
Chapter 31
Cultivating Urban Big Data

Ningchuan Xiao and Harvey J. Miller

Abstract Urban big data often contain spatial and temporal elements that have
increasingly become an integral part of various applications and projects such as
smart mobility, smart city, and other digitally enhanced urban infrastructure. It is
critical to develop an open and collaborative environment so that these data can be
used by a wide range of users. This chapter first discusses some characteristics and
sources of urban big data. Three hypothetical user stories are described to highlight
the potential of these data. After describing the internal data structure of these data
and techniques that can be used to retrieve the data, we discuss the difficulty in
making the data useful for the general public and elaborate on a self-organizing agile
approach to developing an urban big data infrastructure.

31.1 Introduction

Big data are one of the most popular topics of the past decade (Marr 2015). The
concept of big data has evolved beyond the original context as a buzz word into
the reality of daily life and has shown tangible values for businesses, governments,
research communities, and the general public (Kim et al. 2014; Günther et al. 2017).
Informally, big data refer to the vast amount of data that are generated, collected, or
distributed at a high frequency or speed. More formal definitions of big data vary
widely in the literature (Mergel et al. 2016), and researchers have generally agreed
that big data all share certain characteristics, including volume, variety, veracity,
velocity, and value (Chen and Zhang 2014).

Urban areas are a significant playground where multiple players are engaged in
the generation, storage, and applications of big data (Kitchin 2014). For much of the
urban population, big data have become an integral part of their daily lives. Many
technological, economic, and demographic factors have contributed to this rapid
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growth. Various sensor technologies used in domains such as environmental moni-
toring and shared transportation means are the data sources that provide continuous
feeds (Cuff et al. 2008). These sensors have been connected through a network that
forms what is dubbed the Internet of things or IoT (Atzori et al. 2010). In an urban
area, the IoT plays an especially important role in everyday life because the so-called
things in the IoT includeboth physical objects such asGPSdevices and environmental
sensors, and also people who are equipped with sensors that can provide information
about the location and surrounding area of the person. In many cities around the
world, public transportation systems have increasingly applied GPS to allow more
accurate and accessible transit to their residents. For example, many public transit
agencies instrument their vehicleswithGPS receivers and share these data publicly to
support real-time bus tracking and arrival applications. In the meantime, passengers
of these transportation systems use new ticketing methods such as smart cards to pay
the transit fare, which also allows the transportation authorities to record and track
their movements. In addition, citizens in urban areas have become a special kind of
sensor (Goodchild 2007). These “sensors” have multiple ways of generating data.
For example, theymay provide spatial and temporal data using technology developed
by commercial companies, as in the case of Google Traffic, in exchange for services
(Heipke 2010), or they collect data about gas prices or traffic and exchange them
with companies such as GasBuddy orWaze for rewards or other types ofmembership
benefits (Boulos et al. 2011). Telecommunication companies have established vast
databases that contain user identities and spatiotemporal activities. Cell phones have
been mostly replaced by smartphones where the original function of making phone
calls has been reduced tomerely one of a huge number of uses relying on the network
provided by the telecommunication companies, where many of the other functions
are enabled to track the user’s location.

Urban big data generated through sensor technology have all the characteristics of
big data in general, but more critically they have their own features. First, urban big
data involve a wide range of users from the general public to those in private services.
It is important to recognize that these groups of people are active in multiple roles
in the entire ecosystem of urban big data, including the phases of data generation,
maintenance, storage, and usage. The users of the data, for example, also contribute
to the generation of the very data they are using, as in the case of GasBuddy1 where
members report gas prices at different stations and also use the information provided
by the Web service. Second, urban big data always have a geographic footprint as
the data must relate to an urban extent. This is different from other big data sources
(e.g. Web search and tweets without geotags) where the geographic dimension is
not salient. Along with the spatial dimension, urban big data also have an important
and sensitive temporal dimension as many applications depend on the time stamp
of the data (e.g., real-time bus information is important for users to schedule activi-
ties around bus operations). Third, urban big data as a whole are often ill-structured
because many data sources often do not coordinate their data generation and collec-
tion efforts. Data tend to exist in a loosely managed environment where a particular

1www.gasbuddy.com.

http://www.gasbuddy.com
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data set may not be connected to other data sets and may not be known to other
groups of people.

The purpose of this chapter is two twofold: We provide an overview of urban
big data and discuss the technical aspects how data can be made useful for various
purposes. We specifically focus on the part of big data within the urban context
as described above. The remainder of this chapter starts with a discussion of data
sources. We then discuss the elements of the data, followed by several hypothetical
user stories. On the technical aspects of urban big data, we discuss several data-
collecting techniques and then extend the discussion into the needs and requirements
for developing an urban big data infrastructure.

31.2 Sources of Urban Big Data

Urban big data come from a wide range of sources, and it may not be straightfor-
ward to categorize these sources. For example, in a study of the characteristics of
26 data sets (Kitchin and McArdle 2016), seven types were used to categorize the
data sets, including mobile communication, Web sites, social media/crowdsourcing,
cameras/lasers, transactions of process-generated data, and administrative. Not all
these data have the urban context. Here, we group big data sources by the type of
data providers, which can be from private or public sectors. In addition, we also
recognize the types of data that are generated voluntarily. Each data set can be open
to the public to use or may be protected so that only authorized users can access
it. The distinction between open and protected data is important, especially for the
urban context, as many data sources may have limited uses because they are difficult
to share among potential users of the data. Table 31.1 lists a number of example

Table 31.1 Example sources
of urban big data

Provider Open Protected

Private Bike sharing Bike sharing
Mobile phone calls
Surveillance camera and
CCTV
Health data

Public Real-time bus
operation
Census data
LiDAR and remote
sensing
Traffic cameras and
CCTV
Air pollution sensors

Public transit usage
Individual survey
Public health data

Volunteers Social media
Community sensor
network

Social media
Health data on mobile
devices



550 N. Xiao and H. J. Miller

data sets for each category. The purpose of listing these examples is to give a brief
overview of possible and practical data sources.We note that these are merely a small
sample as different cities in different counties will certainly have more sources.

The private sector generates a huge amount of data on a daily basis. We only
list a few examples that are more related to the urban context. Popular bike-sharing
companies, for example, provide both open and protected data. The open slice of the
data may include the number and locations of bike stations, and available bikes and
docks at each location, while the protected part results from tracking the movement
of each individual bike along with information about customers. Some companies
(e.g. Waze) may choose to release an aggregated version of their individual data in
the form of averages over space and time as the open part, while protecting the actual
individual data. It is obvious that private companies have been collecting such data
sets as phone calls, surveillance, and individual health information. These data are
highly protected due to privacy laws and even the need tomaintain good relationships
with the public (Chap. 32).

Urban big data from sources in the public sector cover a variety of domains such
as demography, transportation, environment, and public health. These data are not
necessarily open to the general public due to privacy concerns. For example, while
many municipal services provide public transit data (e.g. bus operations), individual
usage of bus data that can be obtained through the records of bus passes is often
protected. The duality also applies to census data, where the aggregated version
of the demographic, housing, and economic data is open to the general public, but
individual surveys are tightly guarded.

The third type of data source includes individuals or groups who volunteer their
own data for various uses. These providers generate their own data as they are them-
selves sensors (Goodchild 2007; Chaps. 28 and 29), which is different from the
other two provider types where data are passively collected. A significant source in
this category is the social media data. Tweets, for example, can be harvested using
different licensing policies granted by Twitter. While the users generate the data,
they do not necessarily own their own data, and not all social media data are open
to the public. Other important kinds of volunteered data are those generated by the
general public using various sensors. One of the prominent examples is the use of
affordable air quality sensors (Kumar et al. 2015), and the users of these sensors can
share their data to form community sensor networks (Yi et al. 2015). Though the
quality of such data may be questionable (Lewis and Edwards 2016), they have been
used for mapping2 or other analysis.3

2www.purpleair.com/map?#1/25/-30.
3www.citylab.com/environment/2018/07/cheap-sensors-are-democratizing-air-quality-data/563
990/.

http://www.purpleair.com/map%3f#1/25/-30
http://www.citylab.com/environment/2018/07/cheap-sensors-are-democratizing-air-quality-data/563990/
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31.3 User Stories

Let us consider three user stories of urban big data. These stories are hypothetical,
but they do represent some of the examples we have encountered in our previous
applications. They are not limited just to the data but extend to the entire ecosystem
of urban big data that includes, in addition to data, the software systems as deployed
in a hardware or network setting. We assume the existence of the data, and we aim
to demonstrate how such data can be used in meaningful ways to address real-life
problems. These stories are based on examples from experiences in the USA, but we
believe it is possible to find relevant examples in other countries. We note that we use
the term user story instead of use case for a specific reason, as use cases are a software
engineering term that requires more formal description of the system. However, in
this chapter, as will be discussed later, the specific requirements of the data usages
will be difficult to define, and we argue that an agile method is more suitable. More
discussion about the agile method will be presented later in this chapter.

The first user story involves a resident, Jon, in an urban area. Jon plans to invite
a few of his friends to a party over the weekend. He has a few requirements for the
party venue. His friends like biking, and he wants to use the bike-sharing system so
that his friends can rent bikes for some fun riding. The party location needs to have
sufficient available bikes and be close enough to the trails. Not all of his friends have
cars, so Jon must consider a place that can be accessed by public transit or only by
biking. He also desires the place to be close to some respectable restaurants for a
happy hour after the ride. There is no existing app that will help Jon plan the event.
But Jon is data savvy and can use the openly available data and mapping tools to
put together some candidate locations. He can also use historical data to tell roughly
what will happen in the weekend. He then shares what he has found with his friends
before he finalizes the party venue.

The second user story involves a group of individuals who are interested in the
city’s development direction. They are busy with their own daily work, and it is hard
for them to find a good time to have face-to-facemeetings.Most of their activities rely
on the use of online communication tools. Recently, the county planning authority
posted a statement that gives the overall environment of the county a low rating. But
the group does not feel this rating fairly represents the progress the county has made
over the past few years and would like to give the overall environment another look.
Two group members, Rachie and Lieta, are especially critical of the county’s rating.
Rachie is interested in air quality, and he is able to collect official air quality data
and unofficial, open-source data for the past year. These are daily average data. Leita
works onwater quality, and she acquires some environmentalmeasures for the gauges
in the major streams and lakes within the county. These are again daily averages.
They make the data sets available on the group Web site where the members can see
the maps and the dynamics of each of the environmental factors. In the discussion
board, the group members eventually conclude that it is incorrect and unfair to use a
single rating to represent the overall environment quality, and they will present their
findings in a hearing.
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A third user story involves, again, a group of citizens who are dissatisfied by the
congressional redistricting plan put forward by the state commission. They believe
the plan is biased toward a political party, even though the commission has clearly
stated their anti-gerrymandering stance. The group collected population data at the
census block level and voters’ data to support their arguments that while the official
plan has the overall population evenly divided into the congressional districts, the
voters of one of the political parties are strongly concentrated in one district and
diluted in others, which gives the other party the edge in the majority of districts.
The group also wants to further their argument by establishing that there are multiple
alternative plans that can be considered to be equally good. While there are software
packages that can be used to generate different kinds of alternative aggregations, they
also need to use different demographic and other social and economic data at various
spatial resolutions. More importantly, the group uses the alternatives generated by
the software and then each group member will start to modify those plans manually
to create their own plans. The group members will then share their plans on an online
platform that allows them to compare and even synthesize new plans.

Clearly, these user stories involve more than just data. For example, software
tools and Web-based applications are essential, and developing those tools is a
great challenge. However, it is also clear that data are the cornerstone of the entire
ecosystem.

31.4 Elements of Urban Big Data

Urban big data exhibit different forms due to the standard chosen to suit the preferred
application. For example, a public transit agency may tend to release data using the
popular standard called the General Transit Feed Specification (GTFS, discussed
later in this chapter). However, we can decompose the data into its smallest items
where each can be formulated as a space–time–attribute (STA) tuple of three elements
d = (x, t, a), where x is the location or a representation of location of the data item,
t is the time stamp to indicate when the observation of the data item occurs or is
released, and a is a set of attributes that are associated with the data item.

The above encoding strategy is similar to that of a geo-atom (Goodchild et al.
2007). Here, we separate location and time and relax the way location and attributes
can be represented. Location can be explicitly recorded using either a set of coordi-
nates or a set of indicators such as identification numbers that can be used to uniquely
refer to locations (see examples below). The attributes associated with the location
and time together are a set that is considered as one item in the tuple. This can be done
by formatting an attribute as an object formed by a pair of the name of the attribute
and the actual value. For example, an attribute of a specific PM2.5 measure can be
formed as {PM2.5: 65}.Multiple attributes can be put together in the samemanner as
{PM2.5: 65, Ozone: 35}, a format commonly used in many data encoding strategies
such as JavaScript Object Notation (JSON) that is supported in many programming
languages. Putting everything together, an example of ((−83, 40), Mon Jul 01 2019
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23:52:00 GMT + 0800 (CST), {PM2.5: 65, Ozone: 35}) encodes two air quality
measures at a location in Columbus, OH on Monday, July 1, 2019 at 11:52 PM.
Another example is (101.1, 2010, {total: 1200}), indicating a total (population) of
1200 for census tract 101.1 in the year of 2010.

AnSTA tuple can be viewed as a special kind of observation that occurs at a certain
time and location. The big data for an urban area is a set d for all available locations
and time periods in the area for the kinds of attributes that can observed or collected.
This data model can be used to represent different spatial and temporal phenomena.
For example, air quality of anurban area canbe representedby a sequenceofmeasures
at a number of air quality stations, where each station is marked by its coordinates.
Air quality as a geographic phenomenon is a field where observations are possible
at any point in space. However, as far as data are concerned, we often resort to
discrete data points to represent the phenomenon. For areal data, locations can be
represented by the identification numbers or other indicators. For example, different
demographic data can be collected for census tracts for multiple years, where each
tract is represented by an identification number. The actual geometry (shape and its
corresponding coordinates) may not be crucial for the data collection purpose as
each tract can be uniquely identified and referred to geographically through another
data set containing the coordinates. Similar examples can be found for phenomena
on linear features such as water quality measures along a stream, where discrete
locations are used for observations.

An interesting case is social media data, which occur in huge volume and at high
speed. Such data can still be captured using the STA tuple of three elements, where
each social media event (such as a tweet, a Facebook post, and a weichat post) always
has the time, location (though it may not be shared), and attribute (the content as in
text or a mixture of multiple formats). Another example in the same manner is the
vast volume of Web pages. While the location of a Web page may not seem to be
essential, each Web page can be assigned a location since each will ultimately be
either hosted by a Web site that has a physical and meaningful geographic location
or created by a person at some location.

31.5 Data-Collecting and Processing Techniques

Urban big data can be obtained using variousmethods.Many data providers typically
offer an application program interface (API) that allows users to collect the data
through Internet connections. The APIs may have different constraints in terms of
how data can be collected. In general, data providers have full control of how their
data can be collected. For example, Twitter uses layers of data-streaming policies,
where the free and public license only provides a tiny portion of the tweets, and the
way those small numbers of tweets are sampled is not clear to users (Morstatter et al.
2013). Some other data providers, on the other hand, make their data more open. For
example, many public transit systems use a particular data protocol to make their
schedule and real-time vehicle positions available. In this section, we show how
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to stream urban big data using two examples. We focus on open data here, though
similar techniques can be applied to more restricted data sources.

The first example is the public transit system. A commonly used format for public
transit data (schedules and updates) is theGeneral Transit FeedSpecification orGTFS
(Harrelson 2006). Since its invention in 2005, GTFS has become the standard for
publishing public transit data by agencies such as TriMet in Portland, OR, and BART
in San Francisco, CA, to bring data to the general public (McHugh 2013). GTFS data
have also been incorporated into Google Maps, where users can find real-time transit
information on a common platform. The actual data structure of GTFS consists of
multiple text files in comma-separated values (CSV) format. Google also provides a
Python package called google.transit,4 where the gtfs_realtime_pb2
module can be used to help extract information fromGTFSwithout having to directly
handle the text files.

The transit agency in Columbus, OH, Central Ohio Transit Authority (COTA),
uses GTFS to publish the bus schedule and real-time information for bus trips and
its vehicle positions. To retrieve data for vehicle positions, we first use the following
four lines of code to import the necessary Python modules and request to open an
online GTFS database. In the fourth line, the file called VehiclePositions.pb
is not the database itself, but a Google Protocol Buffer that describes the structure of
the data and the necessary encoding/decoding methods of the data.

>> from google.transit import gtfs_realtime_pb2
>>> import requests
>>> import datetime
>>> response = requests.get(’http://realtime.cota.com/\

TMGTFSRealTimeWeb Service/Vehicle/VehiclePositions.pb’)

Now, we can establish the feed from the actual database and read the actual data
using the following code:

>>> feed = gtfs_realtime_pb2.FeedMessage()
>>> feed.ParseFromString(response.read())
>>> print(len(feed.entity)) 182

There were 182 buses at the time of running the code, among which the first bus
can be examined using the following code:

>>> bus = feed.entity[0]
>>> bus
id: ”1001”
vehicle {

trip {
trip_id: ”665028”
start_date: ”20190722”
route_id: ”001”

}
position {

latitude: 39.944339752197266

4https://developers.google.com/transit/gtfs-realtime/examples/python-sample.

https://developers.google.com/transit/gtfs-realtime/examples/python-sample
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longitude: -82.86833953857422
bearing: 270.0
speed: 7.93974322732538e-06

}
timestamp: 1563818766
vehicle {

id: ”11001”
label: ”1001”

}
}
>>>
d = datetime.datetime.fromtimestamp(bus.vehicle.timestamp)
>>>d.strftime(“%h %d, %Y, %H:%M:%S”)
‘Jul 22, 2019, 14:06:06’

Along with the position of the vehicle, the data also include the trip ID on which
the vehicle is currently running and the vehicle ID, and it will be straightforward to
use an STA tuple to encode this information. The default timestamp uses the epoch
time, and the last two lines of code show how to convert it into calendar date and
time.

We can run the same code after a few seconds, and below is the result. The
following examplewas obtained exactly 20 s after the previous result and the position
has also changed, while the bus was running on the same trip.

id: ”1001”
vehicle {

trip {
trip_id: ”665028”
start_date: ”20190722”
route_id: ”001”

}
position {

latitude: 39.94470977783203
longitude: -82.87486267089844
bearing: 270.0
speed: 8.457552212348673e-06

}
timestamp: 1563818786
vehicle {

id: ”11001”
label: ”1001”

}
}

While the vehicle position feed provides real-time data about bus location, detailed
information about bus stops must be obtained from another real-time feed. The
following example uses a similar procedure to retrieve real-time stop information.

>>> response = requests.get(’http://realtime.cota.com/\
… TMGTFSRealTimeWebService/\
… TripUpdate/TripUpdates.pb’)
>>> feed = gtfs_realtime_pb2.FeedMessage()
>>> feed.ParseFromString(response.content)
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Below we explore some information about the first trip. The following example
reveals the information about the trip and the vehicle that was currently operating on
this trip. This corresponds to the bus information from our previous example.

>>> feed.entity[0].trip_update.trip
trip_id: ”665028”
start_date: ”20190722”
route_id: ”001”
>>> feed.entity[0].trip_update.vehicle
id: ”11001”
label: ”1001”
>>> len(feed.entity[0].trip_update.stop_time_update)
74

There are 74 stops made on this trip so far, and we look at the first two stops:

>>> feed.entity[0].trip_update.stop_time_update[0]
stop_sequence: 9
arrival {

time: 1563818515
}
departure {

time: 1563818515
}
stop_id: ”LIVNOEW”
>>> ft.entity[0].trip_update.stop_time_update[1]
stop_sequence: 10
arrival {

time: 1563818711
}
departure {

time: 1563818711
}
stop_id: ”LIVCOUNW”

Based on the difference in departure times between the two stops, the data show
that the bus arrived at the second stop (coded “LIVCOUNW”) after 156 s (3.3 min).
Each stop has its unique code, and COTA maintains a master file for all the stops,5

where each stop is associated with a set of attributes that include the address and
coordinates.

With the above examples, it is clear that at a specific time and location, each bus
is associated with certain attributes such as the trip information and speed, which
can be encoded as an STA tuple. The same can be said about stops that are made
by the busses. We can then write a program that automatically requests the real-time
data for bus positions and stop updates at a desirable time interval (every second, for
example). The information retrieved can then be recorded in a database where each
record is an STA tuple (x, t, a). For the buses, for example, each record contains fields
such as latitude, longitude, timestamp, vehicle ID, trip ID, bearing, along with any
other information that is deemed to be useful. For each stop, we can do the same by

5https://github.com/joeshaw/cota-bus/blob/master/cota-gtfs/stops.txt.

https://github.com/joeshaw/cota-bus/blob/master/cota-gtfs/stops.txt
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recording fields such as the coordinates, arrival and departure times, trip ID, vehicle
ID, and stop ID. The accuracy of the database is partly dependent on the time interval
of data collection. A one-minute time interval may be sufficient for the purpose of
information visualization and some analysis, and a smaller interval will be needed
if we aim to provide real-time service to the general public for tasks such as trip
planning that require higher accuracy.

The Environmental Protection Agency (EPA) of the USA maintains a network
of air quality sensors across the country. EPA also provides an API to allow users
to access air quality data.6 This API provides a Web service based on a software
architecture called REST (Richardson and Ruby 2008) that supports the use of a
URL to query a database in order to retrieve data. For example, the following URL
specifies the time frame, geography boundaries, and environment variable, along
with other necessary parameters. The last parameter must be replaced by an actual
API key that can be applied from the Web site.

https://airnowapi.org/aq/data/?
parameters = pm25&
bbox = -83.368244,39.586371,-82.269611,40.344184&
startDate = 2019-05-19T03&endDate = 2019-05-19T04&
DataType = B&format = application/json&verbose = 1&
API_KEY = XXXX

This request will return the following data formatted in JSON. It shows that during
the two-hour time frame specified, there are two PM2.5 sensors at two locations, and
their data (e.g., locations, values, air quality index values) are provided. Again, we
can write a program that automatically and repeatedly retrieves information like the
above as STA tuples and store them into a database.

[
{

”Latitude”: 40.11109, ”Longitude”: -83.065376,
”UTC”: ”2019-05-19T03:00”,
”Parameter”: ”PM2.5”,
”Unit”: ”UG/M3”, ”Value”: 14.8, ”AQI”: 57, ”Category”: 2,
”SiteName”: ”Columbus NR - Smoky Row”,
”AgencyName”: ”Ohio EPA-DAPC”,
”FullAQSCode”: ”390490038”, ”IntlAQSCode”:

“840390490038”
},
{

”Latitude”: 40.0845, ”Longitude”: -82.81552,
”UTC”: ”2019-05-19T03:00”,
”Parameter”: ”PM2.5”,
”Unit”: ”UG/M3”, ”Value”: 12.2, ”AQI”: 51, ”Category”: 2,
”SiteName”: ”New Albany”,
”AgencyName”: ”Ohio EPA-DAPC”,
”FullAQSCode”: ”390490029”, ”IntlAQSCode”:

“840390490029”
},

6https://docs.airnowapi.org.

https://docs.airnowapi.org
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{
”Latitude”: 40.11109, ”Longitude”: -83.065376,
”UTC”: ”2019-05-19T04:00”,
”Parameter”: ”PM2.5”,
”Unit”: ”UG/M3”, ”Value”: 14.7, ”AQI”: 56, ”Category”: 2,
”SiteName”: ”Columbus NR - Smoky Row”,
”AgencyName”: ”Ohio EPA-DAPC”,
”FullAQSCode”: ”390490038”, ”IntlAQSCode”:

“840390490038”
},
{

”Latitude”: 40.0845, ”Longitude”: -82.81552,
”UTC”: ”2019-05-19T04:00”,
”Parameter”: ”PM2.5”,
”Unit”: ”UG/M3”, ”Value”: 12.1, ”AQI”: 51, ”Category”: 2,
”SiteName”: ”New Albany”,
”AgencyName”: ”Ohio EPA-DAPC”,
”FullAQSCode”: ”390490029”, ”IntlAQSCode”:

“840390490029”
}

]

The raw data collected in the above examples aremerely STA tuples of the form (x,
t, a) and must be processed to support purposes such as analyzing urban traffic status
or mapping density of air pollution. In a bigger context, this is an area of data mining
of big data (Vatsavai et al. 2012). In our example of using the GTFS feeds, two kinds
of real-time raw data are acquired: vehicle positions and stop updates. Among all the
GTFS text files, the file called stop_times.txt is used to store the bus schedule
for all routes, containing detailed arrival and departure time as scheduled for each
stop on each trip. By comparing the real-time trip updates of the actual arrival and
departure time of each trip with the scheduled times, it is possible to compute the
delay of each bus and conduct further analysis of how the delays propagate along the
trip (Park et al. 2019). It is also possible to visualize the discrepancy in places that
can be reached by the scheduled and actual buses (Fig. 31.1).

The above data collection examples show the general procedure of harvesting
urban big data and the considerations of storing them in spatiotemporal databases.
There are of course many other sources for urban big data that are designed for
different purposes (e.g. Twitter data). Though these data sets differ in technical details
such as data format and APIs, it can be argued that STA tuples can be used to capture
most (if not all) of these data sets. To this extent, from a data perspective alone, it
suffices to say that the data are “out there” for users to use. The real andmore difficult
challenge is how to make these data accessible to all.

31.6 Toward Urban Big Data Infrastructure

Urban big data as described above have the necessary elements to support the user
stories described in the previous section of this paper. These data sets are also rela-
tively straightforward to obtain. However, it should also be clear that the ecosystem
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Fig. 31.1 Visualizing the difference between the scheduled stops (blue) and those that were actually
reached (red) in a one-hour time frame from a given location (black pin icon). Source http://curio.
osu.edu/transit_access/

of urban big data does not always suit regular users from the general public, who
are often not trained to be as data savvy as the experts who generate the data. The
difficulty these regular users may face can be as simple as where to find the data
and as complicated as how to use them. These are the major limitations that make it
difficult for the data to be accessible to a wide audience.

To address these problems, we advocate the idea of urban big data infrastructure
under the spirit of data for all. The concept of infrastructure refers to the ubiquitous
availability of resources such as electricity where a person, who does not need to
be an electricity expert, can use it by simply plugging in. We would ponder if it is
possible for a regular user to find a desired spatiotemporal data set by specifying
it instead of by carrying out a process of searching and coding. For example, is it
possible to ask a virtual assistant (e.g. Apple’s Siri) on a smartphone to find the
spatiotemporal data set by giving a description of the data? In the remainder of this
section, we review some methods that may shed light in the future development of
such an infrastructure.

There are a few existing methods that can be used to address some of the issues
mentioned above. A geoportal (Tait 2005), for example, is designed as a gateway to
serve geospatial data on a Web-based platform. More specifically, a geoportal can
be used to allow users to do the following tasks:

• Discover geospatial data based on a catalog of the datamaintained in the geoportal.
• Provide useful information about how to use each of the geospatial data sets.

http://curio.osu.edu/transit_access/
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• View and map the data sets discovered.
• Automatically harvest (collect) online data sources and store them in the geoportal

for further uses.
• Provide data using various data query techniques such as REST, GeoRSS, and

KML.

The implementation of a geoportal requires work on the server side and is suitable
as a solution to data needs at the enterprise level. Ideally, by logging into a geoportal,
a user can find relevant data sets and explore the properties of those data through
mapping, tabulating, or simply describing the data. However, these geoportals are
usually developed for data experts to use instead for the regular users, who may not
have the necessary skill sets in understanding the portal and navigating the numerous
data sets served. It is also difficult to expect users to develop their own geoportals or to
develop data sets within existing portals. In this sense, the ultimate users (the general
public in our case) are entirely at the mercy of the data experts or data enterprises.

Another approach is spatial data infrastructure (SDI). The term often involves
technologies for data collection and retrieval, along with metadata, as well as poli-
cies that promote access to spatial data. For this reason, SDIs are not technological
solutions to data problems butmore of a social and political response to the data needs
that emerge from communities at different scales. In an ideal situation, implementing
an SDI requires the efforts of government agencies, the private sector, representatives
of the general public, and even members of academia. In the past, SDIs have been
effective in consolidating traditional data sets such as the cadastre, national base
maps, large-scale topographic maps, and remotely sensed images. While it is well
recognized that the success of SDIs is critically dependent on how the users, citizens,
and institutions are engaged, their involvements have been a significant challenge
(Erik de Man 2006; Elwood 2008). It should be noted that a major portion of the SDI
literature is focused on the technological aspects, especially taking a GIS-centered
perspective (Maguire and Longley 2005; Steiniger and Hunter 2012; Evangelidis
et al. 2014; Helmi, Farhan and Nasr 2018). Through such a technological perspec-
tive, unfortunately, the concept of SDI tends to be reduced to merely a form of GIS
or geoportal.

We argue that it is necessary to develop an urban big data infrastructure in order
to address the issues discussed above and to fulfill the goals of using the data as
mentioned in the user stories. The technical aspects of such an infrastructure, though
still challenging, can be relatively straightforward, as much of the effort has already
focused on how to utilize the technology in getting the data and making the data
accessible. For example, the development of geoportals has already demonstrated that
various data can be incorporated in commonly used formats and standards for users
to discover and use. Many geospatial database management systems (e.g. GeoServer
and Esri’s geoportal) can be used to harvest data from different sources. More impor-
tantly, these systems typically also support data discovery. For example, Catalogue
Services7 is a specification standard proposed by the Open Geospatial Consortium

7https://www.opengeospatial.org/standards/cat.

https://www.opengeospatial.org/standards/cat
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(OGC) and has been supported by major software systems such as GeoServer8 and
Esri’s geoportal.9

The fundamental challenge of developing urban big data infrastructures goes
beyond the technological domain: It is the often ill-defined relationship among data,
data providers, data users, and software developers and vendors that makes it difficult
for such an infrastructure to be effective, as shown in the case of SDIs. From an
engineering perspective, this challenge is due to the changing requirements as new
user stories emerge whenever new data sources or new technology become available.
There is no silver bullet that will solve all the problems. Instead, it is important to
understand that a fully functional urban big data infrastructure (or SDIs at a lesser
level of difficulty) takes time and must wait for collaborations to emerge.

We envision an agile process (Stellman and Greene 2014) where all parties
involved in the use and production of urban big data will constantly engage with
each other and revise any previous understandings about the data, even though the
understandingsmay be preliminary and sometimes trivial at the early stages of devel-
opment. A top-down approach to developing the infrastructure is bound to fail since
such an approach is typically dependent on well-defined requirements, as shown
repeatedly in the history and literature of software engineering (Sommerville 2016).
The strong social and human aspects of urban big data infrastructuremake it natural to
consider an agile approach that stresses how the development process should actively
engage with the system (data) users (Stellman and Greene, 2014). A typical agile
development process starts from user stories that roughly but meaningfully describe
the fundamental requirements of a system but often do not specify the details of
how the system should be run and built. In order for the project to advance, the end
user or client must constantly be involved in the process and provide feedbacks so
that the requirements can become increasingly clear. Lack of user involvement will
cause adverse consequences to both the team and the project (Hoda et al. 2011). User
involvement in turn helps the developers understand the direction of the project and
enables them to work together with the users, toward the end product.

Among the many agile methods, self-organizing agile methods are a promising
recent development that have gained much recognition (Hoda et al. 2012) and
can be especially suitable for the development of urban big data infrastructures.
Researchers have studied the potential of such an approach from different perspec-
tives, including organizational theory that focuses on how organizations may learn
from past experience (Morgan 1998) and complex adaptive systems that show how
feedback among individuals can help the system evolve (Lansing 2003). In addition
to the customer/user, a regular agile team includes a product owner who maintains
a close relationship with the customer and plays the role of a stakeholder, a coordi-
nator (scrum master) who operates the daily routines of the team and keeps the team
together, and teammembers who are dedicated to work on various parts of the project
with a strong leadership from the coordinator and product owner. In the case of a self-
organizing agile method, a team may still have those roles among team members,

8https://docs.geoserver.org/latest/en/user/services/csw/index.html.
9https://www.esri.com/en-us/arcgis/products/geoportal-server/overview.

https://docs.geoserver.org/latest/en/user/services/csw/index.html
https://www.esri.com/en-us/arcgis/products/geoportal-server/overview
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but is a more autonomous group where the role of each member may change. A
strong point of such an approach is that decisions about the project are made not by
the product owner but more spontaneously from the collaborations among all team
members, and more importantly with the customer (Hoda et al. 2011).

The key aspect of a self-organizing agile process is the collaborative leaders who
play the most critical role. In the agile literature, these are team members who act
as mentors and coordinators. Mentors are not bosses because they do not make
decisions; instead, they are coaches who provide guidance and support the team’s
confidence. Coordinators are essential too because they work directly with users in
order for the development to be on the right track as the users require.

Self-organizing agile methods are promising, and it should be noted that the
development of an urban big data infrastructure will not emerge just because there
are demands from users and data experts. Strong bonds between them are important,
and leadership is required.We do not imagine that an infrastructure can be developed
over just a few projects where big data are involved. Instead, given the fact that SDIs
are still far from being functional despite the efforts of the past three decades (Erik de
Man 2006; Grus et al. 2010), it is reasonable to believe that a fully functional urban
big data infrastructure will also take a long time to materialize. However, with strong
and collaborative leadership formed through the bond between the user (demand)
and the developers (skills), it is possible to evolve the infrastructure through multiple
projects where data and knowledge derived from the use of data will accumulate.
An open and collaborative environment will be especially useful at the urban scale
where similar tasks may repeat in different urban areas and therefore good practices
can be adopted and improved through time.

31.7 Concluding Remarks

Urban big data have exhibited potential in helping us to better understand the city and
make better and informed decisions. Such data have a wide range of sources, and the
technology to retrieve the data is relatively straightforward. However, the social and
human aspects have made the use of the data by the general public a real challenge.
Cultivating urban big data requires long-term planning and sustainable collaboration
between many parties. It is not reasonable to expect silver bullet solutions.

Technology aside, data have become the cornerstone of an ecosystem that is
sustained by a chain of users, developers, companies, analysts, and investors. The
roles of each player in this ecosystem are not the same as in the old economy.
For example, while users are still using the services provided by companies such
as Google and Facebook, they also contribute to data collection through using the
Internet (e.g. conducting searches or posting on social media). To some extent, this
era of urban big data is also an era where users act as products. Schneier (2015)
describes the relationship between the (private) data provider and users as a feudalist
system where the data “lords” have full and firm control on the properties (data) that
are similar to the land in a feudal system, and the users receive benefits from the data
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“lords” through payment or other types of contribution (their own data, for example),
similar to peasants in a feudal system who must trade their labor in order to have
access to land and services. We do not believe such a feudalist world in the data
domain is healthy for data to be used to its optimal extent. Through collaboration
and policy, we can develop an open (though not necessarily free) urban big data
infrastructure that will enable the data to be used by their true constituents: the
general public.
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