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Abstract:  
 
Since the invention of the Petri dish, there have been continuous efforts to improve efficiency in 
microbial cultivation. These efforts were devoted to the attainment for diverse growth conditions, 
simulation of in situ conditions and achievement of high-throughput rates. As a result, prokaryotes 
catalysing novel redox reactions as well as representatives of abundant, but not-yet cultured taxa, 
were isolated. Significant insights into microbial physiology have been made by studying the small 
number of prokaryotes already cultured. However, despite these numerous breakthroughs, microbial 
cultivation is still a low-throughput process. The main hindrance to cultivation is likely due to the 
prevailing lack of knowledge on targeted species. In this review, we focus on the limiting factors 
surrounding cultivation. We discuss several cultivation obstacles, including the loss of microbial cell–
cell communication following species isolation. Future research directions, including the refinement of 
culture media, strategies based on cell–cell communication and high-throughput innovations, are 
reviewed. We further propose that a combination of these approaches is urgently required to promote 
cultivation of uncultured species, thereby dawning a new era in the field.  
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Today, 1.8 million eukaryotic species are recognized,  while estimates indicate that our planet 

hosts 5 to 10-fold more species.. Until now, only 7031 prokaryotic species have been 

described (and validated by the International Committee on Systematics of Prokaryotes) in 

the one hundred and twenty years, since the invention of the Petri dish (Achtman & Wagner, 

2008), even though we now realize that prokaryotes represent “the unseen majority” 

(Whitman et al., 1998).  The lack of an extensive and accurate picture of the microbial 

diversity is partly due to a lack in technical advances in the microbiology cultivation field. . 

Over the past three decades, molecular biology was an enormous driving force in 

microbiology in uncovering the microbial diversity . Many new candidate divisions  are now 

recognized due  to 16S rRNA sequence-based approaches and environmental metagenomics 

(Curtis et al., 2002). These findings exposed a gap between the known phyla and those 

possessing cultured representatives (Fig. 1). In 1987, when much of our knowledge derived 

from pure culture techniques, all the phyla known possessed cultured representatives. Twenty 

years later, of the 100 bacterial phyla identified only 30 possess a cultivated representative 

(Achtman & Wagner, 2008). The number of phylum-level divisions possessing cultured 

representatives has increased at a linear and constant rate  over the last two decades. 

However, this increase was greatly augmented with the emergence of molecular-based 

approaches. This augmentation is seen when candidate divisions are included in these 

calculations (Fig. 1)..  

 From a quantitative point of view, the advances made by culture-dependent approaches may 

appear trivial, especially since only 0.1% of the existing prokaryotes have been cultured so 

far. Yet, this quantitative approach is reductive since the past 20 years of microbial cultivation 

have led to unprecedented advances in our knowledge of the microbial world. 
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Molecular ecology and metagenomics have increased significantly our knowledge of the 

genetic diversity and have led to interesting  hypotheses (Hugenholtz & Tyson, 2008). The 

advanced techniques have also revealed  how far we are from measuring the full extent of 

genetic diversity encoded by microbial life (Hugenholtz & Tyson, 2008; Pignatelli et al., 

2008). Considering that many of the genes stored in the databases  have unknown functions or 

are incorrectly annotated, it is  probable that metagenomes alone will not offer sufficient 

knowledge to cultivate all organisms. There is evidence that many of the candidate divisions 

revealed by molecular approaches, and known only from molecular signatures, represent a 

significant fraction of the microbial diversity. Some members of these ‘not-yet-cultured’ taxa 

are  probably key ecological players. Today, one of the main challenges for microbiologists is 

to develop strategies to cultivate this uncultured majority. A comprehensive understanding of 

biology and ecology of prokaryotes will  require cultivation. Therefore, it is not surprising to 

observe an increasing interest for the field of microbial cultivation  (Leadbetter, 2003). 
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The aim of this review is to provide an overview of the new cultivation-based approaches 

while documenting their limitations and outcomes. Further, we highlight how cultivation has 

led to valuable advances in our understanding of microbial physiology and identify the future 

challenges for microbiologists in the microbial cultivation field. Lastly, a discussion is 

provided on the technical developments that may drive innovative research in the near future. 

 

I- Review on some cultivation successes 

 Prokaryotic growth necessitates an energy source (light or chemical compounds), nutrients 

and proper physicochemical conditions. Challenges for the microbiologist are to identify 

required nutrients, to provide them in the growth medium in the appropriate concentrations to 

sustain the microbial growth,  and to avoid the co-precipitation of the introduced chemicals. 

Since different organisms require a different set of nutrients in varying concentrations and 
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forms, the design of growth media remains a difficult task. Conversely, the intrinsic 

selectively of any growth medium imposes limitations on the type, diversity and number of 

prokaryotes recovered from the natural environment. This phenomenon is known as the “great 

plate count anomaly” (Staley & Konopka, 1985). Indeed, there is a difference of several 

orders of magnitude between colony counts on laboratory medium and total numbers of 

prokaryotic cells present in natural environments. Only a minor fraction of the naturally 

occurring microbial community is recovered by conventional selective media (Skinner et al., 

1952; Amann et al., 1995). Depending on the nature of the samples, the cultivation efficiency 

of active cells by standard plating technique is estimated between 0.001% and 1% (Kogure et 

al., 1979; Staley & Konopka, 1985; Amman et al., 1995). Thus,  cultured microorganisms do 

not reflect the functional and phylogenetic diversity present within any natural habitat.  
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 Two main strategies are used for the isolation of pure cultures in microbiology. In both 

strategies, enrichment culture is performed as a first step. The first strategy aims to isolate 

colonies by repetitive streaking on solid medium (or alternatively by performing pour plates 

or agar shake tubes), while the second strategy aims to isolate cells following repeated series 

of dilutions in liquid medium. These classical approaches have led  to the isolation of a large 

number of strains belonging to taxa with few or no representatives in pure culture (Janssen et 

al., 1997; Joseph et al., 2003). Nevertheless, the enrichment and pure culture isolation 

strategies often select for opportunistic fast-growing organisms also called lab weeds. In 

nutrient-rich artificial media, the community members with ‘r’-strategy, or fast-growers, often 

overgrow and outcompete the naturally abundant ‘K’-strategists (Watve et al., 2000). 

Consequently, these conventional culture-dependent approaches do not reflect the actual 

microbial communities (Amann et al., 1995). Certain taxa are still severely under-represented 

in pure cultures (Hugenholtz et al., 1998). As direct consequence, most of our current 
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knowledge of the nutrition, physiology and biochemistry of prokaryotes is based on easily 

cultivable organisms.  
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In recent years, novel cultivation strategies were developed to overcome these limitations. 

Schematically, they are classified into four categories  (Fig. 2).  

 

1- Refinement of standard cultivation strategies 

Different studies have demonstrated that a fraction of the “not-yet-cultured” groups of 

prokaryotes can be grown by the refinement of classical approaches. Changes in the media 

formulations, including the use of non-traditional electron donors, electron acceptors and 

carbon sources have proven efficient in  recovery of uncultured taxa (Köpke et al., 2005). 

Diversification of the media and multiplication of culture conditions are simple methods to 

by-pass approaches that are selective by nature.  For instance, the cultivable  fraction from 

coastal subsurface sediments was shown to yield a higher number and diversity of isolates 

when culture collections were performed with diverse electron acceptors and carbon sources 

(Köpke et al., 2005). The qualitative composition of carbon sources is also a determinant 

factor for cultivation efficiency . . As shown with seawater samples from the North Sea, 

media prepared using several different carbon sources and complex compounds yield higher 

number and more diverse isolates than similar media with only one carbon source. These 

isolates obtained with a single substrate belonged almost exclusively to the 

Gammaproteobacteria while representatives of four other classes grew on complex media 

(Uphoff et al., 2001). In recent years, it was shown that novel redox reactions, catalysed by 

specific ecological communities of prokaryotes, can be identified within enrichment cultures 

onto non-conventional media. Many novel physiotypes can be isolated using this method. 

Significant advances were made in the field of the anaerobic degradation of hydrocarbons. 

For example, different microbial consortia of Archaea and Bacteria, which couple the 
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anaerobic oxidation of methane to sulphate or nitrate reduction, were enriched from anoxic 

marine or freshwater sediments. These findings enhanced our understanding of the global 

biological cycles (Nauhaus et al., 2002; Raghoebarsing et al., 2006). Moreover, hydrocarbon-

degrading bacteria were identified using refined media containing only hydrocarbon/carbon 

energy sources and nitrate, iron or sulphate as electron acceptors. These concurrent studies 

led to a better understanding of the biochemistry and energetics of anaerobes. Several 

biochemical mechanisms involved in the activation of some of these chemically non-reactive 

compounds have been identified (Lovley and Lonergan, 1990; Rabus et al., 1993; Galushko 

et al., 1999; Coates et al., 2001; Widdel et al., 2007). However, hydrocarbon-degrading 

capacities, activation mechanisms and species or ecological guilds, which are involved in 

hydrocarbon degradation, remain to be discovered. For example, a microbiological anaerobic 

oxidation of methane with iron (III) or manganese (IV) as a terminal electron acceptor is 

unknown, yet this reaction is thermodynamically possible (Raghoebarsing et al., 2006). The 

enrichment culture with anoxic ditch sediment, discovered in 1999 by Zengler and co-

workers, was another growth-supporting reaction of relevance. This team demonstrated that 

the conversion of long-chain alkanes to methane, under strictly anoxic conditions, is 

biologically performed by an ecological guild assumed to be acetogenic syntrophic bacteria 

associated to acetoclastic and hydrogenotrophic methanogenic archaea (Zengler et al., 1999). 

The discovery of this process in nature might help to understand the terminal degradation of 

organic matter in areas of deep and old marine sediments where sulphate is depleted. Another 

novel physiotype recently identified due to advances in cultivation and isolation was an 

autotrophic anaerobe, which couples the oxidation of phosphite (III) to sulphate reduction 

(Schink and Friedrich, 2000). These novel physiotypes along with the newly recognized 

biological redox reactions are only a few of the several examples of the significant advances 
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made in uncovering the microbial diversity through the enhancement of cultivating 

techniques.  
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Some recent successes in improving traditional cultivation methods include the following. 

The use of relatively low concentration of nutrients to increase the cultivability and to 

improve the recovery of prokaryotes from different types of natural samples (Button et al., 

1993; Janssen et al., 1997; Watve et al., 2000; Connon and Giovannoni, 2002; Rappé et al., 

2002; Sangwan et al., 2005). The use of increased incubation periods to allow for the 

development of strains from rarely isolated taxa (Sait et al., 2002; Stevenson et al., 2004; 

Davis et al., 2005; Sangwan et al., 2005; Stott et al., 2008) and, the addition of signalling 

compounds known to mediate communication between bacteria (Bruns et al., 2002; Bruns et 

al., 2003). Moreover, other less-documented approaches also yielded new isolates. These 

included: the use of gellan gum (phytagel) as a gelling reagent instead of agar (Tamaki et al., 

2005; Stott et al., 2008); the decrease in inoculum size (Davis et al., 2005); the addition of 

electron transporters to the culture media (Stevenson et al., 2004); the addition of enzymes to 

cope with reactive oxygen species (Stevenson et al., 2004); the addition of inhibitors of 

undesired organisms (Leadbetter et al., 1999); and, the combination of an unusual energy 

source with antibiotics to exclude Bacteria (Könneke et al., 2005). Finally, sophisticated 

single-cell isolation tools allowing for the manipulation of a targeted cell from a mixed 

community (with a micro-capillary tube or with ‘optical tweezers’) have been developed 

(Huber et al., 1995; Fröhlich and König, 2000; Huber et al., 2000). The principal limitations 

of these single-cell isolation strategies include their labour intensive requirements and the 

determination of the suitable growth conditions to cultivate prokaryotic cells of unknown 

metabolism and systematic affiliation. The identification of a cell of interest among a complex 

community in absence of clear distinctive morphological features is also challenging. 

Altogether, these limitations account for the lack in isolating numerous undiscovered strains.  
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2- Cultures in situ or cultures in simulated natural conditions 

Often, the laboratory conditions poorly mimic the natural environmental conditions. 

Therefore, strategies aimed at simulating natural conditions or culturing in situ have been 

proven efficient. Schematically, two types of “in situ colonization devices” have been 

developed: the diffusion chambers and the carriers (of organic or inorganic nature) 

(Kaeberlein et al., 2002; Ferrari et al., 2005; Yasumoto-Hirose et al., 2006; Bollmann et al., 

2007). Diffusion chambers are apparatuses equipped with filter membranes which restrict the 

movement of cells in the chamber. They allow for the removal of low-molecular weight 

inhibitory end-products, as well as the exchange of chemicals between the chamber and the 

environment, thereby making high density cultivation possible (Pörtner and Märkl, 1998; 

Kaeberlein et al., 2002). Different types of membrane-based systems have been developed to 

grow microbial communities directly in the natural habitats (Kaeberlein et al., 2002; Plugge 

and Stams, 2002; Ferrari et al., 2005; Bollmann et al., 2007; Ferrari et al., 2008). Uncultured 

bacteria from soil, marine or activated sludge were grown in diffusion chambers. This led to 

the hypothesis that in situ cultivation of environmental prokaryotes in diffusion chambers 

either enriches sufficiently the strains for their subsequent isolation onto classical solid media 

or conditions them for growth under otherwise prohibitive in vitro conditions (Bollmann et 

al., 2007). Interestingly, slow-growing organisms were cultivated using this method.  

In natural ecosystems, many prokaryotes live attached to surfaces. This is well known for 

microbes living in sediments, soils, or in association with eukaryotes. It is less recognized for 

microbes living in aquatic habitats, where free-living forms were supposed to be dominant, 

but other associations, with various interfaces, exist. The attached existence provides several 

advantages for the prokaryotes. Attached cells escape grazing better than their free-living 

neighbours. Attachment also allows cells to develop metabolic inter-relations, resistance to 

 9



 

different stressesand better access to adsorbed substrates (Schink, 1999). In situ colonization 

carriers are useful tools to overcome cultivation limits induced by attachment of prokaryotes 

to solid surfaces. Several publications describe the deposition in natural ecosystems of 

different carriers such as glass, ceramic, titanium devices, porous inorganic substrates or 

polyurethane foams (Araki et al., 1999; Alain et al., 2004; Yasumoto-Hirose et al., 2006). In 

situ collectorscoated with selective substrates, are effective for the selective enrichment of 

targeted prokaryotes (Yasumoto-Hirose et al., 2006). In addition, specialized techniques 

simulating one or several important spatial or physical parameters allow the cultivation of 

novel physiotypes. For instance, gradient systems (Nelson and Jannasch, 1983; Emerson and 

Moyer, 1997), high pressure reactors (Marteinsson et al., 1999; Alain et al., 2002), flow-

through devices (Houghton et al., 2007) and gas-lift reactors (Postec et al., 2005; Postec et 

al., 2007) were successfully used. . Pressure is also an essential parameter given that high-

pressure environments occupy the largest fraction of the known biosphere.This parameter was 

often neglected in microbial cultivation. However, its effects on microbial life are as 

important as those of temperature or salinity. Pressure acts upon  physiology and upon 

biochemical reactions. Thus, these types of reactors are effective to grow microbial strains 

from high pressure habitats. However, only few piezophilic prokaryotes have been enriched 

or isolated under elevated pressures (i.e. Yayanos et al.,1979, 1981; Marteinsson et al.,1999; 

Alain et al., 2002; Houghton et al., 2007). Recently, the first obligate piezophilic and 

hyperthermophilic archaeon (Pyrococcus sp. strain CH1) was isolated from the deepest 

hydrothermal vent field explored so far, using a high pressure reactor (Zeng et al., in press). 

Finally, different types of bioreactors are used to reproduce diverse environmental 

conditions.The physical and chemical conditions. of seafloor hydrothermal systems are 

among the most difficult to reproduce in laboratories, considering the multiplicity of in situ 

physical and chemical gradients. Gas-lift reactors and flow-through devices are powerful 
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tools to simulate  hydrothermal vent in situ conditions (Postec et al., 2005; Postec et al., 2007; 

Houghton et al., 2007). Flow-through devices allow for continuous cultures under in situ 

temperature, pressure  and fluid flow.They make possible the simulation of the deep-sea vent 

changes of fluid chemistry (Houghton et al., 2007). Both systems allow for continuous 

enrichment culturing under controlled conditions. Significant fractions of microbial 

communities were grown using these systems (Postec et al., 2007).       
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3- Cultures of microbial communities 

The cultivation methods allowing for the growth of mixed populations offer great potential to 

cultivate not-yet cultivated organisms.Indeed, in natural environments, most organisms live as 

a part of a community in which distinct cells work in concert and communicate either by 

trading metabolites, by exchanging dedicated signalling molecules, or by competition for 

limited resources (West et al., 2007; Nadell et al., 2009). These  relationships, in addition to 

complex cell-cell communications, are hardly reproducible in monocultures. This “in group” 

lifestyle, in biofilm or  multi-cellular assemblage, is thought to generate robustness to 

nutritional, biotic and abiotic changes by providing a capacity of adaptation to environmental 

fluctuations. It is critical for microbial ecology and evolution. A striking example is biofilm, 

in which cell-cell communication determines biofilm structure, maturation and  microbial 

niche construction thereby optimizing microbial survival and reproduction. Mixed microbial 

assemblages have also the capacity to perform multiple-step functions that are often not 

possible for individual strains or species. Examples are the degradation of cellulose or the 

methanogenic conversion of complex organic matter (Brenner et al., 2008). In some cases, the 

cooperation within the microbial community is based on sharing metabolic intermediates, 

micronutrients (e.g. vitamins) or chelating agents that either assist or compromise the growth 

of other community members. When identified, such facultative dependencies can be 
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reproduced experimentally by supplying the medium with these micronutrients or co-

substrates. Besides facultative associations, syntrophic associations are often compulsory and 

this interdependence cannot easily be by-passed or suppressed by the addition of factors to the 

media (Schink, 1999). Many syntrophic associations are explained by unfavourable energetic 

conditions. . Both facultative and syntrophic associations are widespread in natural habitats. 
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 Consequently, approaches based on community cultures are effective methods to grow 

facultative associations and syntrophic organisms. Using community culture approaches in 

addition to dialysis membrane reactors, thermophilic syntrophic anaerobic glutamate-

degrading consortia from anaerobic sludge have been successfully enriched (Plugge and 

Stams, 2002). Similarly, batch reactors operating under anaerobic-aerobic cycling conditions 

have allowed the enrichment of mixed microbial sludge communities (Crocetti et al., 2002). 

 

4- High-throughput automatable microbial culture formats 

The past decade was marked by the emergence of high-throughput cultivation methods 

(Connon and Giovannoni, 2002; Zengler et al., 2002; Zengler et al., 2005; Ingham et al., 

2007). Several advances in high-throughput culture formats have originated from industrial 

endeavours. Indeed, the myriad of organisms inhabiting our planet represents a tremendous 

reservoir of bio-molecules for pharmaceutical, agricultural, industrial and chemical 

applications. While culture-independent recombinant approaches are used to screen novel 

molecules and enzymes from natural samples, cultivation of organisms greatly simplifies such 

studies and allows the use of a strategy biased for the desired phenotype.   

 A very efficient high-throughput cultivation method resulted from modifying the pioneering 

work, called extinction cultures, of Button and colleagues (Button et al., 1993). Briefly, 

extinction culturing requires dilutions of natural communities to a low number of cells (1 to 5 

cells per ml) in natural environmental water followed by their incubation in defined 
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conditions. Following incubation, growth is measured. The initial procedure . was refined by 

Giovannoni and colleagues to increase high throughput rates by using microtiter plates and by 

fluorescence microscopy screening (Connon and Giovannoni, 2002; Stingl et al., 2007). This 

improved technique resulted in better sensitivity and  cultivation efficiency. This technique 

allows notably for the growth of slow-growers. It also allowed for the isolation of the first 

representatives of two bacterial clades: the SAR11 clade, a ubiquitous alpha-proteobacterial 

lineage found abundantly in marine pelagic environment (Rappé et al., 2002) and the OM43 

clade (Connon and Giovannoni, 2002).  
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Another technology for massive cultivation of prokaryotes was developed recently. This high-

throughput approach consists in the encapsulation of cells in gel microdroplets (GMDs) 

incubated in a single column for long intervals of time under low nutrient flux conditions. 

Micro-capsules are subsequently sorted by flow cytometry.. This technique is applied to 

samples from different habitats and  provides more than 10000 bacterial and fungal isolates 

per natural sample (Zengler et al., 2005). To our knowledge, this technology, which allows 

the development and detection of micro-colonies (20 to 100 cells), has never been used for 

anaerobes. It is advantageous as cell-containing micro-droplets are grown together in capsules 

allowing for the exchange of signal compounds and metabolites between cells from different 

micro-colonies but originating from the same natural community. Using the micro-

encapsulation approach, members of numerically abundant clades were isolated. Although 

very promising, this technique is not yet easily implemented in microbiology laboratories 

(Zengler et al., 2002; Zengler et al., 2005). 

Finally, a multiwell microbial culture-chip was recently developed by a team of 

microbiologists, nanotechnologists and micro-engineering experts (Ingham et al., 2007). This 

micro-Petri dish, is composed of a unique porous ceramic subdivided into millions of 

compartments in which cultures can be separately grown. The growth of microorganisms is 
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sustained by the nutrients diffused  through a porous membrane. The innovation lies in the 

conception of the chip that is composed of micron-scale wells, is readily manufactured, 

affordable and easy-to-use in microbiology laboratories not equipped with micromanipulator. 

This system combines automation and miniaturisation, prerequisites for modern 

microbiology. 
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All approaches described in this chapter aimed to optimize prokaryote cultivation efficiency 

(fig. 2). Overall, these studies allow for the isolation of numerous novel species and permit 

major breakthroughs in cultivation. Despite continuous efforts, culture dependent approaches 

undergo changes characterized by gradual improvements rather than by a radical paradigm 

shift. It is noteworthy that the so-called “Moore Law” in microbiology (Gefen and Balaban, 

2008) applies to the volume used in culture and not to the output in number of novel species 

described. 

 

II-Why do so many microbes resist cultivation? 

Despite extensive studies on ecosystems where sampling is conducted, the conditions used in 

classical cultivating conditions are often far from endogenous abiotic and biotic conditions  

required for microbial growth. Thus, it is not surprising that only a small fraction of the whole 

microbial repertoire has been cultured so far. 

The lack of efficient cultivation techniques stems from many factors that largely remain 

unknown. These factors include limited knowledge of (i) the diverse organisms, (ii) the 

chemistry of the natural habitats, (iii) the natural biotic and abiotic interactions and (iv) the 

global functioning of the ecosystems at microbial level. Cultivation aims to create an artificial 

system mimicking the in situ conditions.However, we do not have sufficient knowledge to 

reproduce the natural conditions in the laboratory or to create viable synthetic conditions for 
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all organisms. This lack of knowledge has led to regrettable mistakes.. For example, traces of 

tungsten element, which inactivates nitrogenase, have been included for a long time in the 

culture media for Spirochaetes (Leadbetter, 2003). It was recently discovered that 

Spirochaetes are able to grow via nitrogen fixation (Lilburn et al., 2001), a property that can 

be expressed only in tungsten-depleted media.Another remarkable example is the unexpected 

discovery of  nanoarchaea in enrichment cultures (Huber et al., 2002).The discovery  was 

unattainable by current PCR-based approaches since the universal primers commonly used for 

diversity studies could not target this group.  
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Another reason that can explain the failure to cultivate many prokaryotes is our lack of 

patience and sensitive detection methods for low cell yields. As previously discussed, in some 

cases, cultivation efficiency was significantly increased by long periods of incubation. This is 

true for organisms originating from oligotrophic habitats and potentially in a non-growing or 

dormancy state. It is important to note that transition from a non-growing to a growing state in 

a synthetic laboratory medium is a critical and stressful event. Thus, adaptations of cells to 

laboratory growth conditions may require increased cultivation times. For instance, the 

duration of growth log phase can depend on the cell status (i.e. healthy, stressed or sub-

lethally damaged cells) and the gap between in situ and in vitro conditions (de novo synthesis 

of an enzymatic set to grow in the synthetic medium, etc). Without  permitting adequate time 

intervals for growth, many organisms and many novel redox reactions would never have been 

discovered. For example, without lengthy incubation periods, the observation that methane is 

formed from long-chain alkanes under anaerobic conditions would not have been 

documented. Under tested conditions, gas formation in the presence of hexadecane started 

only after four-month incubation of the culture (Zengler et al., 1999). While bioenergetics 

calculations can  predict thermodynamical feasibility of a reaction, our current knowledge can 

not predict kinetics for ‘resuscitation’ and for the growth of de novo enrichment cultures via a 
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given reaction under a defined experimental conditions. Indeed, the characteristics of natural 

uncultured organism(s) (physico-chemical optima for growth, transport systems, etc.) and of 

their enzymes (catalytic rates, substrate affinities, regulation mechanisms) are unknown. At 

best, we can suppose that enrichment cultures performed with highly stable substrates, weak 

oxidants and calculated to have low net free energy gain, will require long-term incubations 

and patience. Otherwise, extremely long growth kinetics or low cell densities are sometimes 

observed in enrichment or pure culture. Inappropriate or non-optimal growth conditions might 

be responsible for these low yields. Thus, once parameters that inhibit  growth are identified, 

“normal” growth kinetics and high yields can be restored (i.e. Flagan et al., 2003). For the 

organisms characterized by meagre yields, highly sensitive detection technologies such as 

tangential flow filtration and concentration are critical (Giovannoni and Stingl, 2007). 
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Another rational put forward for prokaryotic resistance to cultivation is inherent to the in vitro 

cultivation techniques widely used. More specifically, the in vitro cultivation techniques used 

paradoxically aim to isolate strains in pure culture, while most organisms in nature live in 

community and establish complex relationships (see previous chapter). The main 

consequence of this general practice is a disruption of inter- and intra-species communication 

during the very first stageof isolation. The impact of this perturbation on cultivability is 

unknown for most prokaryotic species and might vary depending of the species. Cell-cell 

communication (CCC) has gained considerable attention in recent years, in particular density-

dependent cell-signalling mechanisms known as quorum sensing (QS). Cell-cell interactions 

have been investigated mainly in Bacteria due to their tremendous importance in health, 

environmental and industrial applications. Bacteria  respond to a wide range of signalling 

molecules at intra-species level (species-specific compounds) and/or inter-species level 

(Camilli and Bassler, 2006). Inter-species interactions appear to be ubiquitous among 

prokaryotes  and are not limited to signalling molecules such as autoinducer-2 (AI-2) and N-
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acyl-homoserine lactones (N-AHLs) but extend to antibiotics at sub-inhibitory concentrations 

(Ryan and Dow, 2008). Globally, prokaryotes and eukaryotes have co-existed for millions of 

years and frequently have co-evolved in the same environments. Therefore it is not surprising 

that interactions between them range from mutually beneficial to virulent. QS compounds like 

AHLs found initially in Bacteria are involved in virulence, biofilm formation, motility, 

antibiotic production and are recognized by eukaryotes with effects on immunomodulation, 

intracellular calcium signalling and apoptosis (Hughes and Speriandio, 2008). QS 

mechanisms have been extensively investigated during the past decade. Many Bacteria have 

one QS circuit while some display two or three circuits to coordinate their population density. 

Yet, these circuits are themselves under the control of a master QS regulator (Hooshangi and 

Bentley 2008). Recently Kolodkin-Gal et al. (2007, 2008)  showed that the mode of action of 

antibiotics in E. coli is determined by the ability to communicate through the Extracellular 

Death Factor (EDF) as a function of cell density. CCC was initially considered as an 

exception limited to a few specialized bacteria, but has recently emerged as the norm in the 

bacterial world. Several indications strengthen this trend: (i) the high frequency of QS among 

genome-sequenced bacteria (40% of 800 sequenced bacterial genomes contain the luxS gene 

suggesting that the Al-2 precursor functions as a universal signal (Pereira et al., 2008)) and, 

(ii) the discovery of signalling molecules in microbial metagenomic data. In addition, there is 

growing evidence that QS signals provide to bacteria more information than cell density. 

Surprisingly, the abundance of results on QS, biofilms and on cell-cell communication, at 

intra-species or inter-species levels have been analysed in the perspective of pathology 

(virulence, biofilm formation and control), biotechnology, synthetic biology (Hooshangi and 

Bentley, 2008), evolution (Keller and Surette, 2006; West et al., 2007), ecology (Nadell et al., 

2008) but seldom for cultivation purposes.  
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To account for CCC mechanisms in cultivation procedures remains a challenge due to our 

lack of knowledge on the cell-cell interaction requirements of targeted species. Considering 

the small fraction of prokaryotes cultivated, it seems likely that most cell-cell communication 

mechanisms are unknown. CCC mechanisms described up to now, like those classically 

observed with Vibrio harveyi, Pseudomonas aeruginosa and Escherichia coli, operate at high 

cell densities. We cannot exclude that some CCC mechanisms could also act at low cell 

densities (10
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2 to 104 cells/ml) to regulate cell growth of some species. In that case, it may be 

necessary to reconsider isolation procedures accordingly.  

Finally, one last reason for which prokaryotes remain uncultured is due to  enrichment-

isolation process whereby the abiotic interactions are broken down. This disruption of the bio-

geochemical factors, that collectively represent the environment, is a source of stress for the 

organisms from natural habitats. The depreciation of these bio-geochemical factors from the 

native extra-cellular habitats leads the experimentalists to design synthetic conditions which  

might introduce a stressful parameter or a main change in resource type or concentration. For 

example, a phenomenon similar to substrate-accelerated death might occur. Growth inhibition 

is observed when cells are suddenly grown in the presence of concentrations greater than 1-10 

μM of a given substrate (i.e. ammonia, phosphate or glucose) whereas they were previously 

starved of this substrate (Overmann, 2006). 

 

III- Cultivating the uncultured: future directions 

 There is current growing consensus among microbiologists that improvements are needed in 

microbial cultivation. A comprehensive understanding of the microbial world will 

undoubtedly require cultivation. It is clear that the keys of cultivation will not come from a 

single technological breakthrough but will depend on our  knowledge of the natural microbial 

systems. The numerous examples of successes in cultivation that we have mentioned in this 
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review demonstrate that through patience and advances in technology, cultivation is a 

surmountable obstacle for many organisms. We still have a lot to learn from pure culture 

microbiology, even ifthese isolates might display unnatural behaviours in the synthetic 

laboratory.. Pure culture microbiology still represents the best method to study microbial 

physiology including  detailed investigations on the role of genes, proteins, and metabolic 

pathways.. This is true since several unexpected physiological discoveries were made after 

isolation of novel species belonging to taxa presumed to be already well documented. In turn, 

these data provide important guidance for the optimization of cultivation media.  
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While several difficulties remain in cultivating microorganisms, future directions can be 

summarized as follows: refining culture medium, mimicking nature through in situ cultivation 

systems or designing devices supporting CCC, and developing automated procedures through 

robotics. Undoubtedly, combinations of these diverse approaches will yield successes in 

cultivation. 

 

1- Refinement of culture media 

Culture medium optimization will require the use of various complementary tools including: 

(i) the ability to define the range of electron donors, acceptors and key elements sources based 

on a better knowledge of the environment, (ii) molecular probes for screening novel species 

and, (iii) high-sensitive methods with low detection thresholds to uncover rare and slow-

growing species in culture. In the future, results from single cell genomics and metagenomics 

analyses will contribute to better isolation strategies for prokaryotes. 

 

2- Design of isolation strategies based on cell-cell interactions     

As seen previously, microbial landscapes are dominated by biofilms or aggregates. The 

isolation is not the preferred state of most Bacteria and Archaea. Despite the growing 
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knowledge on cell-cell signalling molecules, the  use of antibiotics and auto-inducers in 

culture is limited. Indeed, the vast majority of these compounds were characterized from 

microorganisms in pure culture, some of which were subsequently retrieved in metagenomic 

analyses. Metagenomics will yield numerous genes coding for novel auto-inducers or their 

precursors, but they will be classified as unknown genes until discovered in culture. Therefore 

it is not surprising that our previous analytical knowledge is hardly applicable to isolation 

procedures of novel species. For isolation of a strain, one way to preserve  the endogenous 

CCC mechanisms is to grow itin microbial community conditions, using bioreactors, either 

under planktonic stage, or incorporated in gel microdroplets (GMDs) (Zengler et al., 2002), 

or attached to a surface. So far, the community culture step is more often followed by an 

isolation step through various means: streaking, dilution-to-extinction, sorting (mechanically 

or by FACS). For the last method, single cells are distributed in wells or micro-wells filled 

with appropriate medium and incubated for further culture. The major drawback is that the 

appropriate medium used to grow the cells after the isolation step is different from the 

medium that supported growth in the community culture, and that all chemical CCC are 

suddenly disrupted. What is the impact on the cultivability of some strains? In order to 

address this question it seems necessary to design novel culture equipments. The easiest 

method would be to substitute culture microplates by micro-bioreactors in the Zengler’s 

method (Figure 3). In such a system, the flow from the community culture would nourish 

each well of the micro-bioreactor with all the metabolites produced by the community culture. 

This system would combine community culture and isolation. Further, it would allow for the 

circulation of chemical compounds in the micro-bioreactor, partly preserving cell-cell 

communication, even though physical cell-cell contacts would be disrupted. Since the 

community culture would operate as a black box for signalling compounds, we cannot 

exclude that some metabolites could have inhibitory effects. The benefits of such a 

459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

469 

470 

471 

472 

473 

474 

475 

476 

477 

478 

479 

480 

481 

482 

483 

 20



 

combination of enrichment culture and isolation remain to be assessed. By dissociating and, 

in a following step, combining community culture and isolation, this system could address the 

culture of consortia components and symbionts which are almost impossible to solve with 

current practices.  
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3- High throughput issues 

A quiet revolution occurred during the past decade in liquid handling applied to life sciences 

with the development of pipetting workstations. The main line of action was the reproduction 

at high throughput of manual procedures by pipetting robots. Culture medium distribution in 

micro-plate wells and inoculation of a single cell or GMD per well is now performed 

routinely by robots. The combination of GMD encapsulation and flow cytometry sorting is 

effective for aerobes (Akselband et al., 2006). Further, these studies show that some cells 

remain viable after staining and sorting, however these findings await confirmation. This 

remains a challenge for obligatory anaerobes especially due to the sorting step with flow 

cytometers. FACS equipment could be adapted to operate in anaerobic chambers, but might 

prove inconvenient and costly. The development of direct sorting of GMDs on liquid 

handling workstations would be an excellent alternative to avoid FACS analysis, to limit the 

cost of equipments and, to allow dissemination of these approaches in microbiology 

laboratories. What seems also to be certain is that the widespread use of high-throughput 

cultivation procedures implies the simultaneous development of affordable high-throughput 

identification procedures. 

 

4-Combination principle 

Microbiologists have long recognized that our understanding of the microbial world critically 

depends on the technological advances that broaden the knowledge-base for chemical, 
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biological and physical processes. Today, it is established that an integration of the 

knowledge from multiple hierarchical levels of organization and from the molecule to the 

ecosystem are also required. Despite these facts, most efforts in cultivation focused only in 

the optimization of a limited set of parameters. We are convinced that this situation will 

change in the near future for several reasons. First, a consensus is gradually emerging: culture 

is not only needed to describe randomly novel species as a function of researcher main field 

of interest. Culture appears more and more as the sine qua non condition for understanding 

how the microbial world functions and is a prerequisite to predict changes in the frame of 

global change. Secondly, it seems that the complexity of the microbial world emerging from 

the growing knowledge of genomic and proteomic advances can not be analyzed only by 

combining these approaches and relying on systems biology. Finally, the advent of 

automation in culture and the combination of innovative methods lead to a new era in 

cultivation, assuming that some specific equipments are developed to handle the cell-cell 

interaction mechanisms during the clonal culture phase. Combinations theoretically possible 

are detailed in Fig. 3. 
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 Ecosystems encompass abiotic conditions, living species and all their interactions 

(resource limitations, competition, predation, parasitism, among others). It is obvious that any 

cultivation attempt is by nature highly reductive and cannot reproduce the conditions 

observed in nature. The combination of existing methods and the development of novel 

approaches will help to come close to conditions where a significant fraction of microbes is 

amenable to culture (Fig. 2). 

 

Concluding remarks 

.  
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The extent of microbial diversity is still unknown and prokaryotes have undoubtedly many 

secrets to reveal. The success of microbial life on Earth stems from its great physiological 

diversity that collectively allows prokaryotes to derive energy from a wide range of redox 

reactions and to colonize several types of habitats; including the extreme ones. It is 

remarkable how much we have learned about microbial life by studying only a small fraction 

of its diversity. New examples of microbial ingenuity were recently discovered due to 

cultivation, either independently or in combination with metagenomics. There are still 

important essentials hidden in the 99.9% of the microbial world that are not yet cultured. 

They might change our understanding of biochemical processes, redox reactions, 

physiological adaptations and microbial behaviours. We postulate that in the future major 

advances in the understanding of microbial life will be achieved by innovative approaches in 

cultivation, but not cultivation alone. Coordinated efforts of researchers studying microbial 

systems at different levels should guide us to rethink culture strategies and to design growth 

conditions as close as possible to the natural interactions and conditions. In conclusion, the 

different cultivation successes discussed in this review demonstrate that contrary to widely 

held beliefs, many prokaryotes can be cultivated. In view of the gap between the number of 

phylotypes with or without representative cultured species, an additional question arises: is 

there a need to define relative priorities between phylotypes? The division amongst 

microbiologists at the international realm suggests that a consensus is not possible. The only 

consensus that could emerge, and successfully funded, is the need to investigate novel 

cultivation approaches, to develop new equipments and bring microbial cultivation in the 21

533 

534 

535 

536 

537 

538 

539 

540 

541 

542 

543 

544 

545 

546 

547 

548 

549 

550 

551 

552 

553 

554 

555 

556 

557 

st 

century as a technologically advanced and a data rich discipline. 
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Fig. 1. Numbers of phylum-level divisions (phyla with cultivated members + candidate 

divisions with no cultivated representative) identified since 1987 among Bacteria (black line) 

and Archaea (grey line), and numbers of phyla with cultivated representatives (dotted lines). 

Adapted from Achtman & Wagner (2008).     
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Fig. 2. Schematic representation of the four main categories of cultivation strategies. The 

small black circle schematizes the minor fraction of a naturally occurring microbial 

community that arerecovered onto conventional selective media, the so-called “Great Plate 

Count Anomaly”. Improved cultivation strategies developed so far aimto enhance one or few 

aspects of growth conditions among four main categories (represented by four bullets) and 

each allowed individually recovering more numerous and/or more diverse isolates than 

traditional approaches. None of these improved approaches is universal. We postulate that the 

combination (“the combination principle”) of already existing methods belonging to these 

four categories will help to come close to conditions where a significant fraction of microbes 

is amenable to culture.  
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Fig. 3. Schematic diagram of cultures and isolation procedures based on the combination 

principle. 
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Abbreviation: GMDcc: community culture of microbial cells incorporated in gel micro-

droplets   

A: GMD community culture followed by sorting and micro-plate cultivation (From Zengler et 

al., 2002, modified). 

B: flowthrough culture in parallel micro-bioreactors nourished by community culture medium 

and metabolite products. Micro-plates are replaced by micro-bioreactors directly connected to 

the GMD community culture. This system can be operated in aerobic or anaerobic conditions. 

Micro-bioreactors (either 96 or 384 parallel channels SBS format) and flowthrough 

equipments awaiting development. 

C: GMD and micro-bioreactors (384 channels) coupled in a nearly theoretical 10000 parallel 

channels configuration.  
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