0.272/0.372/0.472/
0.572 V

Tertiary: Anode biomass with acetate
(ED) and soluble Fe(III)NTA (TEA)

Aeromonas jandaei SCS5 Activated sludge Acetate (ED) anode no set potential (TEA) None Dilution series (roll-tubes) with acetate (ED)
and insoluble Fe(III)oxide

[172]

Cloacibacterium normanense RA1
Micrococcus luteus RA2
Diaphorobacter oryzae RA3
Pseudomonas aeruginosa RA5

Rumen liquid Autoclaved hay (ED) and an anode no set
potential (TEA)

None Dilution plating onto nutrient agar with O2

(TEA)
[138]

Paenibacillus sp. Serpentinizing spring Primary: In situ anode (TEA) in serpen-
tinizing spring containing H2 (ED)

None Dilutions series plating with galactose (ED) and
manganese dioxide (TEA)

[89]

Secondary: Bioanode at +0.4 V (TEA) with
i.e. galactose (ED)

Geobacter metallireducens,
Aeromonas sp.,
Enterbacter sp.

Urban canal sediment Primary: An anode at +0.4/0.6 V (TEA) and
sediment EDs

None Plating with acetate (ED) and Fe(III)
citrate (TEA)

[155]

Secondary: Bioanode set at +0.4/ 0.6 V
(TEA) and lactate (ED)

Dietzia sp. RNV-4 River sediment Primary: Sediment organics (ED) and a
sediment-anode no set potential (TEA)

None Primary: Liquid dilution series with acetate
(ED) and Fe(III)citrate (TEA). 4x

Secondary: Plating with acetate (ED) and
Fe(III)citrate (TEA)

[119]

Geobacter sulfurreducens subsp. ethano-
licus CL-1

Rice paddy soil Primary: Anode at +0.544 V (TEA) soil EDs
and acetate (ED)

Secondary: Anaerobic enrichment (ED
and TEA not disclosed)

Primary: Dilution to extinction [173]

Secondary: Hungate dilutions
(ED and TEA not disclosed for any)
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Table 1. (Continued.)

Organism Inoculum source
Bioelectrochemical
enrichment Other enrichment approach Isolation method Reference

Citrobactersp. KVM11 Contaminated ground-
water and sludge

Petroleum hydrocarbon mix (ED) and an
anode no set potential

None Dilution plating with acetate (ED) and ferric
citrate (TEA)

[174]

Kluyvera georgiana MCC 3673 Freshwater lake
sediment

Primary: Oilseed cake (ED) and an anode no
set potential (TEA); media replenished 15x

LB-broth; O2 (TEA) Dilution series on LB-agar media, O2 (TEA) [124]

Enterococcus avium strain Gut-S1`
Klebsiella pneumoniae strain Gut-S2

Fecal sample Acetate or lactate (ED) and an anode set at
+0.2 V (TEA)

None Anode biomass streaked on agar plates with
acetate or lactate (ED) and manganese
dioxide (TEA)

[175]

Citrobacter sp. strain ND-2 Rice paddy soil Primary: Soil organics (ED) and a sediment-
anode no set potential (TEA)

None Dilution plating onto solid agar supplemented
with acetate (ED) and FTO electrode poised
at 0 V (TEA)

[143]

Geobacter sp. strain RPFA-12G-1
Secondary: Bioanode further cultivated in

bioelectrochemical reactor with acetate
(ED) and anode poised at −0.2 V (TEA)

CATHODIC

Dechlorospirillum strain VDY Groundwater Primary: Groundwater inoculated H cell
reactor with cathode poised at ca.
−0.3 mV (ED) and perchlorate (TEA)

Secondary: biocathode in media with
acetate (ED) and perchlorate (TEA).
Repeated once

Dilution series in agar shakes with acetate (ED)

and perchlorate (TEA)

[135]

Labrenzia aggregata
a (7 sp.) Marine

Sediment

Primary: A cathode under sunlight (EDs) and
O2 (TEA)

None Primary: Dilution series with FeS (ED) and O2

(TEA)
[110, 111, 120]

Hyphomonas adhaerensb (1 sp.)
Secondary: Biocathode at +0.310 V (ED)

under O2 atmosphere (TEA)
Secondary: Plating and re-streaking on marine

agar broth Difco, aerobically (O2; TEA)
Bacillus firmusb (1 sp.)

Or plating on agar-media with acetate (ED) and
O2 (TEA)

Marinobacterc (2 sp.)

Unsuccessful isolation [121]

Phaeobacter daeponensisb (4 sp.)

Candidatus ‘Tenderia electrophaga’

H. aquamarina (1 sp.) Seawater In situ stainless steel cathode ca. 0 V (ED)

and O2 (TEA)

None Dilution plating on marine agar, aerobically (O2

as TEA)

[136]

Roseobactersp. (4 sp.)

Silicibacter(2 sp.)

Winogradskyella poriferorum, Seawater Primary: In situ stainless steel cathode ca.
0 V (ED) and O2 (TEA)

None Liquid dilution series and/or plating onto agar
media (Difco); O2 (TEA)

[123]

Acinetobacter johsonii Secondary: Lab-reactor (conditions see
above)

Thioclava electrotropha, Halomonas sp.,
Idiomarina sp., Marinobacter sp.,
Pseudomonas sp., Thalassospira sp.

Marine

Sediment

Primary: Sediment microcosms with a cath-
ode at −0.203 V and+0.2 (ED) and
undefined TEAs from the sediment

Secondary: Cathode-biofilm enriched using −
0.203 V (ED) and nitrate (TEA)

Tertiary: Cathode-biomass enriched
using insoluble substrates Fe0 or S0

(ED) and nitrate (TEA)

Dilution series in agar shakes and/or plating
with either Fe(II), S0 or thiosulfate (ED) and
nitrate or Fe(III)-NTA (TEA)

[132, 133]

Bacillus sp. strain H Anaerobic digestor
sludge

Digestor sludge H-cell with Cr(VI) (TEA)

and a cathode (ED) with an undefined
potential from degradation of wastewater
organics at the anode

None Dilution plating of cathodic biofilm on LB agar
with Cr(VI), O2 (TEA)

[131]

Note: All the potentials reported here are against the standard hydrogen electrode. MFC microbial fuel cell; AQDS Anthraquinone-2,6-disulfonate; ED electron donor; TEA terminal electron acceptor; FTO fluorine-doped

tin oxide. Primary, secondary, tertiary and quaternary refer to the succession during the enrichment/ isolation procedure.
a

Labrenzia species were inactive on a cathode. Only one showed an FeS-oxidation band for three successive transfers.
b

Not tested on a cathode, however, it did not maintain FeS-oxidation activity over three successive transfers.
c

One strain (Marinobacter adherens) was electroactive using a cathode as electron donor only when 2 mM acetate was provided as carbon source.
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the two processes the dual-species consortia can thrive.

During DIET, the electrogen requires the same EET conduit

that is required for interactions with electrodes, which

includes pili and extracellular MHC-cytochromes [1]. The

dependency on the electrical conduit was verified with

genetically manipulated partners, incapable to express an EET

conduit, and with partners known to use other EET

mechanisms (e.g. H2 rather than DIET) [84, 85]. Conversely,

it is challenging to demonstrate DIET in the environment, as

we do not have a specific molecular or chemical fingerprint.

Despite this, DIET has been reported by indirect measure-

ments in environments such as anaerobic digesters [103, 104],

rice paddies [105], or deep-sea sediments [106, 107]. In

environmental consortia, DIET is often endorsed by indirect

observations such as: (i) high conductivity of the consortia

[103, 104]; (ii) failure to make use of diffusible formate or H2

[103]; (iii) high expression of genes associated with EET

[105–107]; (iv) stimulation of the metabolism by conductive

materials [108]; (v) or by phylogenetic affiliation to DIET-

species [109]. However, in these environments, the actual

mechanism of interaction and partner co-dependency remain

a matter for future inquiry.

Finally, the ability to exchange electrons with the extra-

cellular milieu provides a selective advantage for electro-

active microbes in a variety of ecological niches in the

environment. Of these pre-adapted electroactive species we

can selectively isolate novel strains, characterize them, and

use their properties in sustainable technologies relying on

bioelectrochemical systems.

Electrochemical enrichment and isolation

The challenge during the isolation of electroactive strains is

that isolation on non-selective media was previously shown to

lead to loss of electroactivity [110–112]. We reviewed the

studies that employed electrochemical technologies to obtain

electroactive strains (table 1). Sometimes, isolation was pos-

sible despite the use of unselective media during the proce-

dure. Nonetheless, below we will focus on those studies,

which maintained the selective pressure throughout the steps

of enrichment and isolation, with the help of solid-state

electron sinks or sources.

A suitable approach to enrich electroactive microorgan-

isms involves the use of in situ electrodes, because it over-

comes enrichment bias artifacts [113] that would otherwise

lead to changes in cultivability [114] or viability [115], for

example due to grazing [116]. In situ enrichment often leads

to the isolation of new electroactive strains. For example, an

anode inserted directly into a borehole of a deep underground

mine provided a niche for the growth of the electroactive

Desulfuromonas soudanensis [117]. Different approaches

were used to enrich electroactive organisms from ground-

water or sediments, in situ. Thus, for in situ colonization,

the groundwater from 1478 m depth was passed through a

self-designed electrochemical reactor equipped with four

electrodes, two poised at oxidizing, and the other two at

reducing potentials [118]. For in situ enrichment from sedi-

ments, naturally existing redox gradients can be exploited in

benthic or sediment MFC (SMFC). SMFCs operate with the

anode embedded in the anoxic sediment and the cathode in

the oxic water above [44]. The organics in the sediment

provide the electron source, while O2 in the water above acts

as the electron sink. SMFCs can selectively enrich native

electroactive microorganisms both at the anode and the

cathode. This was the case of the electrogen Dietzia sp. RNV-

4, which was isolated from the anode of a river sediment

SMFC [119], whereas the electrotroph ‘Candidatus Tenderia

electrophaga’ was enriched from the biocathode community

of a marine phototrophic SMFC [110, 111, 120, 121].

Generally, the isolation of a species requires growing it

from a single cell to ensure a single cell origin. Besides,

isolation of a species with unique traits requires sustaining the

selective pressure for the entire duration of the isolation.

Attempts to isolate electroactive strains often involve unse-

lective media such as solid-LB, due to the simplicity of the

isolation procedure, which requires only aerobic streaking to

attain single cell colonies [119, 122–124]. Conversely, only a

few studies upheld selective conditions during enrichment

and isolation by adding insoluble electron acceptors to the

dilution series [125, 126]. Insoluble Fe(III)-oxides have been

often used as electron acceptors to isolate electrogenic

microbes [117, 127]. Nonetheless, by providing insoluble

minerals as electrode replacements, we may restrict isolation

to microbes skilled for example at insoluble Fe(III)oxide-

respiration, but unskilled at electrode-respiration, which was

the case of Geobacter bremensis [128].

Isolation of electrotrophs by conventional methods is

more challenging than that of electrogens which led to a low

number of cathodic isolates (table 1). Electrotrophs are of

interest for biotechnology [112, 129, 130], but are usually

isolated with soluble electron donors [131, 132]. Some

exceptional strains were enriched with metallic iron (Fe0) as

an extracellular source of electrons [132–134]. However, the

researchers discontinued the use of a solid electron donor

during the strain purification procedure and instead set up

dilution series with H2 or other soluble/diffusible substrates

[120, 123, 135, 136]. Growth on soluble substrates could lead

to incapacitation of the strains in using the solid surface at all,

as was the case with M. maripaludis strains, which lost the

genomic islands relevant for EET-constituents when grown

on H2 [36].

Consistently, many authors applied one ineffective

strategy for the isolation of electroactive microorganisms,

which is aerobic cultivation with nutrient-rich agar (table 1)

[111, 122–124, 131, 136–142]. This strategy favors fast-

growing, oxygen-respiring organisms over electrotrophic

ones, obscuring downstream electrochemical studies, and

interpretation of data. For example, multiple isolates obtained

from a phototrophic SMFC on rich-agar media were not

electroactive [111], whereas the actual cathodic microorgan-

ism ‘Candidatus Tenderia electrophaga’ could not be enriched
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Box 1. Protocol to set up bioelectrochemical reactors for microbial electrosynthesis

Principle: An electrochemical reactor consists of one or two chambers with at least two electrodes submerged in a conductive ionic solution

(electrolyte). In bioelectrochemical systems, the electrolyte is usually the growth media of the microorganisms without an external electron

donor and acceptor. The electrodes used are a working electrode (WE) and counter electrode (CE), with the redox reaction of interest

happening at the WE. The circuit (WE/CE) can be closed when the two electrodes get connected to a potentiostat. For precise control of

the potential, the WE can be calibrated against a reference electrode (RE) by the potentiostat. The chambers are perferably segregated to

keep the oxidation and reduction reactions isolated. Typically, the two compartments are separated by a membrane selective for proton

exchange. The following protocol is based on the set up used in our lab and has been tested successfully for cultivation of strict anaerobes

such as methanogenic Archaea (e.g. [56]). The list of materials used available in the supplementary materials.

Preparation of the working and counter electrodes

1. Wash the graphite block. Soak in 1 M HCl overnight. Soak in 1 M NaOH overnight. Rinse with deionized water until the pH of the

refuse is neutral. Air dry before proceeding

2. Drill a hole on top of each graphite block 2 cm (h) × 2 mm (ø) (figure S1 is available online at stacks.iop.org/NANO/31/174003/
mmedia)

3. Coat one end of a Ti-wire 2 mm (ø) × 12.5 cm (l) with conductive epoxy and insert the wire into the hole of the graphite block. Coat

the wire-graphite junction with a biocompatible non-conductive epoxy

4. Cure the epoxy by baking the electrode-wire set up at 80 °C for 3 h

5. The electrode-wire connection is tested with a multimeter by examining the resistance between the graphite block and the wire. A good

electrical connection gives an internal resistance below 10 Ω

6. To ensure anaerobiosis, reactors are secured with black GL45 rubber stoppers pierced to fit the disconnected end of the Ti-wire.

Stoppers can be drilled or pierced with an 18 G heated needle to produce holes of ∼2 mm (ø) (figure S1). Seal the junction between the

wire and the stopper with epoxy to avoid possible gas leaks or O2-contamination

Preparation of the reference electrode

7. Pierce a hole 2 mm (ø) through a blue butyl septum 20 mm (h) using a heated 18 G needle

8. Insert the reference electrode (RE) from the top to protrude ∼4 cm below the stopper and ensure close proximity to the working

electrode ∼1 cm (for a 500 ml chamber; see figure S1). Do not seal the junction because sometimes RE must be changed

9. Sterilize the RE attached to the stopper by soaking 10 min in 10% NaOCl, dip in ethanol (98%) and then keep in sterile MQ until

further use

Preparation of the H-cell reactors

10. Cut the membrane guided by the inner diameter of the outer O-ring (figure S1-red circle)

11. Place the membrane in miliQ water to allow expansion. Do not allow it to dry

12. Insert butyl stoppers and crimp seal all side ports of the H-cells

13. Place the wet membrane onto the assembled O-ring (figure S1) and sandwich it between the two glass chambers. Proceed to the next

steps immediately not to allow for the membrane to dry

14. Fill both chambers with ∼500 ml miliQ water. Insert the WE and CE electrodes attached to the GL45 stoppers into the appropriate

chambers and seal the bottles with an autoclavable open top screw cap

15. Before autoclaving, place a 22 G needle in the stoppers of each chamber to allow steam release during autoclaving, because the

membranes cannot withstand the autoclave pressure. Autoclave 20 min at 121 °C. After autoclaving, quickly remove the needles and

seal visible holes in the stoppers with quick-dry epoxy

From this point forward work sterile. Use sterile tubing, connections, needles, syringes and filters. Ensure sterility by ethanol-flaming septa

before needle insertion. Filter-sterilize the anaerobic gas (N2: CO2, 80:20). Work with only one chamber at a time.

16. Chamber #1: Flush with sterile gas (N2:CO2) while vacuuming sterile water from the lowest port of the chamber. Use a sterile needle

fitted to a Luer-lock adapter which is lodged in a sterile tube and connected to a vacuum pump (figure S2).

17. For the chamber with the WE, replace the stopper for the middle port with a sterile RE joined to a rubber stopper (figure 4). Work

quickly and close to a flame to ensure sterility.

18. Degas the chamber for 10 min to reestablish anoxia.

19. Pressurize a bottle of sterile media with sterile N2CO2 (figure S2). Use the pressure buildup to push ∼550 ml media into the H-cell

chamber. Connect the media bottle to the reactor chamber. For this use a sterile tube with Luer-lock adapter ends fitted with needles

and controlled by a valve (figure S2).

8

Nanotechnology 31 (2020) 174003 M O Yee et al

http://stacks.iop.org/NANO/31/174003/mmedia
http://stacks.iop.org/NANO/31/174003/mmedia


on any rich media [121]. Therefore, several researchers

developed small-scale electrochemical reactors for the isola-

tion of electroactive microbes. With this approach, Geobacter

sp. SD-1 and Ochrobactrum anthropi YZ-1 were isolated via

successive liquid dilutions to extinction series in electro-

chemical reactors exclusive of nutrient-rich media [125, 126].

Additionally, an ‘electrode-plate method’ has been success-

fully employed to isolate electrogenic microorganisms [141].

The authors used a diluted cell suspension streaked on agar-

plates containing the soluble electron donor, however with a

transparent anode at the top as a solid-state electron acceptor.

Besides the anode, a reference and counter electrode were

placed inside the agar for precise control of the voltage. It

remains to be tested whether this electrode-plating method

has applicability in the reverse direction in order to isolate

electrotrophs. Published reports revealed challenges in finding

an appropriate solid-state electron donor for electrotrophs.

Solid-state electron donors like Fe0 although successfully

applied in liquid media [132] pose two problems in solid

media-one being the lack of specificity because Fe0 generates

H2 gas abiotically, and secondly H2-gas would induce frac-

tures in the solid media rendering isolation of single cell

colonies impossible. As an alternative to Fe0, we recommend

to use other biocompatible materials that can store charge and

be pre-reduced electrically, such as Prussian Blue (a low-cost

hexacyano-Fe complex material [144]) or biochar [145], as

solid-state electron donors for selective isolation on agar-

plates.

Below we present an electrochemical cultivation strategy

(figure 2) by combining strategies presented in previous studies,

including in situ primary enrichment in bioelectrochemical set-

ups (see table 1), followed by laboratory electrochemical

enrichment and dilution to extinction series in liquid or solid

media with electrodes as electron donor/acceptor, as described

by four previous reports [125, 126, 143, 147]. Most electroactive

microorganisms are anaerobes [61]; thus, we propose to conduct

all steps under anoxia because many anaerobes get inhibited by

exposure to O2. Anoxia can be achieved by working under a N2

gas-stream, or ideally inside an anaerobic bag/chamber. For

isolation under selective conditions, we propose to follow five

Box 1. (Continued.)

20. Flush the chambers for 15–30 min by bubbling sterile N2CO2 via the lower ports. Use a needle outlet on the top port to allow a steady

flow through the reactor.

21. Chamber #2: Repeat steps 16 and 18–20

22. Initiate electrochemical measurements

Inoculation and sampling

23. Use a side port to inject 5 ml of a 20x concentrated cell inoculum harvested under sterile and anoxic conditions. Afterwards, flush for

5 min with sterile N2CO2 to ensure anoxia and removal of carry over gases

24. For gas-samples, extract headspace gas from the chamber via the G45/top port. Use sterile, flushed, gas-tight syringes with a gas-tight

valve

Figure 2. Strategy to isolate electroactive microorganisms from the environment. 1. In situ colonization of the electrode; 2. Laboratory
enrichment of the bioelectrode in a bioelectrochemical system; 3. Mechanical separation of the electrode biofilm under anoxic conditions; 4.
Liquid dilution series in bioelectrochemical reactors; 5. Transfer of the last grown dilution on solid media with electrodes as donor/acceptor;
6. Growth on/in conductive agar with an electrode as sole electron donor/acceptor. Electrotaxis may occur.
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steps of which two are optional: (1) in situ electrode coloniza-

tion; (2—optional) electrochemical enrichment; (3) biofilm-

detachment; (4—optional) liquid electrochemical dilutions to

extinction; (5) dilution to extinction on solid-media via elec-

trode-plating.

Step 1: Electrode colonization in situ (e.g. SMFC). The

biofilm colonizing the electrode in situ would be the ideal source

for single cell direct isolation on solidified media after biofilm

detachment. Alternatively, electroactive microorganisms from an

environment can be sorted based on polarizability [147] for

downstream isolation.

Step 2 (optional): Transfer the electrode-biofilm to a

media with a chemical composition similar to the in situ water

(enrichment). Enrichment biases are likely [113–115], and

therefore this step could be discarded for the next step.

Step 3: There are two ways to carry out mechanical

detachment by scraping the electrodes or by light sonication

(few cycles at <20% intensity to ensure cell integrity) fol-

lowed by gentle rinsing with a stream of anoxic media. This

step should preferably occur in an anaerobic chamber.

Step 4 (optional): The biofilm-suspension can be used

for liquid dilutions to extinctions, ideally, in batch bioelec-

trochemical reactors (figure 3). In box 1, we illustrate a

protocol for anaerobic batch bioelectrochemical reactors.

This step could be repeated until one morphotype and 16 S

phylotype becomes isolated. Membrane-less, small volume,

high throughput electrochemical cells [148] were previously

used to enrich anode respiring electrogens and reduce the

costs of isolation associated with dual chamber BES.

However, membrane-less BES cannot be used to isolate

strict anaerobes because inhibitory O2 is produced at the

anode.

Step 5: Ultimately, for isolation of a new species the

highest liquid dilution in which growth was observed is used

as inoculum for a dilution series in solid media. Solid

dilution series should provide us with colonies from a single

cell. To maintain the selective pressure, we advise using the

electrode-plate method [143]. Another possibility is to place

the inoculum at a distance from the electrode, so electro-

active cells use taxis towards a solid-state electrode

[99, 100].

Electrochemical tests

Once isolated, the new strains must have their electrochemical

properties tested because the mere association with an elec-

trode is not proof of electroactivity. Nowadays, various types

of high throughput methods demonstrate electroactivity,

relying on electrochromic approaches with tungsten oxide

(WO3) [149], electrochemiluminescence [150], colorimetric

[151, 152] and dielectrophoretic methods [153]. An example

of a high-performance, eco-friendly approach for rapid elec-

trochemical characterization is a paper-based 64-well sensing

array containing MFC wirings (anode and cathode connected

with a load) [154]. Nonetheless, these methods are not

commercially available, so the use of conventional bioelec-

trochemical techniques is still necessary for standardization

between laboratories. Some of the conventional bioelec-

trochemical techniques are chronoamperometry and cyclic

voltammetry. Chronoamperometry helps investigate the

ability of a new isolate to facilitate electron transfer to and

from an electrode [124, 132, 155]. Cyclic voltammetry helps

distinguish between a direct and facilitated EET mechanism

[117]. Hence the two must be used in combination to deter-

mine the type of EET mechanism employed by an electro-

active microorganism.

Chronoamperometry (CA) is a technique in which the

potential of a working electrode (exposed to microorganisms)

stepped against a reference standard electrode gives a current

response (mA), to be recorded over time (figure 4). For

instance, microorganisms transfer electrons to the working

electrode (anodic reactions) leading to the production of

positive current, while their uptake of electrons from the

working electrode (cathodic reactions) produces a negative

one (figure 4). CA in a batch reactor is usually carried out

until the current output stops and falls back to the baseline

conditions when the soluble electrode acceptor or donor got

depleted. From the current output, we can calculate current

density and coulombic efficiency, which can then be used to

compare performance with other studies [156]. For example,

in an MES-system, the coulombic efficiency describes the

recovery of the consumed current in the form of a synthesis

product. For a methanogenic MES, the overall coulombic

efficiency (ηCE,%) can be calculated from the amount of

current consumed (I) for the formation of reduced products

(CH4, 8 electrons) for the given time (t) according to

the equation (1) where F is the Faraday constant

( 96485.332 Cmol−1), m is the number of moles and n is the

Figure 3. Schematic diagram of the two-chamber H cell set up
inoculated with a methanogen performing electromethanogeneis on
the cathode coupled to water oxidation on the anode.
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During cyclic voltammetry (CV), the potential is cycled

between two setpoint potentials (V1 and V2), while the

resulting current flow gets measured throughout the scan

(figure 4). CV produces both an oxidative and a reductive

current curve for the potential range between V1 and V2

(figure 4). Electroactive species carrying out reversible reac-

tions between the electrode and the microbe may produce two

current peaks, one for each direction (cathodic and anodic).

The CV technique can also be applied to distinguish the

mode of electron transfer (direct or facilitated). Direct electron

transfer should exhibit electrode-associated electroactivity,

which we can assess by comparing current production rates of

a microbial culture before and after exchanging the entire

liquid volume. If the performance is similar in both condi-

tions, the electroactive agent is localized at the electrode

surface and not in solution. In the case of poor biofilm for-

mers, we typically compare the CV of the grown culture to

that of the spent cell-free filtered medium. This approach helps

identify whether the planktonic cells or a soluble shuttle in the

medium are involved in electron exchange with the electrode.

For detailed information on how to analyze cyclic voltammo-

grams, as well as data from other electrochemical techniques, we

recommend several excellent guides written by other research

groups [157–160].

Conclusions

The field of electromicrobiology is rapidly emerging. Appli-

cations utilizing the ability of microorganisms to transport

electrons extracellularly have moved far beyond its initial

intended use in electricity generation. For example the

development of hybrid bioelectrical systems with the ability

to reduce carbon bonds with electricity or light [161]. With

advances in several interdisciplinary fields, including elec-

trochemistry, material science and biotechnology, microbial

electrochemical systems have a real potential to provide

meaningful solutions to current energy problems. There is

Figure 4. Chronoamperometry and cyclic voltammetry. (a) Graphical representation of chronoamperometry (b) Representative graph of
current consumption by a methanogen in MES reactors poised at –0.425 V (versus SHE). The gray area represents the standard deviation of
triplicate reactors. (c) Graphical representation of CV which is often repeated in 3 cycles. (d) Representative CV graph of an anode grown
biofilm in a biochemical reactor. The red arrows mark the oxidative and reductive peaks of possible redox pairs.
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increasing interest in the biotech potential of microorganisms

capable of EET. However, electroactive microorganisms

could not get isolated via traditional means. Here, we have

provided an overview of studies that isolated electroactive

microorganisms from the environment; and supplied guide-

lines for bioelectrochemical isolation methods aspiring to

promote the discovery of additional electroactive species for

biotechnology.
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