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Abstract

This paper presents our contribution to the ChaLearn

Challenge 2015 on Cultural Event Classification. The chal-

lenge in this task is to automatically classify images from

50 different cultural events. Our solution is based on the

combination of visual features extracted from convolutional

neural networks with temporal information using a hierar-

chical classifier scheme. We extract visual features from

the last three fully connected layers of both CaffeNet (pre-

trained with ImageNet) and our fine tuned version for the

ChaLearn challenge. We propose a late fusion strategy that

trains a separate low-level SVM on each of the extracted

neural codes. The class predictions of the low-level SVMs

form the input to a higher level SVM, which gives the final

event scores. We achieve our best result by adding a tem-

poral refinement step into our classification scheme, which

is applied directly to the output of each low-level SVM. Our

approach penalizes high classification scores based on vi-

sual features when their time stamp does not match well an

event-specific temporal distribution learned from the train-

ing and validation data. Our system achieved the second

best result in the ChaLearn Challenge 2015 on Cultural

Event Classification with a mean average precision of 0.767

on the test set.

1. Motivation

Cultural heritage is broadly considered a value to be pre-

served through generations. From small town museums to

worldwide organizations like UNESCO, all of them aim at

keeping, studying and promoting the value of culture. Their

professionals are traditionally interested in accessing large

amounts of multimedia data in rich queries which can ben-

efit from image processing techniques. For example, one of

Figure 1. Examples of images depicting cultural events.

the first visual search engines ever, IBM’s QBIC [9], was

showcased for painting retrieval from the Hermitage Mu-

seum in Saint Petersburg (Russia).

A cultural expression which is typically not found in

a museum are social events. Every society has created

through years collective cultural events celebrated with cer-

tain temporal periodicity, commonly yearly. These festivi-

ties may be widely spread geographically, like the Chinese

New Year’s or Indian Holi Festival, or much more localized

like the Carnival in Rio de Janeiro or the Castellers (hu-

man towers) in Catalonia. An image example for each of

these four cultural events is presented in Figure 1. All of

them have a deep cultural and identity nature that motivates

a large amount of people to repeat very particular behavioral

patterns.

The study and promotion of such events has also bene-

fited from the technological advances that have popularized

the acquisition, storage and distribution of large amounts of
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multimedia data. Cultural events across the globe are at the

tip of a click, improving both the access of culture lovers to

rich visual documents, but also their touristic power or even

exportation to new geographical areas.

However, as in any classic multimedia retrieval problem,

while the acquisition and storage of visual content is a pop-

ular practice among event attendees, their proper annotation

is not. While both personal collections and public reposito-

ries contain a growing amount of visual data about cultural

events, most of it is not easily available due to the almost

non-existent semantic metadata. Only a minority of photo

and video uploaders will add the simplest form of annota-

tion, a tag or a title, while most users will just store their

visual content with no further processing. Current solutions

will mostly rely in on temporal and geolocation metadata

attached by the capture devices, but also these sources are

unreliable for different reasons, such as erroneous set up of

the internal clock of the cameras, or the metadata removal

policy applied in many photo sharing sites to guarantee pri-

vacy.

Cultural event recognition is a challenging retrieval task

because of its strong semantic dimension. The goal of cul-

tural event recognition is not only to find images with sim-

ilar content, but further to find images that are semantically

related to a particular type of event. Images of the same

cultural event may also be visually different. Thus, major

research questions in this context are, (i) if content-based

features are able to represent the cultural dimension of an

event and (ii) if robust visual models for cultural events can

be learned from a given set of images.

In our work, we addressed the cultural event recogni-

tion problem in photos by combining the visual features ex-

tracted from convolutional neural networks (convnets) with

metadata (time stamps) of the photos in the hierarchical fu-

sion scheme shown in Figure 2. The main contributions of

our paper are:

• Late fusion of the neural codes from both the fine-

tuned and non-fine-tuned fully connected layers of the

CaffeNet [15] convnet.

• Generation of spline-based temporal models for cul-

tural events based on photo metadata crawled from the

web.

• Temporal event modeling to refine visual-based classi-

fication as well as noisy data augmentation.

This paper is structured as follows. Section 2 overviews

the related work, especially in the field of social event de-

tection and classification. Section 3 describes a temporal

modeling of the cultural events which has been applied both

on the image classification and data augmentation strategies

presented in Section 4 and Section 5, respectively. Exper-

iments on the ChaLearn Cultural Event Dataset [2] are re-

ported in Section 6 and conclusions drawn in Section 7.

This work was awarded with the 2nd prize in the

ChaLearn Challenge 2015 on Cultural Event Classification.

Our source code, features and models are publicly available

online1.

2. Related work

The automatic event recognition on photo and video col-

lections has been broadly addressed from a multimedia per-

spective, further than just the visual one. Typically, visual

content is accompanied by descriptive metadata such as a

time stamp from the camera or an uploading site, a geolo-

cation from a GPS receiver or some text in terms of a tag,

a title or description is available. This additional contex-

tual data for a photo is highly informative to recognize the

depicted semantics.

Previous work on social events has shown that tem-

poral information provides strong clues for event cluster-

ing [28]. In the context of cultural event recognition, we

consider temporal information a rather “asymmetric clue”

where time provides an indicator to rather reject a given hy-

pothesis than to support it. On the one hand, given a pre-

diction (e.g. based on visual information) for a photo for a

particular event, we can use temporal information, i.e. the

capture date of the photo, to easily reject this hypothesis if

the capture date does not coincide with the predicted event.

In this case temporal information represents a strong clue.

On the other hand, cultural events may take place at the

same time. As a consequence, the coincidence of a cap-

tured date with the predicted event in this case represents

just a weak clue. We take this “asymmetric nature” in our

temporal refinement scheme (see Section 4.3) into account.

Temporal information has further been exploited for

event classification by Mattive et al. [18]. The authors

define a two-level hierarchy of events and sub-events which

are automatically classified based on their visual informa-

tion described as a Bag of Visual Words. All photos are

first classified visually. Next, the authors refine the classifi-

cation by enforcing temporal coherence in the classification

for each event and sub-event which considerably improved

the purely visual classification.

A similar approach is applied by Bossard et al. [3], ex-

ploiting temporal information to define events as a sequence

of sub-events. The authors exploit the temporal ordering of

photos and model events as a series of sub-events by a Hid-

den Markov Model (HMM) to improve the classification.

A very similar problem to Cultural Event Recognition,

namely “Social Event Classification”, was formulated in

the MediaEval Social Event Detection benchmark in 2013

1https://imatge.upc.edu/web/resources/

cultural-event-recognition-computer-vision-software

https://imatge.upc.edu/web/resources/cultural-event-recognition-computer-vision-software
https://imatge.upc.edu/web/resources/cultural-event-recognition-computer-vision-software


Figure 2. Global architecture of the proposed system.

[22, 20]. The provided dataset contained 57,165 images

from Instagram together with available contextual meta-

data (time, location and tags) provided by the API. The

classification task considered a first decision level between

event and non-event and, in the case of event, eight seman-

tic classes were defined to be distinguished: concert, con-

ference, exhibition, fashion, protest, sports, theatre/dance,

other. The results over all participants showed that the clas-

sification performance strongly benefits from multimodal

processing combining content and contextual information.

Pure contextual processing as proposed in [27] and [11]

and yielded the weakest results. The remaining participants

proposed to add visual analysis to the contextual process-

ing. CERTH-ITI [24] combined pLSA on the 1,000 most

frequent tags with a dense sampling of SIFT visual fea-

tures, which were later coded with VLAD. They observed a

complementary role between visual and textual modalities.

Brenner and Izquierdo [4] combined textual features with

the global GIST visual descriptor, which is capable of cap-

turing the spatial composition of the scene. The best perfor-

mance in the Social Event Classification task was achieved

by [19]. They combine processing of textual photo de-

scriptions with the work from [18] for visual processing,

based on bag of visual words aggregated in different fash-

ions through events. Their results showed that visual in-

formation is the best option to discriminate between event

/ non-event and that textual information is more reliable to

discriminate between different event types.

In terms of benchmarking, a popular strategy is to re-

trieve additional data to extend the training dataset. The au-

thors of [23], for example, retrieved images from Flickr to

build unigram language models of the requested event types

and locations in order to enable a more robust matching with

the user-provided query. We explored a similar approach in

for cultural event recognition. Our experiments, however

indicated that our extension of the training set this did not

improve results but made them slightly worse.

3. Temporal models

Cultural events usually occur at a regular basis and thus

have a repetitive nature. For example, “St. Patrick’s day”

always takes place on March, 17, “La Tomatina” is always

scheduled for the last week of August, and the “Carneval

of Rio” usually takes place at some time in February and

lasts for one week. More complex temporal patterns exist,

for example, for cultural events coupled to the lunar calen-

der which changes slightly each year. An example is the

“Maslenitsa” event in Russia is which is scheduled for the

eighth week before Eastern Orthodox Easter.

The temporal patterns associated with cultural events are

a valuable clue for their recognition. A photo captured, for

example, in December will very unlikely (except for erro-

neous date information) show a celebration of St. Patrick’s

day. While temporal information alone is not sufficient to

assign the correct event (many events may take place con-

currently), we hypothesize that temporal information pro-

vides strong clues that can improve cultural event recogni-

tion.

To start with temporal processing, first temporal models

have to be extracted from the data. Temporal models for

cultural events can be either generated manually in advance

or extracted automatically from metadata of related media.

We propose a fully automatic approach to extract temporal

models for cultural events. The input to our approach is a set

of capture dates for media items that are related to a given

event. Capture dates may be, for example, extracted from

social media sites like Flickr or from the metadata embed-

ded in the photos (e.g. EXIF information). In a first step, we

extract the day and month of the capture dates and convert

them into a number d between 1 and 365, encoding the day

in the year when the photo was taken. From these numbers,



(a) Maslenitsa (b) Timkat

Figure 3. Temporal spline models for the “Maslenitsa” and the

“Timkat” event: (a) for normally distributed data the model be-

comes approximately Gaussian-shaped; (b) the uncertainty of the

distribution is reflected in the temporal model.

we compute a temporal distribution T (d) of all available

capture dates. Assuming that a cultural event takes place

annually, it is straight-forward to model the temporal distri-

bution with a Gaussian model. Gaussian modeling works

well when a sufficient number of timestamps exists. For

sparse data, however, with a few timestamps only, the dis-

tribution is likely to become non-Gaussian and thus model

fitting fails in generating accurate models. Additionally, the

timestamps of photos are often erroneous (or overwritten by

certain applications) yielding strong deviations of the ideal

distribution. To take the variability that is present in the data

into account, a more flexible model is required. We model

the distribution t(d) by a piecewise cubic smoothing spline

[7]. To generate the final model T , we evaluate the spline

over the entire temporal domain and normalize it between 0

and 1. Given a photo i with a certain timestamp di, the fit-

ted temporal model Tc(di) provides a score sc that the photo

refers to the associated event c. The flexible spline model

enables the modeling of sparse and non-Gaussian distribu-

tions and further to model events with more complex than

annual occurrence patterns.

Figure 3 shows temporal models for two example events.

The “Maslenitsa” (3(a)) takes place between mid of Febru-

ary and mid of March (approx. days 46-74). This corre-

sponds well with the timestamps extracted from the related

media items, resulting in a near Gaussian-shaped model.

The “Timkat” event always takes place on January 19. This

is accurately detected by the model, which has its peak at

day 19. The photos related to this event, however, have

timestamps that are distributed across the entire year. This

property of the underlying data is reflected in the model,

giving low but non-zero scores to photos with timestamps

other than the actual event date.

Figure 4 shows the temporal models extracted from the

training and validation data for all 50 classes. We observe

that each model (row) exhibits one strong peak which repre-

sents the most likely date of the event. Some models contain

additional smaller side-peaks learned from the training data

which reflect the uncertainty contained in the training data.

Figure 4. Automatically generated temporal models for each event

class. For each event we observe a typical pattern of recording

dates exhibiting one strong peak. The colors range from dark blue

(0) to red (1).

The events are distributed over the entire year, some events

occur at the same time.

The generated temporal models can be used to refine de-

cisions made during classification (see Section 4.3) as well

as for the filtering of additional data collections to reduce

noise in the training data (see Section 5).

4. Image Classification

The automatic recognition of a cultural event from a

photo is addressed in this paper with the system architec-

ture presented in Figure 2. We propose combining the vi-

sual features obtained at the fully connected layers of two

versions of the same Caffenet convolutional neural network:

the original one and a modified version fine-tuned with pho-

tos captured at cultural events. A low-level SVM classi-

fier is trained for each visual feature, and its scores refined

with the temporal model described in Section 3. Finally, the

temporally modified classification scores are fused in a final

high-level SVM to obtain the final classification for a given

test image.

4.1. Feature extraction

Deep convolutional neural networks (convnets) have re-

cently become popular in computer vision, since they have

dramatically advanced the state-of-the-art in tasks such as

image classification [16, 21], retrieval [1, 21] or object de-

tection [10, 12]

Convnets are typically defined as a hierarchical struc-

ture of a repetitive pattern of three hidden layers: (a) a

local convolutional filtering (bidimensional in the case of

images), (b) a non-linear operation, (commonly Rectified

Linear Units - ReLU) and (c) a spatial local pooling (typi-

cally a max operator). The resulting data structure is called

a feature map and, in the case of images, they correspond

to 2D signals. The deepest layers in the convnet do not fol-

low this pattern anymore but consist of fully connected (FC)



layers: every value (neuron) in the fully connected layer is

connected to all neurons from the previous layers through

some weights. As these fully connected layers do not ap-

ply any spatial constrain anymore, they are represented as

single dimensional vectors, further referred in this paper as

neural codes [1].

The amount of layers is a design parameter that, in the

literature, may vary from three [17] to nineteen [25]. Some

studies [29] indicate that the first layers capture finer pat-

terns, while the deeper the level, the more complex patterns

are modeled. However, there is no clear answer yet about

how to find the optimal architecture to solve a particular vi-

sual recognition problem. The design of convnets is still

mainly based on trial-and-error process and the expertise of

the designer. In our work we have adopted the public imple-

mentation of CaffeNet [15], which was inspired by AlexNet

[16]. This convnet is defined by 8 layers, being the last 3 of

them fully connected. In our work we have considered the

neural codes in these layers (FC6, FC7 and FC8) to visually

represent the image content.

Apart from defining a convnet architecture, it is neces-

sary to learn the parameters that govern the behaviour of the

filters in each layer. These parameters are obtained through

a learning process that replaces the classic handcrafted de-

sign of visual features. This way, the visual features are

optimized for the specific problems that one wants to solve.

Training a convnet is achieved through backpropagation, a

high-computational effort that has been recently boosted by

the affordable costs of GPUs. In addition to the computa-

tional requirements, a large amount of annotated data is also

necessary. Similarly to the strategy adopted in the design of

the convnet, we have also used the publicly available fil-

ter parameters of CaffeNet [15], which had been trained for

1,000 semantic classes from the ImageNet dataset [8].

The cultural event recognition dataset aimed in this paper

is different from the one used to train CaffeNet, both in the

type of images and in the classification labels. In addition,

the amount of photos of annotated cultural events available

in this work is much smaller than the large amount of im-

ages available in ImageNet. We have addressed the situation

by also considering the possibility of fine tuning CaffeNet,

that is, providing additional training data to an existing con-

vnet which had been trained for a similar problem. This

way, the network parameters are not randomly initialized,

as in a training from scratch, but are already adjusted to a

solution which is assumed to be similar to the desired one.

Previous works [10, 12, 6] have proved that fine-tuning [13]

is an efficient and valid solution to address these type of sit-

uations. In the experiments reported in Section 6 we have

used feature vectors from both the original CaffeNet and its

fine-tuned version.

4.2. Hierarchical fusion

The classification approach applied in our work is using

the neural codes extracted from the convnets as features to

train an classifier (Support Vector Machines, SVMs, in our

case), as proposed in [6]. As we do not know a priori which

network layer are most suitable for our task, we decide to

combine several layers using a late fusion strategy.

The neural codes obtained from different networks and

different layers may have strongly different dimensionality

(e.g. from 4,096 to 50 in our setup). During the fusion of

these features we have to take care that features with higher

dimensionality do not dominate the features with lower di-

mensionality. Thus, we adopted a hierarchical classification

scheme to late fuse the information from the different fea-

tures in a balanced way [26].

At the lower level of the hierarchy we train separate

multi-class SVMs (using one-against-one strategy [14]) for

each type of neural code. We neglect the final predictions

of the SVM and retrieve the probabilities of each sample

for each class. The probabilities obtained by all lower-level

SVMs form the input to the higher hierarchy level.

The higher hierarchy level consists of an SVM that takes

to probabilistic output of the lower-level SVMs as input.

This assures that all input features are weighted equally in

the final decision step. The higher-level SVM is trained di-

rectly from the probabilities and outputs a prediction for the

most likely event. Again we reject the binary prediction and

retrieve the probabilities for each event as the final output.

4.3. Temporal Refinement

While visual features can easily be extracted from each

image, the availability of temporal information depends on

the existence of suitable metadata. Thus, temporal informa-

tion must in general be considered to be a sparsely available

feature. Due to its sparse nature, we propose to integrate

temporal information into the classification process by re-

fining the classifier outputs. This allows us to selectively

incorporate the information only for those images where

temporal information is available.

The basis for temporal refinement are the temporal mod-

els introduced in Section 3. The models Tc with c =
1, . . . , C and C the number of classes, represent for each

event class c and each day of the year d, a score s repre-

senting the probability of a photo captured in a given day

to belong to the event: s = Tc(d). For a given image with

index i, we first extract the day of the year di from its cap-

ture date and use it as an index to retrieve the scores from

the temporal models of all event classes: sc = Tc(di), with

s = {s1, . . . , sC}.

Given a set of probabilities Pi for image i obtained from

a classifier, the refinement of these probabilities is per-

formed as follows. First, we compute the difference be-

tween the probabilities and the temporal scores: di = Pi−s.



Next, we distinguish between two different cases:

(I) di(c) < 0: Negative differences mean that the prob-

ability for a given class predicted by the classifier is less

than the temporal score for this class. This case may eas-

ily happen as several events may occur at the same time

as the photo was taken. The temporal models indicate that

several events may be likely. Thus, the temporal informa-

tion provides only a weak clue that is not discriminative. To

handle this case, we decide to trust the class probabilities

by the classifier and to ignore the temporal scores by setting

d = max(d, 0).
(II) di(c) > 0. In this case the temporal score is lower

than the estimate of the classifier. Here, the temporal score

provides a strong clue that indicates an inaccurate predic-

tion of the classifier. In this case, we use the difference

di(c) to re-weight the class probability.

The weights wi are defined as wi = max(d, 0) + 1. The

final re-weighting of the probabilities Pi is performed by

computing P̃i = Pi/wi. In case (I) the temporal scores do

not change the original predictions of the classifier. In case

(II) the scores are penalized by a fraction that is propor-

tional to the disagreement between the temporal scores and

the prediction of the classifier.

5. Data Augmentation

The experiments described in Section 6 were conducted

with the ChaLearn Cultural Event Recognition dataset [2],

which was created by downloading photos from Google Im-

ages and Bing search engines. Previous works [16, 29, 6]

have reported gains when applying some sort of data aug-

mentation strategy.

We decided to extend the amount of training data to fine-

tune our convnet, as discussed in Section 4.1. By doing this,

we expected to reduce the generalization error of the learned

model by having examples coming from a wider origin of

sources.

The creators of the ChaLearn Cultural Event Recogni-

tion dataset [2] described each of the 50 considered events

with pairs of title and geographical location; such as Car-

nival Rio-Brazil, Obon-Japan or Harbin Ice and Snow

Festival-China. This information allows generating queries

on other databases to obtained an additional set of labeled

data.

Our chosen source for the augmented data was the Flickr

photo repository. Its public API allows to query its large

database of photos and filter the obtained results by tags,

textual data search and geographical location. We generated

3 sets of images from Flickr, each of them introducing a

higher degree of refinement:

90k set: Around 90,000 photos retrieved by matching the

provided event title on the Flickr tags and content

metadata fields.

(a) Desfile de Silleteros

(b) Carnival of Venice

Figure 5. Two examples of retrieved image collections from Flickr

and their temporal distribution. (a) the retrieved images match

well the pre-trained temporal model. (b) the temporal distribution

shows numerous outliers which are considered unlikely given the

temporal model. The proposed threshold-based filtering removes

those items.

21k set: The query from the 90k set was combined with a

GPS filtering based on the provided country.

9k set: The query from the 21k set was further with manu-

ally selected terms from the Wikipedia articles related

to the event. In addition, the Flickr query also tog-

gled on an interestingness flag which improved the di-

versity of images in terms of users and dates. Other-

wise, Flickr would provide a list sorted by upload date,

which will probably contain many similar images from

a reduced set of users.

The temporal models Tc presented in Section 3 were also

used to improve the likelihood that a downloaded photo ac-

tually belongs to a certain event. Given a media item i re-

trieved for a given event class c, we extract the day of cap-

ture di from its metadata and retrieve the score sc = Tc(di)
from the respective temporal model. Next, we threshold the

score to remove items that are unlikely under the temporal

model. To assure a high precision of the filtered media col-

lection, the threshold should be set to a rather high value,

e.g. 0.9. Figure 5 gives two examples of media collections

retrieved for particular events. We provide the distribution

of capture dates with the pre-trained temporal models.

The Flickr IDs of this augmented dataset filtered by min-

imum temporal scores have been published in JSON format

from the URL indicated in Section 1.



6. Experiments

6.1. Cultural Event Recognition dataset

The Cultural Event Recognition dataset [2] depicts 50

important cultural events all over the world. In all the im-

age categories, garments, human poses, objects and context

do constitute the possible cues to be exploited for recog-

nizing the events, while preserving the inherent inter- and

intra-class variability of this type of images. The dataset is

divided in three partitions: 5,875 images for training, 2,332

for validation and 3,569 for test.

6.2. Experimental setup

We employ two different convnets as input (see Sec-

tion 4.1): the original CaffeNet trained on 1,000 Imagenet

classes, and a fine-tuned version of CaffeNet trained during

60 epochs on the 50 classes defined in the Chalearn Cul-

tural Recognition Dataset. Fine-tuning of the convnet was

performed in two stages: in a first one the training partition

was used to train and the validation partition to estimate the

training loss and allow the network to learn. In a second

stage, the two partitions were switched so that the network

had to learn the optimal features from all the available la-

beled data.

A simple and classic method to introduce robustness to

image flips and occlusions is to artificially generate trans-

formations of the test image and fuse the classification

scores obtained in each transformation. We adopted the

default image transformations associated to CaffeNet [15],

this is an horizontal mirroring and 5 crops in the input im-

age (four corners and center). The resulting neural codes

associated to each fully connected layer were fused by av-

eraging the 10 feature vectors generated with the 10 image

transformations.

From both convnets we extracted neural codes from lay-

ers FC6 and FC7 (each of 4,096 dimensions), as well as FC8

(the top layer with a softmax classifier), which has 1,000 di-

mensions for the original CaffeNet and 50 for the fine-tuned

network. Both feature extraction and fine tuning have been

performed using the Caffe [15] deep learning framework.

As presented in Section 4.2, a classifier was trained for

each of the 6 neural codes, in addition to the one used for

late fusion. The implementation of Libsvm library [5] of the

linear SVM was used, with parameter C = 1 determined

by cross validation and grid search and probabilistic output

switched on.

Each image was scored for each of the 50 considered cul-

tural events and results were measured by a precision/recall

curve, whose area under the curve was used to estimate the

average precision (AP). Numerical results are averaged over

the 50 events to obtain the mean average precision (mAP).

More details about the evaluation process can be found in

[2].

FC6 FC7 FC8

Off-the-shelf layer 0.6832 0.6669 0.6083
+ temporal refinement 0.6893 0.6730 0.6153
Fine-tuned layer 0.6841 0.6657 0.6713
+ temporal refinement 0.6968 0.6831 0.6834

Table 1. Results on single layer raw neural codes.

Off-the-shelf layers 0.6874
+ temporal refinement 0.6876
Fine-tuned layers 0.6919
+ temporal refinement 0.7038
Off-the-shelf + fine tuned layers 0.7183
+ temporal refinement 0.7357

Table 2. Results on fusion of multi-layer FC6-FC7-FC8 codes.

6.3. Results on the validation dataset

A first experimentation was performed individually on

each of the three fully connected layers (FC6, FC7 and FC8)

from both the off-the-shelf CaffeNet and its fine-tuned ver-

sion with the ChaLearn dataset. Results in Table 1 indicate

diverse performance among the fully connected layers, be-

ing FC6 the one with a highest score. Temporal refinement

slightly increases the mAP consistently in all layers. An

interesting observation from the table is at FC8 layer: for

the off-the-shelf net (with 1000 output neurons) the layer is

weak. For the fine-tuned net (with 50 output neurons), the

performance significantly increases. Here the fine tuning

brings much benefit. However, compared to FC6 and FC7

of the untuned net, there is no real performance gain by fine

tuning.

The results on individual layers were further extended to

compare the performance of the three neural codes (FC6,

FC7 and FC8) when temporally refined and finally comple-

mented with the features from the raw CaffeNet network.

The results shown in Table 2 indicate a higher impact of

temporal refinement than in the case of single layers, and

an unexpected gain by adding the raw neural codes from

CaffeNet.

Our experimentation on the additional data downloaded

from Flickr was unsuccessful. The selected dataset was the

9k Flickr one with a restrictive threshold of 0.9 on the tem-

poral score. With this procedure we selected 5,492 images,

which were added as training samples for fine tuning. We

compare the impact of adding this data into training only on

the softmax classifier at the last layer of CaffeNet, obtaining

a drop in the mAP from 0.5821 to 0.4547 when adding the

additional images to the already fine-tuned network. We hy-

pothesize that the visual nature of the images downloaded

from Flickr differs from the one of the data crawled from

Google and Bing by the creators of the ChaLearn dataset.



Position Team Name Final Score

1 MMLAB 0.855
2 UPC STP 0.767
3 MIPAL SNU 0.735
4 SBU CS 0.610
5 MasterBlaster 0.582
6 Nyx 0.319

Table 3. Chalearn Cultural Event Recognition at CVPRW 2015.

A visual inspection on the augmented dataset did not pro-

vide any hints that could expalin this behaviour.

6.4. Results on the test dataset

The best configuration obtained with the validation

dataset was used on the test dataset to participate in the

ChaLearn 2015 challenge. Table 3 contains the evaluation

results published by the organisers [2] of the challenge. Our

submission UPC-STP was scored by the organizers with a

mAP of 0, 767, the second best performance among the six

teams which completed the submission, out of the 42 partic-

ipants who had initially registered on the challenge website.

7. Conclusions

The presented work proves the high potential of the vi-

sual information for cultural event recognition. This result

is especially sounding when contrasted with many of the

conclusions made in the MediaEval Social Event Detec-

tion task [20], where it was frequently observed that visual

information was less reliable than contextual metadata for

event clustering. This difference may be caused by the very

salient and distinctive visual features that often make cul-

tural events attractive and unique. The dominant green in

Saint Patrick’s parades, the vivid colors from the Holi Fes-

tivals or the skull icons from the Dia de los Muertos

In our experimentation the temporal refinement has pro-

vided modest gain. We think this may be caused by the low

portion of images with available EXIF metadata, around

24% according to our estimations. In addition, we were

also surprised by the loss introduced by the Flickr data aug-

mentations. We hypothesize that this is due to the diversity

between the provided ChaLearn dataset and the images we

downloaded from Flickr. A visual inspection on some of

them indicates that while the ChaLearn dataset presents a

very high quality, maybe thanks to a human annotation of

the images, our Flickr dataset is much more diverse as the

data collection was completely automatic based only on tex-

tual and geolocation metadata.

Finally, it must be noticed that the quantitative values

around 0.767 may be misleading, as in this dataset every

image belonged to one of the 50 cultural events. Further edi-

tions of the ChaLearn challenge may also introduce the no

event class as in MediaEval SED 2013 [22] to, this way, bet-

ter reproduce a realistic scenario where the event retrieval is

performed in the wild.
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