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Cultivation-independent and cultivation-
dependent metagenomes reveal genetic
and enzymatic potential of microbial
community involved in the degradation of
a complex microbial polymer
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Abstract

Background: Cultivation-independent methods, including metagenomics, are tools for the exploration and

discovery of biotechnological compounds produced by microbes in natural environments. Glycoside hydrolases

(GHs) enzymes are extremely desired and important in the industry of production for goods and biofuel and

removal of problematic biofilms and exopolysaccharide (EPS). Biofilms and EPS are complex, requiring a wide range

of enzymes for a complete degradation. The aim of this study was to identify potential GH microbial producers and

GH genes with biotechnological potential, using EPS-complex structure (WH15EPS) of Acidobacteria Granulicella sp.

strain WH15 as an enrichment factor, in cultivation-independent and cultivation-dependent methods. We

performed stable isotope probing (SIP) combined with metagenomics on topsoil litter amended with WH15EPS

and coupled solid culture-EPS amended medium with metagenomics.
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Results: SIP metagenome analysis of the soil litter demonstrated that phyla Proteobacteria, Actinobacteria,

Acidobacteria, and Planctomycetes were the most abundant in WH15EPS amended and unamended treatments. The

enrichment cultures in solid culture medium coupled to metagenomics demonstrated an enrichment in

Proteobacteria, and the metagenome assembly of this enrichment cultures resulted in 4 metagenome-assembled

genomes (MAGs) of microbes with low identity (42–86%) to known microorganisms. Among all carbohydrate-active

enzymes (CAZymes) retrieved genes, glycoside transferase (GT) was the most abundant family, either in culture-

independent or culture-based metagenome datasets. Within the glycoside hydrolases (GHs), GH13 was the most

abundant family in both metagenome datasets. In the “heavy” fraction of the culture-independent metagenome SIP

dataset, GH109 (α-N-acetylgalactosaminidases), GH117 (agarases), GH50 (agarases), GH32 (invertases and inulinases),

GH17 (endoglucanases), and GH71 (mutanases) families were more abundant in comparison with the controls.

Those GH families are affiliated to microorganism that are probably capable to degrade WH15EPS and potentially

applicable for biofilm deconstruction. Subsequent in culture-based metagenome, the assembled 4 MAGs

(unclassified Proteobacteria) also contained GH families of interest, involving mannosidases, lysozymes,

galactosidases, and chitinases.

Conclusions: We demonstrated that functional diversity induced by the presence of WH15EPS in both culture-

independent and culture-dependent approaches was enriched in GHs, such as amylases and endoglucanases that

could be applied in chemical, pharmaceutical, and food industrial sectors. Furthermore, WH15EPS may be used for

the investigation and isolation of yet unknown taxa, such as unclassified Proteobacteria and Planctomycetes,

increasing the number of current cultured bacterial representatives with potential biotechnological traits.

Background
Metagenomics approach allows the access to a microbial

genetic pool that is not reachable through classical

microbial cultivation techniques. Therefore, the

cultivation-independent methods have long been used as

a tool for the exploration and discovery of biotechno-

logical compounds produced by microbes in natural en-

vironments, in particular the detection of potential

enzymes and other products of economic significance

[1]. Culture-independent approaches allowed the clarifi-

cation of potential microbial roles; however, culture-

based studies are still needed for the comprehension of

microbial characteristics and phenotypes [2]. The use of

metagenomics has boosted industrial production systems

and enzyme bioprospecting [3], particularly in animal

guts [4], although other types of ecosystems, such as for-

est litter, remain underexplored.

Glycoside hydrolases (GHs) are among the industrially

important enzymes that are extensively searched

through metagenomics, as they are extremely desired

and important in food and other industrial sectors [4–7].

Those enzymes are employed for brewing, baking, pro-

duction of syrups, food processing, texture, flavoring, as

well as the production of dairy and fermented foods [8].

GHs are also necessary for the production of biofuels, by

converting cellulose and lignocellulosic biomass into

sugars that can be fermented by microorganisms into

bioethanol [9].

An alternative application of GHs is the degradation

of polysaccharides for the removal of biofilms.

Exopolysaccharides are the main and most studied

components of extracellular polymeric substances

(EPS), biopolymers synthesized by a wide range of

strains of microorganisms [10]. EPS are the constitu-

ents that preserve the tridimensional structure of bio-

films, maintaining internal cohesion and promoting

adhesion to surfaces [11]. The elimination of biofilms is

important for human health in general, because those

structures are implicated in several diseases, causing

problems for instance in hospitals and in food process-

ing industries [2]. Furthermore, enzymatic removal of

biofilms is superior to the use of conventional cleaning

agents, which are not eco-friendly, producing toxic

residues, and erosion of equipment [2]. Enzymes are an

environmentally friendly alternative due to their bio-

degradable nature [12]. EPS and biofilms are complex,

requiring a wide range of enzymes for a complete deg-

radation [11]; however, enzymes such as lysozyme, am-

ylases, dispersin B, and alginate lyase are already used

for biofilm removal or inhibition in food and pharma-

ceutical industries [2]. More than 50% of the current

industrial enzymes are produced by microorganisms,

such as strains of Bacillus and Aspergillus, while around

15% are derived from plants [12]. Furthermore, micro-

bial enzymes with potential applications were obtained

from habitats such as hydrothermal vents [13], arctic

tundra [14], cow rumen [15], and termite guts [16].

The main goal of our study was to use a microbial EPS

to target microbes and functions involved in EPS deg-

radation in microcosm experiment with temperate forest
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litter and in culture medium. Plant litter is mostly com-

posed of recalcitrant biopolymers, which are sources of

carbon, energy, and nutrients for microbial communities

living in litters layers [17]. Cellulose, hemicellulose, and

pectin are the major components of plant cell walls. Cel-

lulose is the most abundant plant cell wall component

(40–50% of the dry weight), composed of β (1→4) linear

chains of D-glucose residues. Hemicelluloses (20–30% of

plant dry weight) are mostly composed of xylan, xyloglu-

can, β-glucan, and mannan as well as other oligosaccha-

rides. Pectins (10–30% of plant dry weight) contain

homogalacturonan, xylogalacturonan, and rhamnogalac-

turonan [18]. Due to their complexity, the breakdown of

plant cell wall components requires a wide range of

enzymes, produced by the microorganisms during litter

decomposition process [19]. Therefore, it is an interest-

ing environment for the retrieval of complex

polysaccharide-degrading enzymes. On the other hand,

the microbial community in forest ecosystems is domi-

nated by Acidobacteria [20], which phylum members are

linked to carbon degradation [21]. Acidobacteria isolates

belonging to Granulicella sp. from forest litter are de-

scribed to produce large amounts of EPS [19]. The genus

Granulicella is not a human pathogen [22], and the

unique composition of its EPS is interesting for the re-

trieval of a wide range of glycoside hydrolase genes that

could be applied in the industry for several processes

[23]. The EPS of the Acidobacteria Granulicella sp.

strain WH15 (WH15EPS) has a more complex compos-

ition than most commercially available microbial poly-

mers. It is composed of 7 monosaccharides (mannose,

glucose, galactose, xylose, rhamnose, glucuronic, and

galacturonic acids) [23], while other known EPS are

composed of maximum 4 different monosaccharides

[24]. The degradation of WH15EPS would require a

broader range of enzymes than other EPS; therefore, the

application of WH15EPS to topsoil-litter samples would

promote the enrichment of a wider range of GHs. The

use of EPS as a carbon source by active microorganisms

can be investigated with stable isotope probing (SIP).

SIP is a robust technique that evaluates the incorpor-

ation of compounds labeled with heavy isotopes, for in-

stance 13C, 18O, and 15N, into the cell components of

microorganisms metabolizing a specific substrate [25].

Hence, SIP identifies the active microorganisms involved

in the metabolism of a specific labeled compound. It has

been successfully applied for the study of microorgan-

isms incorporating several compounds, such as metha-

nol, phenol [26, 27], and others [28].

The aim of this study was to identify potential GH

microbial producers and GH genes with biotechnological

potential, using EPS of Acidobacteria Granulicella sp.

strain WH15 (WH15EPS) as an enrichment factor, in

cultivation-independent and cultivation-dependent

methods. We performed stable isotope probing (SIP)

combined with metagenomics on topsoil litter amended

with WH15EPS and coupled solid culture-EPS amended

medium with metagenomics.

Results
Overview of the metagenome data

SIP metagenome

After quality control filtering, a total of 18,762,958 reads

were maintained for further analysis, with an average of

1,563,580 reads per sample. A total of 1,209,745 ORFs

were predicted for functional annotation, and approxi-

mately 50% of these ORFs were classified using KEGG

and COG databases. The sequencing statistics are in

Table 1.

Community composition SIP metagenome based on SSU

rRNA and ORF classification

Taxonomic annotation based on SSU rRNA annotation

demonstrated that bacteria, fungi, and archaea

accounted for approximately 84%, 4%, and 2% of the se-

quences, respectively. At phylum level, 17 bacterial

groups, 5 fungal groups, and 3 archaeal groups were ob-

served in all the samples. The most abundant groups at

phylum level belonged to domain Bacteria (Additional

file 1: Supplementary Figure S1a). Proteobacteria was the

most abundant phylum in all treatments (26.4–28% of

the sequences), followed by Actinobacteria (14.5–17.5%

of the sequences). In both unamended and 12C-EPS-

amended control treatments, Acidobacteria was the third

most abundant group (14.5–15.8% of the sequences),

while in the “heavy” fraction samples, Planctomycetes

was the third most abundant phylum (16.45% of the se-

quences) (Additional file 1: Supplementary Figure S1a).

At genus level, we observed 167 groups in all samples, of

which 110 were unclassified groups. “Unclassified

Bacteria” was the most abundant group in the un-

amended control (3.5% of the sequences), while “unclas-

sified Acidobacteriaceae” (2.6% of the sequences) was

the most abundant in the 12C-EPS-amended control

(Fig. 1a). In labeled samples, the predominant group was

“unclassified Planctomycetes” (3.2% of the sequences)

(Fig. 1a). Among the 10 most abundant groups, only 2

classified genera were observed: Acidothermus (1.8–2.9%

of the sequences) and Singulisphaera (0.2–2.6% of the

sequences) (Fig. 1a). Similarly, the taxonomic compos-

ition of the ORF-based analysis was dominated by do-

main Bacteria, with an average of 82% of the ORFs

belonging to bacteria and approximately 18% of the

ORFs originating from unclassified organisms, in all the

samples (Additional file 1: Supplementary Figure S1b).

At phylum level, we observed, in total, 103 bacterial

groups, 6 fungal groups, and 11 archaeal groups in all

the samples. Acidobacteria (20.1–25.3% of the
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sequences) was the most abundant phylum in un-

amended and 12C-EPS-amended control samples, while

Actinobacteria (26% of the sequences) was the predom-

inant group in “heavy” fraction samples (Additional file

1: Supplementary Figure S1b). At genus level, we found

1541 groups, of which 667 were unclassified. The top

three most abundant groups in both control treatments

were “unclassified microorganisms” (17.3–19.4% of the

ORFs), “unclassified Bacteria” (12.7–16% of the ORFs),

and “unclassified Acidobacteriaceae” (9.3–11.5%), while

the predominant groups in “heavy” fraction samples

were “unclassified microorganisms” (16.1% of the ORFs),

“unclassified Bacteria” (18.9% of the ORFs), and “unclas-

sified Planctomycetes” (9% of the ORFs) (Fig. 1b).

PERMANOVA (p values < 0.001) showed that, for

both SSU rRNA data and ORF-based analysis, the mi-

crobial communities were different between treatments,

with both control treatments closer to each other, and

“heavy” fraction samples separated from both control

treatments in PCoA graphs (Fig. 2). For SSU rRNA com-

munities, the first two axes of PCoA explained 43.3% of

the variation, while for ORF based data, 90.6% of the

variation was explained. RDA analysis (p = 0.002) for

both datasets showed that mainly groups of Planctomy-

cetes, such as “unclassified Planctomycetes”, “unclassified

Planctomycetales,” “unclassified Planctomycetia” and

Singulisphaera, were driving the dispersion of the micro-

bial communities between “heavy” fraction and both

control treatments (Additional file 1: Supplementary Fig-

ure S2), consistently with the higher abundance of

Planctomycetes in labeled samples. Alpha diversity indi-

ces showed that richness and diversity indices were

lower for “heavy” fraction samples in comparison with

both controls (Additional file 1: Supplementary Figure

S3), supported by ANOVA test (p value < 0.05).

Functional profile of SIP metagenome

KEGG, COG, and CAZy databases were employed for

functional gene annotation to explore the functional

characteristics of the microbial communities. Approxi-

mately 60% of the ORFs were assigned to COGs, match-

ing in total to 20,644 COGs. The most abundant COG

categories in all the samples were “R-general function

prediction” (10.8–11.6% of the ORFs) (Additional file 1:

Table 1 SIP shotgun metagenomics sequencing statistics for each treatment. Average from 4 replicates

Statistics Unamended Control EPS amended “Heavy” fraction

Number of reads 1,590,046 1,591,447 1,509,247

Number of contigs 82,370.25 78,474.5 92,521.75

Longest contig (bp) 2,651 3,645.25 9,414.75

N50 466 473 542

Mapping (%) 18.4 19.6 32.9

Number of ORFs 96,141 91,272 115,023.3

Unamended Control incubation without WH15EPS, EPS amended incubation containing 12C-WH15EPS, “Heavy” fraction, “heavy” fraction of incubations

containing 13C-WH15EPS

Fig. 1 Taxonomic composition and relative abundance of microbial groups at genus level in SIP metagenome treatments based on a SSU rRNA

gene taxonomic classification and b ORF taxonomic classification. Only the ten most abundant groups for each treatment are displayed. Average

abundances of 4 replicates. Unc.: unclassified. No EPS: incubation without WH15EPS. Unlab.: EPS-incubation containing 12C-WH15EPS. Heavy:

“heavy fraction” of incubations containing 13C-WH15EPS
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Supplementary Figure S4a). Boruta feature selection

“random forest” analysis (p < 0.05) was used to identify

feature annotations that segregated significantly between

treatments. A total of 32 COGs were selected by Boruta

algorithm. Thirteen among the identified COGs were

more abundant in the unamended control samples,

while 19 were more abundant in the labeled samples

(Fig. 3a). However, most of the features identified by the

analysis belonged to the category unknown function.

Some of the unknown COGs abundant in the labeled

treatment, though, were associated mostly to phyla

Planctomycetes and Acidobacteria, according to egg-

NOG database v 4.5 (Additional file 1: Supplementary

Table S1).

KEGG analysis demonstrated that about 50% of the

ORFs were assigned to 7,343 KEGG functional ortho-

logs. The 17 most abundant KEGGs in all samples were

assigned to three categories: signaling and cellular pro-

cesses (8 KEGGs—0.16% of the total ORFs), genetic in-

formation and processing (6 KEGGs—0.14% of the total

ORFs), and metabolism (3—0.21% of the total ORFs)

(Additional file 1: Supplementary Figure S4b). Boruta

feature selection identified 40 KEGGs that influenced

the dispersion of the samples, of which 26 were more

abundant in the labeled treatment and 14 were more

abundant in the unamended control (Fig. 3b). Among

the KEGGs more abundant in the labeled treatment, 13

could be assigned to KEGG pathways, mostly related to

“metabolic pathways” and “microbial metabolism in di-

verse environments” (Additional file 1: Supplementary

Table S2). Within the KEGGs more abundant in the un-

amended control treatment, 8 could be assigned to

KEGG pathways, the majority related to “metabolic

pathways” (Fig. 3b, Additional file 1: Supplementary

Table S2).

Annotation using dbCAN database showed that fam-

ilies GT41 (8.4–11% of the CAZYmes), AA3 (4.4–5%),

GT4 (3.4–4.7%), GT2 (4.1–4.3%), and CE10 (3.5–4.2%)

were among the most predominant in all the treat-

ments (Additional file 1: Supplementary Figure S4c).

Boruta feature selection identified 27 CAZY families af-

fecting the dispersion of the sample treatments (Fig.

3c), the vast majority belonging to the category glyco-

side hydrolase (GH). Among the selected families, 15

were more abundant in the labeled treatment, and 12

were more abundant in the unamended control. The

categories abundant in the labeled treatment involved

xylan and fructan modules, xylanases, mannosyltrans-

ferases, and agarases, while the categories abundant in

the unamended controls were mostly α and β galactosi-

dases and glucosidases (Additional file 1: Supplemen-

tary Table S3). PERMANOVA (p values < 0.001)

demonstrated that for KEGG, COG, and dbCAN data,

the functional gene compositions were different be-

tween treatments, similarly to taxonomic analysis, with

control treatments grouping together and separated

from “heavy” fraction samples (Additional file 1:

Supplementary Figure S5).

Cultivated microbes metagenome

Overview of the metagenomics data

A total of 422,735,048 reads were obtained after se-

quence quality filtering, with an average of 80% of the

ORFs classified with KEGG and COG databases. The se-

quencing statistics are described in Table 2.

Fig. 2 Principal Coordinate Analysis (PCoA) clustering of normalized and Hellinger-transformed SIP metagenome sequencing data based on Bray-

Curtis distances of a SSU rRNA gene taxonomic classification and b ORF taxonomic classification. No EPS: incubation without WH15EPS. Unlab.:

EPS-incubation containing 12C-WH15EPS. Heavy: “heavy fraction” of incubations containing 13C-WH15EPS
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Community composition of cultivated microbes

metagenome based on SSU rRNA and ORF classification

Analysis of the taxonomic composition based on SSU

rRNA showed an average of 73% of the sequences

belonged to domain Bacteria, 20% to kingdom Fungi,

and 7% were derived from other Eukaryotes (Additional

file 1: Supplementary Figure S6a). At phylum level, 17

bacterial groups, 7 fungal groups, and 14 eukaryotic

groups were identified. The most abundant group was

the bacterial phylum Proteobacteria, with ~ 47.9% of the

sequences, followed by fungal phylum Ascomycota, with

~ 14.5% of the sequences (Additional file 1: Supplemen-

tary Figure S6b). At genus level, 450 groups in total were

observed, with the most abundant groups being bacterial

groups. The predominant groups were “unclassified Bac-

teria” (~ 2.2% of the sequences) and Dyella (~ 1.5% of

Fig. 3 Boruta random forest feature selection of functions that significantly segregated across treatments based on 1000 permutations for a COG

annotation, b KEGG annotation, and c dbCAN annotation. Heatmaps based on the z-scored TPM normalized relative abundances of annotated

ORFs from SIP metagenome samples. The description of the functions displayed in the heatmap is detailed in Supplementary Table S1 (COG),

Supplementary Table S2 (KEGG), and Supplementary Table S3 (dbCAN). No EPS: incubation without WH15EPS. Unlab.: EPS-incubation containing
12C-WH15EPS. Heavy: “heavy fraction” of incubations containing 13C-WH15EPS
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the sequences) (Fig. 4a). Silvimonas and Burkholderia

were also among the top 10 most abundant genera (~

1.4 and 1.3% of the sequences, respectively). Similarly,

for the ORF based data, the most abundant groups at

genus level belonged to domain Bacteria, revealing the

presence of 1930 groups at genus level. “Unclassified

microbes” was the most abundant group, followed by

genera Caballeronia (15.4% of the ORFs) and Parabur-

kholderia (15.1% of the ORFs) (Fig. 4b). Other genera,

such as Burkholderia, Rhodanobacter, and Dyella were

also among the predominant groups (7.8, 7.1, and 4.9%

of the ORFs) (Fig. 4b).

Functional profile of cultivated microbes metagenome

The functional profile of the cultivated microbes’ meta-

genome was explored through the annotation with

KEGG, COG, and dbCAN databases. COG analysis dem-

onstrated that approximately 20.6% of the annotated

COGs were assigned to unknown functions. Among the

classified COGs, similarly to SIP metagenome, the pre-

dominant categories involved “E-amino acid transport

and metabolism” (~ 8.6% of the ORFs), “G-carbohydrate

transport and metabolism” (~ 8.0% of the ORFs), and

“C-energy production and conversion” (~ 7.3% of the

ORFs) (Fig. 5a).

KEGG pathway analysis showed that around 65% of

the ORFs were assigned to 9945 KEGG orthologs. The

20 most abundant KEGGs were distributed in the

categories “Genetic information processing” (1 KEGG ~

0.24% of the total ORFs), “Metabolism” (4 KEGGs ~

1.18% of the total ORFs), and “Signaling and cellular

processes” (15 KEGGs − 4.54% of the ORFs), of which

13 KEGGs were classified as transporters (Fig. 5b).

The analysis of the carbohydrate-active enzymes with

dbCAN demonstrated the presence of 298 CAZyme

families. Twenty-three families were predominant, which

Table 2 Cultivated shotgun metagenome sequencing statistics for each plate. Average from 2 replicates per plate

Statistics Plate 1 Plate 2 Plate 3 Plate 4

Number of reads 49,148,370 54,247,258.5 58,397,852 49,574,043.5

Assembled reads 1.47E+10 1.6224E+10 1.75E+10 1.4796E+10

Number of contigs 67,980,868 76,125,070.5 82,202,170 68,767,888

Number of predicted genes 159,832 254,727 535,677 479,683

KEGG (% classified ORFs) 66.2 67.2 65.2 63.9

COG (% classified ORFs) 94.6 94.5 94.1 94.0

CAZYmes (%) 4.5 4.7 4.7 4.5

GC content (%) 59.6 60.3 59.0 58.2

Fig. 4 Taxonomic composition and relative abundance of microbial groups at genus level in samples from the metagenome shotgun of

cultivated microorganism based on a SSU rRNA gene taxonomic classification and b ORF taxonomic classification. Only the ten most abundant

groups are displayed. Average from 2 replicates per plate of culture medium
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abundance was above 1%. Within the most abundant fam-

ilies, we observed 2 AA families (7.75% of the CAZymes), 1

CBM family, 4 CE families, 10 GH families, and 6 GT

families (Fig. 5c). Those CAZyme families comprise mostly

enzymes with cellulolytic (alpha-glucosidases, alpha-

fucosidases), hemicellulolytic (alpha-rhamnosidases, alpha-

xylosidases, alpha-mannosidases, beta-galactosidases), and

cell wall metabolism activities (N-acetylglucosaminyltrans-

ferases, alpha-N-acetylgalactosaminidases, and peptidogly-

can lyases) (Additional file 1: Supplementary Table S4). The

most abundant family was GT41 (Fig. 5c), which encom-

passes UDP-GlcNAc: peptide β-N-acetylglucosaminyltrans

ferases and UDP-Glc: peptide N-β-glucosyltransferases, en-

zymes involved in protein glycosilation. Among the GH

families, the most abundant was GH13.

Among all 127 GH families found in both metagen-

ome datasets, 114 families were observed in both data-

sets, while 5 families were exclusive from the SIP dataset

(GH112, GH48, GH52, GH86, GH98) and 8 were exclu-

sive from the cultivated microbes dataset (GH111,

Fig. 5 Relative abundance distribution of the most abundant functional categories in TMM-normalized metagenome sequencing data from the

shotgun metagenome of cultivated microorganisms. a COG annotation (10 most abundant ). b KEGG annotation (10 most abundant). c dbCAN

annotation (10 most abundant). The descriptions of the functions displayed in b and c are detailed in Supplementary Table S4. Average from 2

replicates per plate of culture medium. E-amino acid transport and metabolism; G-carbohydrate transport and metabolism; H-coenzyme transport

and metabolism; C-energy production and conversion; I-lipid transport and metabolism; F-nucleotide transport and metabolism; Q-secondary

metabolites; D-cell cycle; N-cell motility; M-cell wall/membrane/envelope biogenesis; V-defense mechanisms; P-inorganic ion transport and

metabolism; U-intracellular trafficking; O-post translational modification; T-signal transduction mechanisms; L-replication, recombination, and

repair; K-transcription; J-translation; S-function unknown; R-general function and prediction; X-mobilome
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GH131, GH132, GH134, GH45, GH7, GH80, GH85)

(Additional file 1: Supplementary Figure S7).

Taxonomy of the enriched glycoside hydrolase families

Taxonomic analysis of the most abundant GH family in

both metagenome datasets, GH13, demonstrated that

the majority of the sequences of GH13 in the cultivated

microbes dataset belonged to phyla Proteobacteria

(66.8% of the GH sequences) and Acidobacteria (21.8%

of the GH sequences), while in the SIP dataset the most

abundant phyla for GH13 were Actinobacteria (20.4–

45.7% of the GH sequences), Acidobacteria (4–24.7% of

the sequences), and other phyla (27–34% of the GH se-

quences) (Table 3).

Within GH families that were more abundant in the

SIP “heavy” fraction (Fig. 3c), sequences of GH109

belonged mainly to Acidobacteria (45% of the GH se-

quences), other phyla (31–42% of the GH sequences),

and Planctomycetes (2–29% of the GH sequences).

GH117 family sequences belonged predominantly to

Actinobacteria (17–33% of the sequences), Acidobacteria

(0–33% of the GH sequences), and other phyla (33–64%

of the GH sequences). Family GH50 sequences belonged

mainly to Proteobacteria (8–100% of the GH sequences)

and other phyla (0–92% of the GH sequences). GH 32

sequences were affiliated mainly to Acidobacteria (11–

44% of the GH sequences) and other phyla (44–79% of

the GH sequences). GH17 sequences belonged to

phylum Proteobacteria (44–75% of the GH sequences)

and other phyla (25–57% of the GH sequences). GH71

sequences were affiliated to phyla Actinobacteria (35–

100% of the GH sequences), Proteobacteria (0–25% of

the sequences), Acidobacteria (0–25% of the sequences),

and other phyla (0–43% of the sequences).

Metagenome-assembled genomes (MAGs) assembled from

the cultivated microbes metagenome

The binning process using contigs longer than 5 kb

generated, after curation and quality filtering, 4 draft

genomes. The genome length ranged from 3.0 to 6.3

Mb, and the GC content ranged from 57 to 62%. All

MAGs belonged to phylum Proteobacteria. None of the

MAGs was classified to genus level; however, the ge-

nomes were closer to genera Paraburkholderia (MAG1)

and Amantichitinum (MAG2 and MAG4). MAG3 clos-

est classification was to family Rhodanobacteraceae.

Table 3 Taxonomy associated to sequences of glycoside hydrolases belonging to GH13 family (most abundant) and the enriched

GH families in heavy fraction samples from SIP metagenome

GH families Sample Proteobacteria Acidobacteria Actinobacteria Planctomycetes Others

GH13 Cultivated 66.8 (2605) 21.8 (827) 0.9 (36) 0.09 (1) 10.4 (51.4)

GH13_SIP Control 20.1 (128) 23.4 (148) 25.6 (162) 0.1 (4) 31 (196)

EPS 17.9 (89) 24.7 (125) 20.4 (95) 2.9 (13) 34 (172)

Labeled 17.2 (127) 4 (30) 45.7 (333) 5.7 (42) 27 (201)

GH109 Control 11 (22) 45 (92) 12 (26) 2 (4) 31 (68)

EPS 7 (19) 26 (76) 7 (18) 21 (60.8) 40 (111.6)

Labeled 7 (34) 9 (48) 13 (62) 29 (150) 42 (217)

GH117 Control 0 (0) 33 (1) 33 (1) 0 (0) 33 (1)

EPS 0 (0) 0 (0) 17 (1) 0 (0) 38 (5)

Labeled 9 (1) 0 (0) 27 (3) 0 (0) 64 (7)

GH50 Control 100 (3) 0 (0) 0 (0) 0 (0) 0 (0)

EPS 100 (2) 0 (0) 0 (0) 0 (0) 0 (0)

Labeled 8 (2) 0 (0) 0 (0) 0 (0) 92 (24)

GH32 Control 0 (0) 44 (4) 11 (1) 0 (0) 44 (4)

EPS 0 (0) 11 (2) 5 (1) 5 (1) 79 (15)

Labeled 6 (2) 14 (5) 3 (1) 9 (3) 69 (24)

GH17 Control 75 (9) 0 (0) 0 (0) 0 (0) 25 (3)

EPS 43 (3) 0 (0) 0 (0) 0 (0) 57 (4)

Labeled 44 (8) 0 (0) 0 (0) 0 (0) 56 (10)

GH71 Control 0 (0) 0 (0) 100 (1) 0 (0) 0 (0)

EPS 0 (0) 25 (1) 50 (2) 0 (0) 25 (1)

Labeled 22 (5) 0 (0) 35 (8) 0 (0) 43 (10)

Average percentage from 4 replicates (total number of sequences)
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The characteristics of the genomes are described in

Table 4. The coverage of the genomes is described in

Additional file 1: Supplementary Table S5.

Approximately, 83.7% of the ORFs predicted for the

MAGs could be assigned to COGs. The analysis showed

that most of the COG assigned ORFs fell on the cat-

egory “S-function unknown” (16.4–18.4% of the ORFs).

Among the classified COGs, however, the most abun-

dant categories were “K-transcription” (5.9–9% of the

ORFs), “E-amino acid metabolism” (4.8–8.1% of the

ORFs), “G-carbohydrate metabolism” (3.32–7.2%), “C-

energy production” (4.2–5.9%), “P-inorganic ion metab-

olism” (4.65–6.3%), and “M-cell wall/membrane biogen-

esis” (5.2–5.9%) (Fig. 6a).

KEGG pathway analysis demonstrated that around

90% of the predicted ORFs could be assigned to KEGG

orthologs. The majority of the most abundant KEGG

orthologs in all the MAGs were related to several types

of transporter functions (Fig. 6b and Additional file 1:

Supplementary Table S6). In order to evaluate the fea-

tures of the MAGs that could be involved in the uptake

of the WH15EPS sugar units, we decided to look deeper

into the transporters. Twenty-four of the KEGG ortho-

logs observed in MAG1 genome were associated to the

transport of several sugars, such as sorbitol, ribose,

arabinose, xylose, fructose, rhamnose, glucose, mannose,

and multiple sugars (Additional file 1: Supplementary

Table S7). Among the KEGG orthologs observed in

MAG 2 genome, 62 were related to sugar transport,

such as maltose, raffinose, lactose, glucosides, cellobiose,

xylose, fructose, rhamnose, glucose, mannose, and mul-

tiple sugars (Additional file 1: Supplementary Table S8).

MAG3 did not exhibit sugar specific transporters within

the 60 KEGGs related to transport function; however,

we observed some general type transporters (Additional

file 1: Supplementary Table S9). In MAG4, 61 KEGG

orthologs related to sugar transport were observed, such

as maltose, raffinose, lactose, sorbitol, cellobiose, arabin-

ose, xylose, fructose, rhamnose, glucose, mannose, and

multiple sugars (Additional file 1: Supplementary Table

S10). We also performed the analysis of the CAZYmes

with dbCAN database, in order to find enzymes that

could be in associated the breakdown of the WH15EPS.

MAG1 possessed 279 CAZymes distributed in 90 fam-

ilies, of which the most abundant were CE1, GT4, GT42,

CE10, and AA3 (Fig. 6c). The seventy-six glycoside

hydrolases observed were distributed in 43 families,

including a wide range of activities, such as endo and

exo-mannosidases, alpha- and beta-glucosidases and ga-

lactosidases, xylosidases, fucosidases, and rhamnosidases

(Additional file 1: Supplementary Table S11). MAG2

possessed 141 CAZymes distributed in 65 families, and

GT41, GT2, and CE1 were the most abundant families

(Fig. 6c). A total of 51 glycoside hydrolases from 30 fam-

ilies were observed, with activities such as alpha- and

beta-glucosidases, beta-galactosidases, mannanases and

mannosidases, xylanases, and polygalacturonases (Add-

itional file 1: Supplementary Table S11). In MAG3, 210

cazymes distributed in 81 families were observed, and

GT41, GT2, CE1, and CE10 were the most abundant

(Fig. 6c). Sixty-four glycosil-hidrolases distributed in 37

families were detected. The activities included alpha-

and beta-galactosidases, alpha-glucosidases, mannosi-

dases, mannanases, rhamnosidases, arabinosidades, chiti-

nases, and trehalases (Additional file 1: Supplementary

Table S11). The genome of MAG4 displayed 180

CAZymes distributed in 73 families, of which the most

abundant were CE1, GT2, and GT41 (Fig. 6c). The 64

glycoside hidrolases were spread among 34 families,

including activities such as chitinases, arabinofuranosi-

dases, alpha- and beta-glycosidases, mannosidases, cellu-

lases, xylanases, and polygaracturonases (Additional file

1: Supplementary Table S11). The distribution of most

abundant CAZYmes and GH families in both

Table 4 Genome characteristics for the 4 metagenome-assembled genomes (MAGs) obtained in this study

Genome MAG1 MAG2 MAG3 MAG4

Taxonomy
(closest hit)

Burkholderiaceae 95%
(Paraburkholderia 86%)

Neisseriaceae 42%
(Amantichitinum: 42%)

Rhodanobacteraceae
77%

Neisseriaceae: 42%
(Amantichitinum 42%)

Length (Mb) 6.3 3.0 4.8 3.7

Contigs 1997 997 80 1482

Completeness (%) 83.2 79.6 99.7 87.5

Contamination (%) 4.76 3.92 2.44 5

GC (%) 62 57 59 57

Number of predicted genes 7126 3580 4280 4552

Hits to protein database

KEGG % 90.1 96.8 79.2 93.8

COG % 85.3 85.1 80.2 84

DBcan n (%) 279 (3.9) 141 (3.9) 210 (4.9) 180 (4.0)
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metagenomics datasets and MAGs is depicted in

Additional file 1: Supplementary Figure S8.

Discussion
In the present study, we applied culture-independent

and culture-dependent techniques to evaluate microbial

diversity and functions involved in the degradation of a

microbial biopolymer, WH15EPS, focusing on enzymes

of biotechnological interest. First, we compared the

functional potential of the environment with and with-

out the presence of WH15EPS, evaluating the taxonomic

and functional enrichment produced by the addition of

the biopolymer using stable isotope probing (SIP). Sec-

ond, we used metagenomics to evaluate the functional

potential of the microorganisms grown in culture

medium with WH15EPS as the sole carbon source.

SIP analysis demonstrated that in both 16S rRNA-

metagenome dataset extracted and ORF based

characterization, phyla Proteobacteria, Actinobacteria,

Acidobacteria, and Planctomycetes were the most abun-

dant in WH15EPS amended and unamended treatments.

However, the addition of WH15EPS to the litter samples

Fig. 6 Relative abundance distribution of the most abundant functional categories in metagenome assembled genomes (MAGs) assembled from

the shotgun metagenome of cultivated microorganisms sequencing data. a COG annotation (10 most abundant). b KEGG annotation (10 most

abundant). c dbCAN annotation (10 most abundant). The description of the functions displayed in b and c are detailed in Supplementary Table

S6 and Supplementary Table S11, respectively. E-amino acid transport and metabolism; G-carbohydrate transport and metabolism; H-coenzyme

transport and metabolism; C-energy production and conversion; I-lipid transport and metabolism; F-nucleotide transport and metabolism; Q-

secondary metabolites; D-cell cycle; N-cell motility; M-cell wall/membrane/envelope biogenesis; V-defense mechanisms; P-inorganic ion transport

and metabolism; U-intracellular trafficking; O-post translational modification; T-signal transduction mechanisms; L-replication, recombination, and

repair; K-transcription; J-translation; S-function unknown; R-general function and prediction; X-mobilome
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promoted an increase in the abundance of the phylum

Planctomycetes, which was more evident in “heavy” frac-

tion samples, showing that Planctomycetes also play an

active part in the degradation of WH15EPS. Further-

more, at genus level in the 16S rRNA based analysis,

“unclassified Planctomycetes” and Singulisphaera, which

belong to the same phylum, were the most abundant

groups in the labeled treatment, while “unclassified

Planctomycetes” was also among the most abundant in

the ORF-based analysis. Proteobacteria, Actinobacteria,

and Acidobacteria are widely known to be involved in

carbon-degradation processes, for instance, glucose [29],

xylan [30], and cellulose assimilation [31]. The glycolytic

potential of phylum Planctomycetes was recently demon-

strated by Ivanova et al. [32], in which genus

Singulisphaera, for instance, responded significantly to

pectin and xylan amendments.

The cultivation-dependent approach demonstrated, as

expected, a lower taxonomic diversity, in which the

widely studied Proteobacteria were among the most

abundant. The discrepancy between the diversity of taxa,

especially the most abundant groups, observed in cul-

tured and uncultured-based techniques is defined as

“The Great Plate Count Anomaly” [33]. The cultivability

of microorganisms in laboratory depends of many fac-

tors, such as nutrients, oxygen level, temperature, pH,

and growing factors [34], limiting the total assortment of

taxa that can be actually recovered in culture media.

Nevertheless, adding WH15EPS as an alternative carbon

source allowed us to demonstrate that several still un-

known microorganisms can be grown in laboratorial

conditions if unusual compounds are explored. The

lower diversity in the culture media plates permitted the

assembly of 4 draft genomes related to the most abun-

dant Proteobacteria, which classification until genus level

was not possible, once more demonstrating the enrich-

ment and potential for isolation of previously unknown

microbes.

In order to find potential enzymes of biotechnological

interest, we investigated the diversity of CAZymes in

both culture-independent and culture-dependent gener-

ated datasets, due to their importance in almost all in-

dustrial sectors, such as chemical, pharmaceutical, and

food industries, as well as production of detergents, tex-

tiles, leather, paper, and bioenergy [4]. Furthermore, we

also investigated the presence of enzymes that could be

employed for biofilm removal.

Among all CAZymes observed, the most abundant

families belonged to glycoside transferase families, such

as GT41, GT2, and GT4, either in culture-based or in

culture-independent datasets. GTs are known to catalyze

the formation of glycosidic bonds by transferring a sugar

residue from a donor to an acceptor, which could be

carbohydrates, proteins, lipids, DNA, and other

molecules [35]. Even though a large proportion of genes

of microorganism’s genomes in general encode for GTs

(about 1–2% of the total number of genes) [36], those

enzymes are still not as well explored as GHs [35].

Glycosilated compounds play a wide range of roles, such

as energy storage, cell integrity and signaling, among

others, and the glycosilation of natural products is im-

portant in the exploration of bioactive compounds [37].

GTs are involved in the production of antibiotics, such

as chloroeremomycin [38], vancomycin [39], and

erythromycin D [40]; therefore, they might be of interest

especially for the pharmaceutical industry.

Within glycoside hydrolases, the most abundant family

in both metagenomics datasets was GH13 (from Proteo-

bacteria), which encompasses starch and pullulan modi-

fying enzymes, including α-amylases, pullulanases, α-1,6-

glucosidases, branching enzymes, maltogenic amylases,

neopullulanases, and cyclodextrinases [41]. Amylases are

among the most important enzymes for food industry,

where they can be employed for production of glucose

and maltose syrups, reduction of viscosity of syrups, pro-

duction of clarified fruit juices, solubilization of starch

for brewing processes, and manufacture of baked prod-

ucts [12]. Furthermore, the application of α-amylases for

the inhibition of biofilm formation has been investigated.

In the study of Fleming et al. [42], the use of amylase

(from Bacillus subtilis) and cellulose (from Aspergillus

niger) solutions to biofilms of S. aureus and P.

aeruginosa decreased biomass significantly, increasing

the effectiveness of antibiotics treatments. A similar ef-

fect was observed in the study of Craigen et al. [43],

where a commercially available α-amylase detached the

aggregates produced by S. aureus and inhibited biofilm

production.

Notwithstanding, feature selection with Boruta pack-

age revealed the differential abundance of GH families in

“heavy” fraction SIP samples, originated from microor-

ganisms that are believed to be able to degrade

WH15EPS. These microorganisms belonged mainly to

phyla Proteobacteria, Acidobacteria, Actinobacteria,

Planctomycetes, as well as high proportion of unknown

microorganisms. GH109 (Acidobacteria and Planctomy-

cetes) contains α-N-acetylgalactosaminidases, which

might be employed in the development of universal red

blood cells, through the enzymatic removal of monosac-

charides from red blood cells’ membranes, and improve-

ment of blood supply in hospitals [44]. Furthermore,

those enzymes can be involved in the deconstruction of

WH15EPS, since it contains units of xylose, glucose, and

arabinose [23]. Families GH117 (Acidobacteria and

Actinobacteria) and GH50 (Proteobacteria) contain

agarases, which can be used for the production of oligo-

saccharides with antioxidant activities for applications in

food, pharmaceutical, and cosmetic industries [45].
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Family GH32 (Acidobacteria) comprises invertases and

inulinases, enzymes that can be applied in food and

fermentation processes [46, 47]. GH17 (Proteobacteria)

is composed of endoglucanases with activity against β-

glucan and laminarin, effective additives for the degrad-

ation of polysaccharides for animal feed [47]. Mutanases

belonging to GH71 (Actinobacteria) family already

showed activity against glucans present in dental plaque

[48].

Interestingly, sixteen of the most abundant GH fam-

ilies in the culture-independent dataset were found to be

the predominant in the culture-dependent approach,

and all the GH families with higher abundances in the

labeled SIP samples were also observed in the culture-

dependent dataset. Furthermore, the MAGs also con-

tained GH families of interest, with variable abundances

among them. MAG1 (similar to Paraburkholderia) con-

tained 8 ORFs belonging to family GH92, which encom-

passes alpha-mannosidases with applications in food and

pharmaceutical industries, for the production of juices,

degradation of plant material, or coffee extraction [49].

In MAG2 (similar to Amantichitinum), five ORFs were

classified as GH23, which contains lysozymes that can

be used as polysaccharide hydrolysers for biofilm break-

down [2, 50]. MAG3 (Rhodanobacteraceae) is abundant

in GH92 and GH23 but also GH2 family ORFs, which

comprises several enzymes. Within the best character-

ized ones, there are β-galactosidases employed for the

production of lactose-free milk products and other

galactooligosaccharides [51]. MAG4 (similar to Amanti-

chitinum) is rich in GH18 enzymes, involving chitinases

that for instance are important agents with applications

for fungal biological control and bioremediation pro-

cesses [52]. It is important to recognize that, even

though the MAGs possessed a low level of contamin-

ation (< 5%), they do not represent genomes of axenic

cultures from isolated microorganisms. Therefore, the

corresponding laboratory cultures should still be recov-

ered in order to fully validate our MAGs.

Our study showed that, using SIP and a complex EPS

(WH15EPS), we could detect the subset of the total mi-

crobial community that was capable of incorporating the

biopolymer. Among those we observed members of

Planctomycetes as an interesting target for biotechno-

logical studies and heterologous expression, which could

be performed also in several other genes, combining bio-

informatics, gene synthesis, and enzymatic screening

[53]. In addition, we demonstrated that functional diver-

sity induced by the presence of WH15EPS in both

culture-dependent and culture-independent approaches

was enriched in genes coding for GHs, for instance, am-

ylases, chitinases, agarases, and endoglucanases and that

could be applied in chemical, pharmaceutical, and food

industries. Furthermore, the use of WH15EPS may be

employed for the investigation and isolation of yet un-

known taxa, such as unclassified Proteobacteria and

Planctomycetes, increasing the number of current cul-

tured bacterial representatives.

Conclusions
We observed, in the functional diversity induced by the

presence of WH15EPS in both culture-dependent and

culture-independent approaches, the presence of 310

CAZyme families, from which 38.4% (119) were GH

families. GHs of biotechnological interest could poten-

tially be employed in almost all industrial sectors, such

as chemical, pharmaceutical, and food industries, as well

as production of detergents, textiles, leather, paper, and

bioenergy. Furthermore, we also observed the presence

of enzymes that could be employed for biofilm removal.

Even though the potential enzymes might belong to slow

growing microorganisms in laboratorial conditions, such

as Acidobacteria, Planctomycetes, and Verrucomicrobia,

sequences can still be targeted for further heterologous

expression and characterization. In addition, the culture-

based metagenomics dataset allowed the assembly of 4

metagenome-assembled genomes (MAGs) that poten-

tially belong to unclassified Proteobacteria. We showed

that WH15EPS may be employed for the isolation of

known and unknown microbes, as well as the targeting

of sequences of a wide range of CAZyme families.

Material and methods
Soil samples

Four topsoil-litter mixed samples were collected in the

spring of 2017 from the Wolfheze forest in the

Netherlands (Additional file 1: Supplementary Table

S12). Samples were taken from topsoil (0 to 5 cm) adja-

cent to fallen tree trunks. The collected samples were

pooled, sieved (2-mm mesh), and immediately used for

SIP incubation with EPS from Granulicella sp. strain

WH15 (WH15EPS). The physicochemical properties of

the topsoil-litter samples were determined (Eurofins

Agro BV, Wageningen, NL) and are presented in

Additional file 1: Supplementary Table S13. A workflow

diagram of the experiments is depicted in Fig. 7.

SIP metagenome

[13C]-labeled and unlabeled EPS production

Granulicella sp. strain WH15 was cultivated on PSY5

solid medium [54] containing 3% (wt/vol) fully 13C-la-

beled glucose as the sole carbon source or unlabeled glu-

cose for unlabeled control EPS production. After 30 days

of incubation at 20 °C polysaccharide portion of EPS was

extracted and purified according to Liu et al. [55]. Sixty

microliters of 36.5% formaldehyde was added to each

sample and incubated at 4 °C for 1 h. Next, 4 ml of 1M

NaOH was added and incubated at 4 °C for 3 h. After
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centrifugation at 9000×g for 40 min, cell debris in the

supernatant were eliminated through filtering (0.2 μm

membranes, Millipore) at room temperature, and

monosaccharides were removed by dialysis in Snake-

Skin™ Dialysis Tubing (3500 Da) (Thermo Fisher Sci-

entific, MA, USA) against demineralized water at 4 °C

for 48 h. DNA concentration in the EPS solution was

determined in a Qubit fluorometer using a broad-

range Quant-iT™ dsDNA Assay Kit (Invitrogen, Carls-

bad, CA, USA). EPS protein concentrations were de-

termined by a Pierce™ Modified Lowry Protein Assay

Kit (Thermo Fisher Scientific, MA, USA). The total

carbohydrate content was estimated by the phenol-

sulfuric acid method [56] modified for 96-well plates

[57] with glucose as the standard. The EPS solutions

were freeze-dried at − 80 °C for 72 h until further

processing. The purified EPS contained ~ 400mg/ml

carbohydrates, ~ 1% protein, and undetectable amounts of

DNA.

Stable isotope probing (SIP) incubation

Freeze-dried EPS was hydrated with 1 ml of Milli-Q ster-

ile water immediately before inoculation in topsoil-litter

samples to create a homogeneous distribution. Five

grams (wet weight) of topsoil-litter samples with 0.05%

(wt/wt) WH15EPS (labeled and unlabeled controls) or

without EPS were added to a 120-ml bottle, which was

sealed with a butyl rubber stopper and incubated at

room temperature (22 °C) in the dark. Each treatment

(labeled EPS, unlabeled EPS, and control without EPS)

had six replicates. In order to maintain oxic conditions

and prevent 13CO2 cross-feeding, all vials were uncapped

and aired every 4 days. The use of WH15EPS by the mi-

crobial community was monitored as CO2 respiration

through gas chromatography (GC) (Trace GC Ultra,

Thermo Fisher Scientific, MA, USA), performed daily to

monitor the vial headspace CO2. For incubations with

[13C]-labeled EPS, monitoring of the headspace CO2
13C/12C ratio was performed via GC combustion isotope

Fig. 7 Workflow diagram of the experimental design. a 13C-Glucose and 12C-Glucose was used in PSYL5 culture medium for 13C- and 12C-WH15EPS

production by Granulicella sp WH15. 13C- and 12C-WH15EPS were purified and incubated with litter-topsoil samples collected in Wolfheze forest, NL.

Controls without WH15EPS were also incubated; each treatment had 6 replicates. After 35 days of incubation and CO2 respiration measurements, DNA

was extracted and fractionated. “Heavy fraction” of the 13C-WH15EPS incubations and total DNA from 12C-WH15EPS and controls without EPS were

sent for shotgun sequencing. b In parallel, purified 12C-WH15EPS was used as a carbon source for culture medium DNMS. A 10−3 dilution of litter-

topsoil samples collected in Wolfheze forest was inoculated in the culture medium and incubated at room temperature for 30 days. Each plate had 2

replicates. Next, cells were scraped from the plates; total DNA was extracted and sent for Shotgun sequencing
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ratio mass spectrometry (GC/C/IRMS) (GC IsoLink II™

IRMS System, Thermo Fisher Scientific, MA, USA). CO2

emissions throughout the experiment are shown in Add-

itional file 1: Supplementary Figure S9. After 35 days of

incubation, 0.5 g of samples were removed from the vials

for DNA extraction.

DNA extraction and fractionation

DNA was extracted from 250 mg of soil with or with-

out 13C-labeled/unlabeled substrates with the Power-

Soil® DNA Isolation Kit (MO BIO Laboratories, Inc)

according to the manufacturer’s instructions and

quantified by a spectrophotometer (NanoDrop™ 2000,

Thermo Fisher Scientific, MA, USA). Gradient frac-

tionation was performed according to Neufeld et al.

[58]. Two microgram of DNA were combined with

CsCl (1.72 g/ml) and gradient buffer (100 mM Tris-

HCl pH 8.0, 100 mM KCl, 1 mM EDTA) in an ultra-

centrifugation tube (PA UltraCrimp 1.8 ml, Thermo-

Fisher Scientific, MA, USA) and ultracentrifuged at

125,395×g (Discovery 120SE ultracentrifuge, Thermo-

Fisher Scientific, Massachusetts, USA) under vacuum

at 20 °C for 65 h. Gradient fractionation resulted in

18 DNA fractions of approximately 100 μl each, which

density was measured with a refractometer (AR200,

Reichert Technologies, New York, USA). DNA was

precipitated from the CsCl with polyethylene glycol

solution (30% PEG6000, 1.6 M NaCl) and glycogen

(20 μg/μl), washed with 70% ethanol, and eluted in

30 μl of 10 mM Tris-HCl buffer, pH 8.0. The DNA

concentration of each fraction was determined in a

Qubit 4 Fluorometer (ThermoFisher Scientific, MA,

USA) using a Quant-iT™ dsDNA HS Assay Kit (Invi-

trogen, Carlsbad, CA, USA). The unlabeled substrate

incubations were used as controls to determine the

expected position of labeled soil DNA in the CsCl

density gradients.

Library preparation and high-throughput shotgun se-

quencing were performed using the “heavy” DNA frac-

tions pooled within each sample replicate as well as the

total DNA of both the 12C-EPS-amended and unamended

controls. Library preparation and Illumina MiSeq PE250

shotgun sequencing were performed at McGill University

and Génome Québec Innovation Centre (Montréal, Qué-

bec, Canada). The sequences were deposited in the Euro-

pean Nucleotide Archive (ENA; https://www.ebi.ac.uk/

ena) under the accession number PRJEB31257.

Metagenome of cultivated microorganisms in media with

WH15EPS as sole carbon source

For evaluation of the metagenome of microorganisms

that were able to grow in culture medium with WH15

EPS as a sole carbon source, 10 g of fresh topsoil-litter

sample were mixed with 100 ml of 100 mM MES buffer

(2-[N-morpholino]ethanesulphonic acid, 1.95 g/l, pH

5.5), agitated for 30 min at room temperature on a vor-

tex and decanted for 30 min. Dilutions (10−3 to 10−6)

were prepared in sterile MES buffer, and 200 μl of the

dilutions were plated in quadruplicate. Diluted culture

medium DNMS [MgSO4.7H2O 0.2 g/l, CaCl2.2H2O

0.053 g/l, chelated iron solution 0.2 ml/l (ferric III am-

monium citrate 0.1 g/100 ml, EDTA 0.2 g/100 ml, HCl

0.3 ml/100 ml) trace element solution SL10 1ml/L [59],

NH4Cl 0.1 g/l, agar 20 g/l] with added WH15EPS [23]

(0.05%) pH 5.5 and 40 ng/μl (40 mg/l) cicloheximide to

prevent growth of fungi was used for plating. To prevent

caramelization, the freeze-dried purified WH15EPS was

hydrated with Milli-Q water, sterilized by filtration

through a 0.2 μm membrane (Millipore), and added to

the culture medium after autoclaving. Chelated iron so-

lution and trace element solution SL10 were added after

autoclaving and cooling of the culture medium. The

plates inoculated with the soil suspension were incu-

bated at room temperature for 1 month. The dilution

10−3 was chosen for sequencing. After incubation, col-

onies were scraped and used for total DNA extraction

with PowerSoil® DNA Isolation Kit (MO BIO Laborator-

ies, Inc). Following the first DNA extraction, a second

round of DNA extraction was performed for each sam-

ple, according to Dimitrov et al. [60]. The total DNA ex-

tracted from the plates was used for metagenome

shotgun sequencing. Library preparation and Illumina

HiSeq XTen sequencing were performed at Genewiz

(Suzhou, China). The sequences were deposited in the

European Nucleotide Archive (ENA; https://www.ebi.ac.

uk/ena) under the accession number PRJEB24069.

Bioinformatics and statistical analyses of metagenome

data

SIP metagenome

SIP metagenome sequences were processed using EBI

MGnify [61] pipeline and SqueezeMeta [62] pipeline in

sequential mode. Briefly, in the SqueezeMeta pipeline,

trimming and quality filtering were performed using

Trimmomatic [63]; assembly for each sample separately

was done using Megahit [64]; Prodigal [65] was used for

ORF prediction, and barrnap [66] was employed for

rRNA gene sequence retrieval, which were classified

using RDP classifier [67]. Diamond [68] software was

used for taxonomic classification of the ORFs against

Genbank nr database and functional annotation with

eggNOG database, for KO and COG numbers [69].

eggNOG-mapper [70] was employed for carbohydrate-

active enzymes annotation with against dbCAN [71].

SqueezeMeta script SQM2tables.py was used to compute

the average coverage and normalized TPM (transcripts

per million) values for information on gene and function

abundances. Normalized TPM SqueezeMeta ORF
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dataset and 16S rRNA gene data recovered from

MGNify analysis were used for statistical analyses, per-

formed in RStudio version 1.1.423 running R version

3.5.1 [72]. For the 16S-based analysis, OTUs with less

than 1 count across all the samples, chloroplast and

mitochondrial sequences were discarded; prior to alpha

diversity analyses, the data were rarefied to the size of

the smallest sample (175 reads). For both ORF-based

and 16S gene-based taxonomy datasets, “Phyloseq” pack-

age [73] was used to calculate the number of observed

OTUs, Shannon and Inverse Simpson diversity indices,

and Chao1 and ACE diversity estimators. Significant

differences in the estimators between treatments were

evaluated through parametric and non-parametric tests,

including ANOVA, Kruskal-Wallis, and Tukey’s HSD

tests (package “agricolae”) [74]. Bray-Curtis distance

matrices constructed using the Hellinger transformed

[75] datasets were used for principal coordinate analysis

(PCoA) using the capscale function from the “vegan”

package v. 2.4.6 [76]. Group dissimilarities were tested

by permutational multivariate analysis of variance (PER-

MANOVA) using the function Adonis from the “vegan”

package. CANOCO (version5) [77] was employed to ex-

plore the relationship between sample treatments and

taxa abundance through redundancy analysis (RDA) in

the Hellinger transformed datasets. The statistical sig-

nificance (p value < 0.05) of eigenvalues and treatment-

taxa abundance correlations was tested using Monte

Carlo permutation test at 499 permutations, and the top

20 taxa associated with the dispersion of the treatments

were displayed in RDA graphs.

In order to identify predicted functions (COG,

KEGG, and CAZYmes) responsible for the observed

clustering patterns, we performed a feature selection

using a “random forest” algorithm using the R pack-

age Boruta [78] (1,000 trees, p value < 0.05). Boruta

tests if the importance of each individual variable is

significantly higher that the importance of a random

variable by fitting random forest models iteratively

until all predictor variables are classified as “con-

firmed” or “rejected” at the 0.05 alpha level [79]. The

heatmaps for relevant features for each function were

constructed with pheamap [80] R package, based on

z-score transformed TPM (transcripts per million)

abundances to improve normality and homogeneity of

the variances. Sequences were submitted to the Euro-

pean Nucleotide Archive (ENA) and are available

under the accession number PRJEB31257.

Metagenome analysis for cultivated microorganisms

The DNA of the cultivated microorganisms were shot-

gun metagenome sequenced, and the sequences were

processed using EBI MGnify [61] pipeline and ATLAS

(Automatic Tool for Local Assembly Structures) [81]

pipeline. For ATLAS, quality filtering was performed

using BBDuk2, and cross-assembly was done with Mega-

hit [64]; functional and taxonomic analysis were per-

formed at ORF level for the assembled contigs. Prodigal

[65] was used for ORF prediction, and eggNOG database

[69] was used for functional annotation (COG and KO

numbers) using the DIAMOND software [68]. eggNOG-

mapper [70] was used for functional annotation of

CAZymes with dbCAN [71]. The Kaiju software [82]

was used for ORF taxonomy assignment against NCBI

RefSeq database. Custom scripts were used to generate

tables containing information of taxonomy and function

abundance of the ORFs in all samples. Quality con-

trolled contigs > 1000 kb were used for binning using

Concoct [83], Maxbin [84], and Metabat [85]; resulting

bins were refined using DAS tool [86], and genome

dereplication was performed with dRep [87]. Complete-

ness and contamination of the assembled genomes were

checked using CheckM [88], as well as taxonomy assign-

ment. The ORFs of the genomes were predicted using

Prodigal [65], and DIAMOND software [68] was used

for functional annotation with eggNOG (COG and KO

numbers) [69]. The annotation of CAZYmes was per-

formed with eggNOG-mapper [70] against dbCAN [71].

Sequences were submitted to the European Nucleotide

Archive (ENA) and are available under the accession

number PRJEB24069.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s40168-020-00836-7.

Additional file 1 Supplementary Figure S1: Taxonomic composition

and relative abundance of microbial groups at phylum level in SIP

metagenome treatments based on a) SSU rRNA gene sequence

classification (>2.2 % abundance) b) ORF taxonomic classification (>0.1%

abundance). Average abundances of 4 replicates. Unc: unclassified. No

EPS – incubation without WH15EPS. Unlab EPS-incubation containing
12C-WH15EPS. Heavy – ‘heavy fraction’ of incubations containing 13C-

WH15EPS; Supplementary Figure S2: Biplot of the Redundancy analysis

(RDA) based on normalized and Hellinger-transformed abundances of a)

SSU rRNA gene taxonomy classification and b) ORF taxonomic classifica-

tion. Only the best 20 fitting groups are displayed. Unc: unclassified. No

EPS – incubation without WH15EPS. Unlab EPS-incubation containing
12C-WH15EPS. Heavy – ‘heavy fraction’ of incubations containing 13C-

WH15EPS; Supplementary Figure S3: Box-plot comparisons of alpha-

diversity assessment by richness estimators (number of observed OTUs,

Chao1, ACE) and diversity indices (Shannon, Inverse Simpson) for SIP 16S

rRNA gene samples. ‘Heavy fraction’ values are significantly lower in com-

parison with both controls for all comparisons (p-value < 0.05). Compari-

sons performed across treatments using ANOVA test and Tukey`s HSD

post-hoc test. Data rarefied to the minimum sampling depth. Unlab. EPS-

incubation containing 12C-WH15EPS. Heavy – ‘heavy fraction’ of incuba-

tions containing 13C-WH15EPS; Supplementary Figure S4: Relative

abundance distribution of the most abundant functional categories in

TPM-normalized metagenome sequencing data from the SIP metagen-

ome. a) COG annotation (all categories); b) KEGG annotation (above 0.1 %

abundance); c) dbCAN annotation (above 1% abundance). E-Amino acid

transport and metabolism; G- Carbohydrate transport and metabolism; H-

Coenzyme transport and metabolism; C-Energy production and conver-

sion; I-Lipid transport and metabolism; F-Nucleotide transport and
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metabolism; Q- Secondary metabolites; D-Cell acycle; N-Cell motility; M-

Cell wall/membrane/envelope biogenesis; V-Defence mechanisms; P-

Inorganic ion transport and metabolism; U-Intracellular trafficking; O-Post

translational modification; T-Signal transduction mechanisms; L-

Replication, recombination and repair; K-Transcription; J-Translation; S-

Function unknown; R-General function and prediction; X-Mobilome.; Sup-

plementary Figure S5: Principal Coordinate Analysis (PCoA) clustering

of normalized and Hellinger-transformed SIP metagenome sequencing

data based on Bray-Curtis distances of a) COG annotation, b) KEGG anno-

tation and c) dbCAN annotation. No EPS – incubation without WH15EPS.

Unlabeled EPS-incubation containing 12C-WH15EPS. Heavy – ‘heavy frac-

tion’ of incubations containing 13C-WH15EPS; Supplementary Figure

S6: Taxonomic composition and relative abundance of microbial groups

at a) kingdom and b) phylum level in samples from the metagenome

shotgun of cultivated microrganims based SSU rRNA gene taxonomic

classification. Average from 2 replicates per plate of culture medium.;

Supplementary Figure S7: Venn diagram depicting the number of

common and unique glycoside hydrolase (GH) families observed in SIP

metagenome and metagenome of cultivate microorganisms` datasets;

Supplementary Figure S8: Distribution of the 20 most abundant

CAZyme families in a) SIP metagenome samples (relative abundance,

average of 4 replicates); b) metagenome of cultivated microorganisms

(relative abundance, average of 2 replicates); c) Metagenome-Assembled

Genomes (MAGs) (number of genes), and most abundant glycosyl hydro-

lases (GH) in d) SIP metagenome samples (relative abundance, average of

4 replicates), e) metagenome of cultivated microorganisms (relative abun-

dance, average of 2 replicates) and f) Metagenome-Assembled Genomes

(MAGs) (number of genes); Supplementary Figure S9: CO2 emission.

CO2 production during total incubation period. Control: control without

EPS; EPS: control containing 12C-EPS; Labeled: incubation with 13C-EPS; La-

beled CO2 percentage:
13CO2 emitted during 13C-EPS sample incubation;

water: days when samples were hydrated; air: days when samples were

aired. Supplementary Table S1: COG functions that significantly segre-

gated across treatments selected by Boruta random forests algorithm

based on 1000 permutations in the SIP metagenome treatment compari-

sons; Supplementary Table S2: KEGG orthologs that significantly segre-

gated across treatments selected by Boruta random forests algorithm

based on 1000 permutations in the SIP metagenome treatment compari-

sons; Supplementary Table S3:CAZyme families that significantly segre-

gated across treatments selected by Boruta random forests algorithm

based on 1000 permutations in the SIP metagenome treatment compari-

sons; Supplementary Table S4: Most abundant CAZyme families

(above 1% abundance) and most abundant KEGG orthologs (above 0.2%

abundance) in the shotgun metagenome of cultivated microorganisms;

Supplementary Table S5: MAGs coverage in all samples; Supplemen-

tary Table S6: Most abundant KEGG orthologs in MAGs and their associ-

ated functions. A selection of the top 10 most abundant KEGG orthologs

in each genome is displayed. Annotation performed using eggNOG data-

base.; Supplementary Table S7: Sugar transporters in MAG1 annotated

with eggNOG database; Supplementary Table S8: Sugar transporters in

MAG2 annotated with eggNOG database; Supplementary Table S9:

General type transporters in MAG3 annotated with eggNOG database;

Supplementary Table S10: Sugar transporters in MAG4 annotated with

eggNOG database; Supplementary Table S11: Families of CAZymes

observed in the MAGs, number of ORFs and associated functions; Sup-

plementary Table S12: Coordinates of the sampling sites; Supplemen-

tary Table S13: Physicochemical properties of topsoil-litter samples.
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