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Summary

The widespread occurrence and diversity of ammonia
oxidizing Archaea suggests their contribution to the
nitrogen cycle is of global significance. Their dis-
tribution appeared limited to low- and moderate-
temperature environments until the recent finding of a
diagnostic membrane lipid, crenarchaeol, in terres-
trial hot springs. We report here the cultivation of a
thermophilic nitrifier (‘Candidatus Nitrosocaldus yel-
lowstonii’), an autotrophic crenarchaeote growing up
to 74°C by aerobic ammonia oxidation. The major
core lipid of this archaeon growing at 72°C is crenar-
chaeol, providing the first direct evidence for its syn-
thesis by a thermophile. These findings greatly
extend the upper temperature limit of nitrification and
document that the capacity for ammonia oxidation is
broadly distributed among the Crenarchaeota.

Introduction

The nitrogen cycle has undergone substantial revision
with recent discoveries of anaerobic ammonia oxidation
(Strous et al., 1999) and nitrite oxidation by anoxygenic
phototrophs (Griffin et al., 2007). The microbiology of this
cycle has also been significantly revised with recognition
that key processes are more broadly distributed among
the primary domains of life than previously appreciated.
This now includes nitrogen fixation by hyperthermophilic
Archaea (Mehta and Baross, 2006), complete denitrifica-
tion by foraminifera (Risgaard-Petersen et al., 2006) and

the isolation of aerobic ammonia oxidizing Archaea (AOA)
(Könneke et al., 2005). The discovery of AOA attracted
considerable attention as the one available isolate
(Nitrosopumilus maritimus) is affiliated with a clade of
Crenarchaeota that comprises nearly 20% of open
ocean bacterioplankton (Karner et al., 2001; Church
et al., 2003). The implication that archaeal nitrification is of
global significance was consistent with more general envi-
ronmental surveys of genes encoding the 16S rRNA and
a subunit of the putative archaeal ammonia monooxyge-
nase (Francis et al., 2005; Treusch et al., 2005; Hallam
et al., 2006). Together, the results of these microbiological
and molecular studies served as a basis to infer that AOA
are diverse, widely distributed among moderate tempera-
ture aquatic and terrestrial environments (Francis et al.,
2005; Treusch et al., 2005; Hallam et al., 2006), and often
more abundant than bacterial ammonia oxidizers (AOB)
(Leininger et al., 2006; Wuchter et al., 2006; Coolen et al.,
2007; Lam et al., 2007).

Characterization of more extreme habitats colonized by
AOA and AOB has included only limited inspection of
geothermal environments. There is one report of nitrifica-
tion at 55°C in a culture containing organisms related to
bacterial nitrifiers (Lebedeva et al., 2005), and recent
molecular surveys of several moderate temperature geo-
thermal systems (45–60°C) reported ribosomal RNA and
amo-like genes affiliated with archaeal and bacterial nitri-
fiers (Takai et al., 2001; Hirayama et al., 2005; Nunoura
et al., 2005; Spear et al., 2007; Weidler et al., 2007). The
finding of crenarchaeol [a glycerol dialkyl glycerol tetra-
ether (GDGT) membrane core lipid of mesophilic Crenar-
chaeota] in terrestrial hot springs suggested the existence
of thermophilic members of this ammonia-oxidizing
assemblage (Pearson et al., 2004; Zhang et al., 2006).
Although suggestive, these data alone do not establish
the existence of thermophilic ammonia-oxidizing Archaea
nor unambiguously identify them as a source of crenar-
chaeol in hot springs (Schouten et al., 2007).

We report here the cultivation of a single archaeal popu-
lation growing autotrophically by aerobic ammonia
oxidation at temperatures up to 74°C. This thermophilic
crenarchaeote contains amo-like genes closely related to
those of mesophilic AOA and synthesizes crenarchaeol as
its principal membrane core lipid. Ammonia oxidation was
correlated directly with archaeal growth and, as with all
known nitrifiers, the stoichiometric production of nitrite.
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Inspection of the Yellowstone National Park (YNP) source
feature confirmed the presence of crenarchaeol and
nearly identical archaeal rRNA and amo gene sequences.
Together these data significantly extend the upper tem-
perature limit of nitrification, increase the known diversity
and habitat range of ammonia-oxidizing microorganisms
and demonstrate the production of crenarchaeol by ther-
mophilic Archaea.

Results and discussion

The existence of thermophilic AOA was initially suggested
by analysis of genomic DNA and lipids extracted from
multiple YNP hot springs spanning a wide range of physi-
cal and chemical conditions (Table 1). Archaeal amoA-like
genes amplified from hot spring environmental DNA
formed four relatedness clusters containing 45 novel
sequence types (defined by 99% predicted amino acid
sequence identity, Fig. 1). Sequences in clusters I and II
were recovered from a single sample in the Mammoth Hot
Springs area in YNP and affiliated with amoA-like
sequences previously recovered from other moderately
thermal (42–50°C) environments (Spear et al., 2007;
Weidler et al., 2007). Sequences in cluster III were recov-
ered from Octopus Spring and Heart Lake 4 (pH near 8.0
and temperatures above 70°C; Table 1) and were not
closely related to any previously published sequence
(Fig. 1). Sequences defining cluster IV were recovered
from a wide variety of predominantly alkaline hot spring
samples (pH 7.2–9.0; one site with pH 3.0) with tempera-
tures from 60°C to 95°C and ammonium concentrations
varying from ~100 mM to below detection limit (Table 1).
Cluster IV also includes amoA-like sequences nearly
identical to that of the newly cultivated thermophilic
archaeal nitrifier described in this report. All sequences in
cluster IV contain a 3 bp insertion absent in all other
known amoA-like sequences, resulting in a predicted
glycine insertion at position 90 of cluster IV predicted
protein sequences.

An archaeal contribution to thermophilic nitrification
was confirmed by the development of ammonia-oxidizing
cultures. A mineral salts medium (Synthetic Freshwater
Crenarchaeota Medium) containing ammonium chloride
(1 mM) and bicarbonate (5 mM) as the sole energy and
carbon sources was inoculated with hot spring sediments
and incubated at various temperatures (60–80°C) in the
dark. Nitrite production was not observed in uninoculated
media or at temperatures above 74°C. Stable ammonia-
oxidizing enrichments were established at 72°C with
samples from six hot springs (Octopus Spring, Witch’s
Navel and Heart Lake hot springs 1, 3, 4 and 5; Table 1)
and maintained for up to 2 years by routine transfer of
10% inoculum into fresh medium. Growth of these ther-
mophilic enrichments was associated with the stoichio- Ta
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metric oxidation of ammonia to nitrite, as previously
reported for the ammonia oxidizing archaeon Nitros-
opumilus maritimus (Könneke et al., 2005).

The enrichment developed from Heart Lake hot spring
1 (HL72) was more fully characterized. This culture dem-

onstrated the shortest generation time among the enrich-
ment study set (m = 0.8 d-1), produced appreciable nitrite
between 60°C and 74°C, and had a growth optimum
between 65°C and 72°C (Fig. S1). Fluorescence in situ
hybridization (FISH)-assisted direct cell counts revealed
that coccoid Archaea accounted for > 90% of cells in
HL72 (reaching ~2 ¥ 107 cells ml-1), with the remaining
cells consisting of long, thin rod-shaped bacteria (Fig. 2).
Amplification of a unique archaeal 16S rRNA and ITS
sequence from HL72 indicated the presence of a single
archaeal population affiliated with a clade basal to the
radiation of the mesophilic Crenarchaeota (Fig. 3). This
sequence is nearly identical (> 99.5%) to sequences
recovered directly from the Heart Lake 1 hot spring, is
closely related to sequences amplified from other thermal
environments (Marteinsson et al., 2001; Takai et al.,
2001; Nunoura et al., 2005), but is distinct from cultivated
hyperthermophiles (Fig. 3). Bacterial 16S rRNA genes
amplified from HL72 were closely related (> 98% nucle-
otide sequence identity) to published sequences belong-
ing to Thermus, Rhodhothermus, Thermomicrobium and
Aquificales spp. These bacterial lineages do not contain
any known bacterial nitrifiers. In addition, we could not
amplify bacterial amoA genes from HL72 using existing
primer sets (Rotthauwe et al., 1997).

The recovery of a unique archaeal amoA-like
sequence (cluster IV) from the HL72 culture was also
consistent with enrichment of a single archaeon. Ampli-
fication of a genome fragment containing archaeal
amoA- and amoB-like genes revealed a genomic
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Fig. 1. Phylogenetic analysis of archaeal amoA-like nucleotide
sequences from ‘Candidatus Nitrosocaldus yellowstonii’, YNP hot
springs and a variety of mesophilic environments. The tree was
constructed using Neighbour-joining inference method with the
Kimura 2-parameter correction (598 positions) and shows the
relationship between thermophilic amoA-like sequences and
sequences from mesophilic environments. Thermophilic clusters I,
II, III and IV are indicated in grey shading. Nodes supported by
bootstrap values > 50% using neighbour-joining (1000 replicates),
parsimony (1000 replicates) and maximum likelihood (100
replicates), respectively, are indicated. Scale bar represents 0.1
changes per site. For clone abbreviations, see Table 1.

Fig. 2. Epifluorescence photomicrograph of HL72 following FISH to
visualize archaeal (red) and bacterial (green) cells. Scale bar
corresponds to 5 mm.
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arrangement similar to the soil Crenarchaeota (Fig. S2),
lacking a closely linked amoC-like gene that is possibly
located elsewhere on the chromosome (Nicol and
Schleper, 2006). This genomic organization differs from
the amoBCA-like gene organization observed in the
marine Crenarchaeota (Hallam et al., 2006; Nicol and
Schleper, 2006). The predicted amino acid sequence of

the HL72 AmoB is highly divergent from all sequences
previously recovered from soil and marine habitats
(< 50% amino acid sequence identity with a unique 30
amino acid insertion), of possible functional significance
for growth at high temperature.

Although multiple isolation strategies (filtration, antibiot-
ics, extinction dilution and flow-cytometry assisted cell
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Fig. 3. Phylogenetic analysis of archaeal 16S rRNA gene sequences amplified from ‘Candidatus Nitrosocaldus yellowstonii’, YNP hot springs
and a variety of mesophilic environments. Neighbour-joining inference method with the Kimura 2-parameter correction (776 positions)
illustrates the relationship of ‘Candidatus N. yellowstonii’ and Heart Lake 1 archaeal sequences. Nodes supported by bootstrap values > 50%
using neighbour-joining (1000 replicates), parsimony (1000 replicates) and maximum likelihood (100 replicates), respectively, are indicated.
Scale bar represents 0.1 changes per site. HL1env, Heart Lake 1 environmental clones; SAGMCG-1, South Africa Gold Mine Crenarchaeotic
Group 1 (Takai et al., 2001); ThAOA, Thermophilic Ammonia-Oxidizing Archaea; HWCG III, Hot Water Crenarchaeotic Group III (Nunoura
et al., 2005); HWCG I, Hot Water Crenarchaeotic Group I (Marteinsson et al., 2001; Takai et al., 2001; Nunoura et al., 2005).
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sorting) have not yielded a pure culture, available data
associate the dominant archaeal population with
ammonia oxidation. Growth of the archaeon correlated
directly with the near-stoichiometric oxidation of ammonia
to nitrite (Fig. 4). In contrast, numbers of the minor bac-
terial population remained relatively constant during the
period of exponential nitrite production, only increasing
significantly as the culture-approached stationary phase
(Fig. 4). Conversion of nitrite to nitrate was not observed.
Supplementing the culture medium with dilute yeast
extract (0.2 mg l-1), acetate (2 mM) or H2 (716 torr)
reduced and eventually eliminated nitrite production while
greatly stimulating bacterial growth (data not shown).

All Crenarchaeota examined to date contain GDGT
lipids with varying numbers of cyclopentane rings
(Fig. S3). Non-thermophilic Crenarchaeota, including the
proposed ammonia oxidizer Cenarchaeum symbiosum
(Hallam et al., 2006), have an additional lipid (crenar-
chaeol) containing four cyclopentane rings as well as a
cyclohexane ring (Fig. S3; GDGT-I) (Sinninghe Damsté
et al., 2002a,b). Although the ecological and evolutionary
significance of crenarchaeol remains unresolved, a broad
environmental distribution and correlation with the poten-
tial for ammonia oxidation supports its importance as a
biomarker (Schouten et al., 2000; 2007; Sinninghe
Damsté et al., 2002a; Pearson et al., 2004; Zhang et al.,
2006; Weijers et al., 2007).

Lipid analysis identified crenarchaeol as the major
GDGT component of the HL72 culture (Fig. 5). As this
could not originate from inoculum carry-over following
over 100 10% serial transfers of the culture, crenarchaeol
must derive from archaeal synthesis at 72°C. The ratio of
crenarchaeol (I) to GDGT-II in HL72 (I/I + II = 0.9) is well
within the distribution versus temperature observed by

Zhang and colleagues (2006) for other hot spring systems
and is similar to that reported for C. symbiosum
(I/I + II = 0.7, calculated from Sinninghe Damsté et al.,
2002a,b). Non-isoprenoid tetraether lipids were not
detected in HL72. However, in addition to dialkyl tetra-
ether lipids (GDGTs I-VII), we also identified a series of
trialkyl-type tetraether lipids in both enrichment cultures
and in hot spring samples (Fig. 5). The most abundant of
these trialkyl lipids was compound VIII (Fig. S3), which
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was also detected in extracts from Heart Lake 1 sediment
(Fig. 5). Compound VIII has been reported as a minor
constituent of the total ether lipid pool in a number of
cultivated hyperthermophilic Crenarchaeota (Gulik et al.,
1988; Hopmans et al., 2000; Uda et al., 2000) and has
been proposed as an intermediate in the biosynthesis of
GDGT-II from archaeol (GDGT-Ø) (Koga and Morii, 2007).
Furthermore, traces of VIII are routinely found in non-
thermophilic environments (A.E. Ingalls, unpubl. data).
Hopmans and colleagues (2000) observed small amounts
of VIII in marine sediments. Interestingly, the proportion of
crenarchaeol to VIII varied with culture conditions, with
higher abundances of VIII observed under suboptimal
growth conditions (e.g. growth at 72°C at pH 6.0)
(Fig. S4). Under these conditions, HL72 contains not only
VIII, but also IX-XII (Fig. S4), presumably the trialkyl ver-
sions of GDGTs III-V (Fig. 5). The presence of these com-
pounds in such high abundances may be an indication of
physiological stress in the HL72 archaeon. The structures
of compounds IX-XII have not been fully elucidated and
may contain double bonds rather than rings. Neverthe-
less, to our knowledge, trialkyl tetraethers with more than
one cyclopentyl ring (X-XII) have not been previously
reported in either cultures or environmental samples.

Based on the data presented here, we propose the
following provisional taxonomic assignment for the
archaeon in the HL72 culture.

Nitrosocaldales order nov.
Nitrosocaldaceae fam. nov.

‘Candidatus Nitrosocaldus yellowstonii’
General nov. et sp. nov.

Etymology. Nitrosus (Latin masculine adjective): nitrous;
caldus (Latin masculine adjective): hot; yellowstonii (Latin
masculine genitive name): from YNP. The name alludes to
the physiology of the organism (ammonia oxidizer, ther-
mophilic) and the habitat from which it was recovered.
Locality. The sediment from a terrestrial hot spring in
YNP, USA.
Diagnosis. A thermophilic chemolithoautotrophic ammo-
nia oxidizer from the domain Archaea appearing as small
cocci or very short rods.

The discovery of an early diverging lineage of thermo-
philic ammonia-oxidizing Crenarchaeota significantly
extends the known habitat range of nitrifying microorgan-
isms and supports inferences based on gene surveys that
the capacity for ammonia oxidation is broadly distributed
among Crenarchaeota. Our observation of crenarchaeol
biosynthesis by this thermophile is consistent with in situ
production of this lipid in geothermal environments
(Pearson et al., 2004; Zhang et al., 2006; Schouten et al.,
2007). Although this is not incompatible with the sugges-
tion that crenarchaeol is associated with the expansion of
Crenarchaeota into moderate temperature habitats

(Kuypers et al., 2001; Sinninghe Damsté et al., 2002a;
Schouten et al., 2003), it may serve functions other than
modifying membrane fluidity. For example, if this unique
core lipid is a component of an archaeal cell-membrane
associated system of ammonia oxidation, then it could be
diagnostic primarily for ammonia oxidation. These find-
ings also raise the possibilities that ammonia oxidation
originated within thermophilic Archaea and that a com-
plete nitrogen cycle may function at much higher tempera-
tures than now appreciated.

Experimental procedures

Characterization of sampling sites

Sediment samples (~150 g of sediment and ~50 ml of spring
water) were collected from a variety of hydrothermal features
in YNP in previously sterilized Pyrex glass bottles and
homogenized in the field by stirring with a sterile pipette.
Approximately 50 ml of this sediment slurry was transferred
to a sterile conical tube, frozen on dry ice within 2h of collec-
tion and kept at -80°C until processed for molecular or lipid
analyses. The remaining sample, destined for cultivation
studies, was transported back to the laboratory at room
temperature and stored at 4°C. Temperature, pH and
salinity were measured in situ using both a combined
temperature-pH probe (pH 330; WTW, Fort Myers, FL) and a
YSI30 portable instrument (YSI, Yellow Springs, OH).
Concentrations of inorganic nitrogen compounds were
determined on site, in triplicate, using a DR/820 portable
colorimeter and standard test kits (Hach, Loveland, CO).

Cultivation of a thermophilic AOA

Enrichment cultures were incubated aerobically, in the dark
and without shaking, at 60–80°C in Synthetic Freshwater
Crenarchaeota Medium containing 1 g l-1 NaCl, 0.4 g l-1

MgCl26H2O, 0.1 g l-1 CaCl22H2O and 0.5 g l-1 KCl. All other
components are as previously described (Könneke et al.,
2005). Medium was aliquoted into Balch tubes (10 ml per
tube), the headspace (~25 ml) exchanged with N2/CO2 (80%/
20%) and the tubes sealed with butyl-rubber stoppers. Prior
to inoculation, 2.5 ml of 100% O2 was added to the
headspace. Sediment slurries (0.5 g) were used as inoculum.
Growth was monitored by microscopy, nitrite production and
fluorescent in situ hybridization (Könneke et al., 2005). Cul-
tures were routinely transferred (10% volume per transfer)
into fresh medium when nitrite concentrations approached
0.9 mM, indicating consumption of ~90% of the available
ammonium.

Molecular analysis of 16S rRNA and putative
archaeal amo genes

DNA for molecular analyses of environmental samples was
extracted from 0.5 g of hot spring sediment using the Fast
DNA kit for Soil (Qbiogene, Carlsbad, CA) according to the
manufacturer’s instructions. For cultures, cells were har-
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vested by filtration onto 0.2 mm polycarbonate filters after first
vortexing culture tubes to collect material that might be
attached to the tube walls (no such biofilms were observed in
any culture). Genomic DNA was then extracted directly from
the filter as described above for sediment samples. Near-
complete 16S rRNA genes were PCR amplified using either
bacterial- [27F and 1492R (Lane, 1991)] or archaeal-specific
primers [Arch21F and either Arch958R (DeLong, 1992)] or
ArchLSU51R [García-Martínez and Rodríguez-Valera,
(2000)] with the following protocol: 94°C for 4 min; 30 cycles
consisting of 94°C for 30 s, 56°C for 30 s and 72°C for 60 s;
and 72°C for 10 min. Putative archaeal ammonia monooxy-
genase A subunit genes were amplified using a reverse
primer for the amoA gene [Arch–amoAR (Francis et al.,
2005)] and a forward primer based on amoA-like sequences
in public databases (Arch_amoA_F 5′-AATGGTCTGGS
TTAGAMG-3′) using the protocol described above for rRNA
genes but with an annealing temperature of 52°C. Amplifica-
tions of genome fragments containing genes encoding more
than one AMO subunit were carried out using Arch–amoAR
and a reverse primer for the putative amoB gene
[CrenAmo2.2R (Könneke et al., (2005)] as described above
for the amplification of amoA genes but with an extension
time of 2 min at 72°C. Amplification of bacterial amoA genes
was examined using existing primer sets and reaction condi-
tions (Rotthauwe et al., 1997). Plasmids containing copies of
the 16S rRNA and amoA-like genes of N. maritimus
(Könneke et al., 2005) and the amoA gene of Nitrosomonas
europaea were used to optimize PCR conditions. Amplified
fragments were cloned using a TOPO-TA Cloning Kit (Invit-
rogen) and sequenced as previously described (Könneke
et al., 2005). Phylogenetic analyses of the archaeal rRNA
and amoA-like sequences were carried out using evolution-
ary distance, parsimony and maximum likelihood methods
using the ARB (Ludwig et al., 2004) and Phylip (Felsenstein,
2005) software packages.

Fluorescence in situ hybridization

For FISH analysis, cultures were first mixed by vortexing,
then cells were fixed in 2% paraformaldehyde and filtered
onto 0.2 mm polycarbonate GTBP membranes (Millipore).
Cy3-labelled archaeal (Arc915) and FITC-labelled bacterial
(Eub338-I, II and III) specific probes were used as previously
described (Amann et al., 1990).

Extraction and analysis of archaeal membrane lipids

Centrifuged or filtered (0.2 mm) culture medium, and freeze-
dried hot spring samples were extracted using a modified
Bligh and Dyer protocol in which samples were ultrasonically
extracted with 2:1:0.8 v/v methanol/dichloromethane/50 mM
trichloroacetate (Nishihara and Koga, 1987; Koga and Morii,
2007). Crude extracts were further extracted with dichlo-
romethane (three times), washed with deionized water and
dried under a stream of N2. The dried total extracts were
dissolved in hexane/isopropanol (99:1) and analysed by
liquid chromatography mass spectrometry (LC-MS) without
further treatment (Hopmans et al., 2000; 2004). Analyses
were carried out on an Agilent (Palo Alto, CA, USA) 1100

series LC fitted with a Prevail Cyano column (2.1 ¥ 150 mm,
3 mm; Alltech, Deerfield, IL, USA). Lipids were detected by
atmospheric pressure positive ion chemical ionization mass
spectrometry on an Agilent ion trap MS with the following
specifications: nebulizer pressure: 60 psi, drying gas pres-
sure: 7 psi, scanning 1250–1350 m/z.

Accession numbers

The sequences described in this manuscript have been
deposited in GenBank under accession numbers EU239959–
EU240001.
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The following supplementary material is available for this
article online:

Fig. S1. Temperature dependence of nitrite production in
HL72. Triplicate cultures of HL72 were incubated at the
appropriate temperatures, nitrite concentrations were mea-
sured every 6–12 h and the maximal nitrite production rate
calculated for each replicate. Values in the graph represent
the mean of the maximal nitrite production rates calculated
for each replicate. Errors bars indicate one standard devia-
tion of the mean.
Fig. S2. Schematic representation of the genomic organiza-
tion of amo genes in ‘Candidatus Nitrosocaldus yellowstonii’
compared with N. maritimus, C. symbiosum and environmen-
tal genome fragments from marine and soil Crenarchaeota.
Fig. S3. Structures of archaeal GDGT lipids present in HL72
and in sediments from Yellowstone National Park. Structures
of archaeol (Ø; two molecules shown – one in black, another
in grey), GDGT-II-IV, crenarchaeol (I and isomer VI) and
compound VIII (trialkyl-type GDGT-II).
Fig. S4. Archaeal isoprenoid ether membrane lipids of
HL72 grown under suboptimal conditions (72°C, pH 6.0).
HPLC-MS base peak chromatogram of lipids extracted from
a culture of HL72 grown at 72°C and pH 6.0. Roman numer-
als above peaks correspond to GDGT structures in Fig. S3.
Note the higher relative abundance of trialkyl tetraether lipids
(compounds VIII–XII) compared with the chromatogram in
Fig. 5. The structure of VIII (trialkyl-type GDGT-II) was veri-
fied by MS/MS analysis. The molecular ion of VIII has an m/z
of 1304 and fragmentation resulted in ions with m/z of 1024,
1006, 988, 950 and 932 representing a loss of one phytanyl
group as phytene and subsequent losses of one or two glyc-
erol moieties and water respectively.
Table S1. Physical and chemical properties of YNP sam-
pling sites used for the detection of thermophilic AOA.
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Supplementary Figure S1: Temperature-dependence of nitrite production in HL72
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Table S1.  Physical and chemical properties of YNP sampling sites used for the detection of thermophilic AOA

Temp.Site Abbr a Sample
Type (˚C) pH Longitude Latitude

Heart Lake 1 HL1 sediment 70-80 8.30 44˚18.139' N 110˚31.196' W

Heart Lake 3 HL3 sediment 78.9 7.22 44˚17.894' N 110˚31.051' W

Heart Lake 4 HL4 sediment 76.8 8.01 44˚17.886' N 110˚31.044' W

Heart Lake 5 HL5 sediment 82.5-90 6.90 44˚18.312' N 110˚31.326' W

Witch's Navel WN sediment 69.8 7.62 44˚18.255' N 110˚31.277' W

Octopus Spring OS sediment 70-90 8.02 44˚32.043' N 110˚47.870' W

O1A O1a microbial
mat 72 n/d 44˚31.933' N 110˚47.800' W

Clearwater Spring CS sediment 54 6.2 n/a n/a

Mammoth Spring MamSp sediment n/a n/d n/a n/a

Nymph Creek NyCr microbial
mat 60 3.00 44˚45.176' N 110˚43.447' W

Shoshone Spring 7 SHO7 sediment 70 8.0-9.0 44˚21.190' N 110˚48.076' W
Obsidian Pool
fumarole OPF microbial

mat 95 n/d 44˚36.605' N 110˚26.331' W
a Abbreviations used for clone names in Figures 1 and 3
n/a, not available; n/d, data not determined


