1	
2	
3	
4	Cultural Evolution: A Review Of Theory, Findings and Controversies
5	
6	(Contribution to a special issue of Evolutionary Biology on "Evolutionary Patterns")
7	
8	Alex Mesoudi
9	
10	Department of Anthropology
11	Durham University
12	South Road, Durham, DH1 3LE, United Kingdom
13	Email: a.a.mesoudi@durham.ac.uk Tel: (+044) 0191 334 0248
14	
15	Word count (without references): 9,642
16	Word count (with references): 13,874
17	
18	NB Affiliation from 1st July 2015:
19	Centre for Ecology and Conservation
20	College of Life and Environmental Sciences
21	University of Exeter, Penryn Campus
22	Penryn, Cornwall, TR10 9FE, UK
23	Email: a.mesoudi@exeter.ac.uk

24 Abstract

25 The last two decades have seen an explosion in research analysing cultural change as a 26 Darwinian evolutionary process. Here I provide an overview of the theory of cultural 27 evolution, including its intellectual history, major theoretical tenets and methods, key 28 findings, and prominent criticisms and controversies. 'Culture' is defined as socially 29 transmitted information. Cultural evolution is the theory that this socially transmitted 30 information evolves in the manner laid out by Darwin in The Origin of Species, i.e. it 31 comprises a system of variation, differential fitness and inheritance. Cultural evolution is 32 not, however, neo-Darwinian, in that many of the details of genetic evolution may not 33 apply, such as particulate inheritance and random mutation. Following a brief history of 34 this idea, I review theoretical and empirical studies of cultural microevolution, which 35 entails both selection-like processes wherein some cultural variants are more likely to be 36 acquired and transmitted than others, plus transformative processes that alter cultural 37 information during transmission. I also review how phylogenetic methods have been used 38 to reconstruct cultural macroevolution, including the evolution of languages, technology 39 and social organisation. Finally, I discuss recent controversies and debates, including the 40 extent to which culture is proximate or ultimate, the relative role of selective and 41 transformative processes in cultural evolution, the basis of cumulative cultural evolution, 42 the evolution of large-scale human cooperation, and whether social learning is learned or 43 innate. I conclude by highlighting the value of using evolutionary methods to study culture 44 for both the social and biological sciences.

45

46 Keywords: cultural evolution; cultural transmission; cumulative culture; demography;
47 human evolution; social learning.

48 Introduction

49 *Cultural evolution* is the theory that cultural change in humans and other species can be 50 described as a Darwinian evolutionary process, and consequently that many of the 51 concepts, tools and methods used by biologists to study biological evolution can be 52 equally profitably applied to study cultural change (Mesoudi 2011a; Richerson and Boyd 2005; Richerson and Christiansen 2013). 'Culture' here entails any socially (rather than 53 54 genetically) transmitted information, such as beliefs, knowledge, skills or practices. Just 55 as biologists seek to explain the diversity and complexity of life and living organisms, 56 cultural evolution researchers seek to explain the diversity and complexity of culture and 57 cultural phenomena.

58

59 Evolutionary biologists to whom I speak are sometimes surprised by the depth and 60 diversity of modern cultural evolution research. Just three decades ago cultural evolution research was the almost-secret passion of a handful of scholars, and limited in method to 61 62 rather technical mathematical models (Boyd and Richerson 1985; Cavalli-Sforza and Feldman 1981). The last two decades, however, have seen an explosion in cultural 63 64 evolution research. The use of mathematical models continues to occupy the core of the 65 field (Aoki and Feldman 2014; Enquist et al. 2011; Kempe et al. 2014; Lehmann et al. 2011; H. M. Lewis and Laland 2012; McElreath and Henrich 2006), but has been 66 67 supplemented with laboratory experiments testing the assumptions and predictions of 68 those models (Derex et al. 2013; Kempe et al. 2012; Kirby et al. 2008; McElreath et al. 69 2008; Mesoudi and Whiten 2008; T. J. H. Morgan et al. 2011); field studies doing the same 70 in real-life settings (Aunger 2000; Henrich and Henrich 2010; Hewlett et al. 2011; Reyes-71 Garcia et al. 2009); phylogenetic studies that reconstruct the evolutionary relationships

between languages (Bouckaert et al. 2012; Dunn et al. 2011; Pagel 2009), artefacts (Lipo
et al. 2006; Lycett 2009; O'Brien et al. 2014; Tehrani and Collard 2002) and texts
(Barbrook et al. 1998; Ross et al. 2013; Tehrani 2013); the study of historical dynamics
using ecological models (Turchin 2008; Turchin et al. 2013); and the comparative study of
non-human culture using many of the same methods as applied to humans (Dean et al.
2014; Laland and Galef 2009; Lycett et al. 2007; Whiten 2005).

78

The aim of this article is to review the theoretical foundations of this burgeoning work, provide some examples of how evolutionary concepts and methods have illuminated cultural phenomena, and explore recent controversies and outstanding research guestions in the field.

83

84 A brief history of cultural evolution

85 Long before Darwin published The Origin of Species in 1859, historical linguists were 86 constructing trees of historical descent for languages, based on the principle that more similar contemporary languages most likely shared a more recent common ancestor (van 87 88 Wyhe 2005). In other words, that languages - which are socially transmitted, given that 89 there are no genes for specific languages such as English or Hindi - gradually evolve over 90 time and thus show the same descent with modification that Darwin was later to apply to 91 species. It is unclear whether these linguistic trees directly influenced Darwin (although 92 intriguingly, one of the major proponents of historical linguistics in England was Hensleigh 93 Wedgwood, Darwin's cousin and future brother-in-law: van Wyhe 2005). It is clear, 94 however, that Darwin very quickly saw clear parallels between how species and 95 languages change over time:

97 "The formation of different languages and of distinct species, and the 98 proofs that both have been developed through a gradual process, are 99 curiously parallel...We find in distinct languages striking homologies due to community of descent. The frequent presence of rudiments, 100 101 both in languages and in species, is still more remarkable. Dominant 102 languages and dialects spread widely, and lead to the gradual 103 extinction of other tongues. A language, like a species, when once 104 extinct, never reappears. We see variability in every tongue, and new 105 words are continually cropping up; but as there is a limit to the powers 106 of the memory, single words, like whole languages, gradually become 107 extinct. The survival or preservation of certain favoured words in the 108 struggle for existence is natural selection." (Darwin 1871, p. 90)

109

96

Here, Darwin went further than merely applying the notion of common descent to
languages, as the linguists had done. He also applied his mechanism of natural selection
to language change. Similar parallels were drawn between biological evolution and
technological evolution by Augustus Pitt-Rivers around the same time (Pitt-Rivers 1875),
whose museum in Oxford was, and still is, innovative in displaying archaeological and
ethnographic items according to their presumed evolutionary relationships, rather than
their age or collector.

117

In an alternative universe, these strands of evolutionary thinking in the social sciences
would have matured into a quantitative and rigorous science of cultural evolution, in the

120 same way that evolutionary theory became established in the biological sciences via population genetics models in the early 1900s and then the evolutionary synthesis in the 121 122 1940s (Mayr 1982). Sadly, cultural evolution instead took an unfortunate wrong turn. In 123 the late 1800s several anthropologists and sociologists devised schemes of cultural evolution based not on Darwin's theory of descent-based trees and natural selection, but 124 rather on Herbert Spencer's progressive, ladder-like, unilinear theory of evolution 125 126 (Freeman 1974). These schemes, such as those of Morgan (1877) and Tylor (1871), saw 127 cultural evolution as the inevitable progress of entire societies along a sequence of fixed stages of increasing advancement, starting at savagery and barbarism, and ending at 128 129 civilisation. 'Civilisation' typically resembled the Victorian English or American societies of 130 the schemes' authors.

131

132 The racist tones of these theories is obvious today but not unusual in that time of cultural 133 imperialism, and these Spencerian schemes were often used to justify the subjugation of 134 supposedly 'less evolved' societies by 'more evolved' ones, frequently mixed in with ideas of eugenics. A later wave of anthropologists such as Franz Boas (Boas 1940; see H. 135 136 S. Lewis 2001) quite correctly rejected these progressive Spencerian theories not just because of their political motivation but also, perhaps more importantly, because they 137 138 have little empirical basis. Entire societies simply do not fit into neat stages of increasing 139 complexity. For many socio-cultural anthropologists today, however, this association 140 between evolution and stage-like progression remains. It is worth emphasising that these 141 progressive Spencerian theories are not what is meant by 'cultural evolution' today, which 142 draws on Darwin's theory of evolution rather than Spencer's, the latter of which resembles 143 the development of an individual rather than the evolution of a population.

144

During the mid-twentieth century a few isolated scholars maintained that a properly 145 146 Darwinian theory of cultural evolution was viable, such as the psychologist Donald 147 Campbell (Campbell 1965). Richard Dawkins provoked interest but little actual empirical research with his notion of the 'meme' in the final chapter of The Selfish Gene (Dawkins 148 1976), intended to illustrate the substrate-neutrality of his replicator-based theory of 149 150 evolution. However, just as evolutionary theory in the biological sciences only really 151 became useful once it had been formalised mathematically by population geneticists 152 such as Fisher, Haldane and Wright in the early 1900s, cultural evolution only really took 153 off once two pairs of scholars devised quantitative mathematical models of cultural 154 evolution in two books in the 1980s: one by Marc Feldman and Luigi Luca Cavalli-Sforza 155 (Cavalli-Sforza and Feldman 1981) and the other by Robert Boyd and Peter Richerson 156 (Boyd and Richerson 1985). These books were also notable in taking seriously the 157 differences between biological and cultural evolution, rather than simply importing 158 biological analogies to the cultural case, as perhaps both Campbell and Dawkins were 159 guilty of doing. The following section outlines the theoretical basis of cultural evolution as 160 presented in these books, and which has inspired much subsequent research. 161

162 The theory of cultural evolution

Many textbook definitions of evolution talk of changes in gene frequencies or require Mendelian rules of genetic inheritance. While this is reasonable when one's focus is exclusively on biological (i.e. genetic) evolution, Darwin's theory can quite easily be formulated in a general, mechanism-neutral manner. After all, Darwin himself knew nothing about genes or Mendelian inheritance when he wrote *The Origin*. Lewontin (1970)

168 expressed this generality by defining evolution as comprising three principles, each of

169 which were clearly specified in *The Origin*:

170

- 171 1. Different entities in a population vary in their characteristics (principle of variation)
- 172 2. These entities have different rates of survival and reproduction (principle of differential
- 173 fitness, or what Darwin called a 'struggle for existence')
- 174 3. There is a correlation between parent and offspring entities in those characteristics that
- 175 contribute to differential fitness (principle of inheritance)
- 176
- 177 Lewontin (1970) goes on to state that:
- 178
- 179 "It is important to note a certain generality in the principles. No
- 180 particular mechanism of inheritance is specified, but only a correlation
- 181 in fitness between parent and offspring. The population would evolve
- 182 whether the correlation between parent and offspring arose from
- 183 Mendelian, cytoplasmic, or cultural inheritance." Lewontin (1970, p.1).

184

- 185 The theory of cultural evolution holds that cultural change can be described by these
- three general principles (Mesoudi et al. 2004), as Lewontin (1970) alludes to when he talks
- 187 of cultural inheritance¹. Thus, cultural traits (words, ideas, artefacts etc.) exhibit variation;
- 188 these variants have different rates of survival and reproduction; and they are transmitted

1 Confusingly, the terms 'social learning', 'social transmission', 'cultural transmission',

'cultural inheritance' and variants thereof are used interchangeably within the field, to

denote the passing of information non-genetically from one individual to another. Here I stick to the term 'social learning', although this may differ from cited sources.

189 from person to person via social learning mechanisms such as imitation or speech.

190

191 To give a concrete example, Lieberman et al. (2007) used vast quantitative databases of 192 English verb usage over the past 1200 years to show that, at any single point in time, 193 verbs have often varied in their past tense form, including regular (e.g. chided) and 194 irregular (e.g. chid, chode) forms (principle of variation), and that regular forms have 195 steadily displaced irregular forms particularly for those verbs that are infrequently used 196 (principle of differential fitness). Given that verb form is learned from others just like other 197 aspects of one's language (Harris 1995; Labov 1972), the principle of inheritance is also observed. So this provides quantitative support for Darwin's informal suggestion in the 198 199 guote above that words vary, they compete for expression, and they are transmitted from 200 person to person. Thus, they evolve. Similar observations can be made for technology, 201 such as the replacement of traditional seed corn with hybrid seed corn in lowa during the 202 1940s (Henrich 2001; Ryan and Gross 1943), or any number of other well-documented 203 examples of the diffusion of innovations (E. Rogers 1995) and changing frequencies of 204 archaeological artefacts such as pottery types (Shennan 2002).

205

Beyond these three general principles derived from *The Origin*, no further assumptions are made about the mechanisms by which the principles operate. We do not need to – and often should not – impose mechanisms that are specific to biological evolution onto cultural evolution. These might include the mechanisms of genetic inheritance, such as the acquisition of information in equal contribution from two parents or the existence of discrete units that are inherited in a particulate fashion, or the randomness of genetic mutation with respect to fitness. In Mesoudi (2011a), I expressed this as follows: cultural

evolution is *Darwinian*, in that it comprises the three general principles of variation,
differential fitness and inheritance as laid out by Darwin in *The Origin*, but it is not *neo- Darwinian*, in that it may not necessarily exhibit the specific mechanisms of genetic
inheritance, random mutation etc. that biologists subsequent to Darwin discovered and
that were integrated into evolutionary theory during the evolutionary synthesis.

218

219 Cavalli-Sforza and Feldman (1981) and Boyd and Richerson (1985) constructed 220 quantitative mathematical models of cultural evolution using the tools of population 221 genetics, and which clearly made this distinction. Cavalli-Sforza and Feldman (1981) constructed models that explored the transmission of cultural traits not only from one's 222 223 biological parents (vertical social learning) but also from peers (horizontal social learning) 224 and from older unrelated members of the parental generation (oblique social learning). 225 They constructed models of cultural mutation, analogous to genetic mutation, where 226 novel cultural traits appear at random; cultural selection, analogous to natural selection, 227 where certain cultural traits are more likely to be learned and transmitted than others; and 228 cultural drift, an analogue of genetic drift, where cultural traits change in frequency due to chance. They explored the consequences of migration and other demographic processes 229 230 for cultural diversity. They also modelled the evolution of continuous cultural traits, 231 abandoning the assumption of discrete replicators and particulate inheritance. Contrary to 232 Dawkins (1976), these models demonstrated that discrete replicators are not necessary 233 for evolution, all that is required is some form of variation, be it discrete or continuous, 234 and some form of inheritance, be it particulate or blending (Henrich and Boyd 2002). 235

Boyd and Richerson (1985) constructed models adding psychological realism to the

237 notion of cultural selection, modelling cases where people preferentially copy the traits of successful or prestigious individuals (indirect or prestige bias), copy traits on the basis of 238 239 their popularity (frequency-dependent bias, with positive frequency-dependence called conformity, and negative frequency-dependence called anti-conformity), or copy traits 240 based on their intrinsic characteristics (e.g. their memorability or usefulness, known as 241 242 direct or content bias). They also constructed models whereby individuals transform 243 cultural traits in particular, non-random directions ('guided variation', in contrast to 244 random genetic mutation). Finally, they explored the interaction between genetic and 245 cultural evolution, examining the conditions under which social learning might genetically 246 evolve, which led to analyses of specific cases of gene-culture coevolution (Feldman and 247 Laland 1996; Laland et al. 2010).

248

249 These models concern the equivalent of what biologists would call microevolution. The 250 following years saw the introduction of phylogenetic methods to reconstruct cultural 251 macroevolution, within anthropology (Mace and Pagel 1994), linguistics (Gray and Atkinson 2003; Gray and Jordan 2000; Pagel 2009), and archaeology (O'Brien et al. 2001; 252 253 O'Brien and Lyman 2003). These focus less on the within-population mechanisms of 254 cultural microevolution, and more on reconstructing evolutionary relationships between 255 languages, artefacts and customs, given the insight that these traits are related by 256 evolutionary descent (Gray et al. 2007; Lipo et al. 2006; Pagel 2009). Just as in biology, 257 this concerns constructing the most likely evolutionary tree given the data, distinguishing 258 between homoplasies and homologies, and using trees to test hypotheses using the 259 comparative method controlling for the non-independence of data points due to common 260 descent (here, cultural rather than genetic descent). Also as in biology, initial use of

261 maximum parsimony has given way to more sophisticated Bayesian Markov Chain Monte
262 Carlo (MCMC) methods (Matthews et al. 2011; Pagel 2009).

263

264 In summary, cultural evolution theory rests on the principle that cultural change is 265 Darwinian, in that it exhibits variation, differential fitness and inheritance (Mesoudi et al. 266 2004). It does not, however, require that these processes follow neo-Darwinian principles, 267 such as particulate inheritance or random mutation (Mesoudi 2011a). Population-genetic-268 like mathematical models have formalised the processes that are thought to drive cultural 269 microevolution, including psychological decision-making processes such as conformity or 270 memory biases, and demographic processes such as migration or drift. Phylogenetic 271 methods have been used to reconstruct cultural macroevolution based on the principle of 272 inheritance. Much subsequent work has been devoted to using lab experiments, field 273 studies of real-life populations, and historical/archaeological data to test the assumptions 274 and predictions of these theoretical models. The following section highlights some key 275 findings that have emerged from this theoretical foundation.

276

277 Key findings in the field

The following comprises a subjective selection of what I consider to be the major advances in cultural evolution research in the last decade or so, although there is much that I have not included due to space constraints. I have tried to select examples that have been addressed using multiple methods (models, experiments, field studies, historical analyses) and replicated by multiple independent labs. There is a tendency to focus on humans, again because of space constraints, but many of the same findings equally apply to non-human species. I start with key findings related to cultural

285 microevolution, and gradually move to cultural macroevolution.

286

287 Social learning is payoff-biased and conformist

288 Evolutionary models predict that social learners should be selective in when and who they 289 copy (Boyd and Richerson 1995; Enquist et al. 2007; Laland 2004), otherwise social 290 learning confers no adaptive benefits compared to asocial learning (A. R. Rogers 1988). 291 Two key social learning biases, first introduced and modelled by Boyd and Richerson 292 (1985), concern who one learns from. Payoff bias (also labelled indirect bias, success bias, 293 or copy-successful-individuals) involves copying individuals who demonstrate some degree of success in terms of high or higher payoffs. Various forms of payoff bias have 294 295 been modelled, including copying the individual with the highest absolute payoff, copying 296 another individual if that other individual's payoff is higher than one's own, or copying in 297 proportion to the difference between own and other's payoffs (Schlag 1998), but they all 298 have in common some assessment of payoffs to behaviour. 'Payoff' may be defined 299 biologically (e.g. feeding or reproductive success) or culturally (e.g. wealth, social power), 300 which may or may not coincide.

301

An alternative is *conformist bias* (also labelled *positive frequency-dependent bias* or *copythe-majority*), which involves being disproportionately more likely to copy the most common behaviour in the population irrespective of its payoff (Henrich and Boyd 1998). For example, if 6 out of 10 peers exhibit behaviour A rather than B, a conformist learner would have a greater than 0.6 chance of adopting behaviour A (copying A with exactly 0.6 probability would describe an unbiased social learner, while copying A with less than 0.6 probability would be anti-conformist).

Subsequent experiments have shown that people employ both of these social learning 310 311 strategies, as predicted, but that payoff bias is typically preferred to conformity. McElreath et al. (2008) found this using a simple two-option task of planting wheat or potatoes 312 where one gave higher yields, Morgan et al. (2011) using various tasks including mental 313 rotation and perceptual judgements, and Mesoudi (2011b) using a more complex artifact-314 315 design task. In each of these, participants could employ trial-and-error asocial learning, or 316 use some form of social learning. A notable recent study by Molleman et al. (2014) found 317 that participants were more likely to employ payoff bias in a two-option task where one 318 option always has a higher payoff, but more likely to use conformity in social dilemma, 319 coordination and evasion games where payoffs depend on other participants' behaviour.

320

321 Less research has examined these biases outside the lab, in natural settings, but findings 322 generally reflect the experimental results. Henrich and Henrich (2010) showed that 323 pregnant women in Fijian fishing villages preferentially acquire adaptive food taboos from 324 locally prestigious unrelated older women, consistent with prestige bias. Beheim et al. 325 (2014) analysed records of opening moves of professional players of the popular East 326 Asian board game Go, showing the preferential copying of the moves of successful 327 players. These findings fit with data from sociology on the diffusion of innovations (E. 328 Rogers 1995) showing that innovations often spread via successful or high status 'change 329 agents', and sociolinguistics (Labov 1972) showing that dialect change spreads via the 330 imitation of successful or prestigious individuals. Perhaps mirroring the experimental 331 results, conformity in the sense modelled by Boyd and Richerson (1985) has received less 332 clear non-experimental support. Henrich (2001) argued that long-tailed S-shaped

diffusion curves of technological innovations are indicative of conformity, but such curves
may also be consistent with other underlying learning biases (Kandler and Steele 2009).

335

336 The predictions derived from evolutionary models are not specific to humans. Indeed, 337 recent experiments show just as good evidence for payoff bias and conformity in fish, 338 birds and mammals. Pike et al. (2010) showed that nine-spined sticklebacks abandoned a 339 food patch they had previously learned was optimal when they observed a demonstrator 340 feeding at a higher-payoff patch. Conformity has been demonstrated in stickleback (Pike 341 and Laland 2010) and great tits (Aplin et al. 2014), with an individual fish or bird 342 disproportionately more likely to feed at a location where a majority of other individuals 343 had fed. These studies with phylogenetically diverse species show that adaptive social 344 learning rules likely evolved independently in response to particular ecological conditions 345 rather than exclusively in our own species' recent ancestors. Indeed, chimpanzees are 346 surprisingly reluctant to switch to higher-payoff behaviours (Marshall-Pescini and Whiten 347 2008; although see Yamamoto et al. 2013) and while they do exhibit social learning, and this is sometimes labelled 'conformity' (e.g. Whiten et al. 2005), conformity has not been 348 349 demonstrated in chimpanzees in the specific sense of being disproportionately more 350 likely to copy the majority (van Leeuwen and Haun 2013).

351

Why are these social learning strategies important? A key advantage of Darwinian population thinking is that we can extrapolate from small-scale individual-level decisions to large-scale population-level patterns. It has been argued (Boyd and Richerson 1995; Enquist and Ghirlanda 2007; Henrich 2004; Mesoudi 2011c) that payoff-biased social learning is a crucial component of *cumulative cultural evolution*, whereby beneficial traits

357 are selectively preserved and built upon over successive generations (Tomasello 1999). It is not difficult to see why: only payoff bias will drive populations to selectively preserve 358 359 and build upon beneficial traits. It has also been argued that some forms of payoff-bias, 360 particularly ones that use more indirect measures of success like prestige, can generate prestige hierarchies as people pay costs in terms of deference or material goods in 361 exchange for access to skilled people's knowledge (Henrich and Gil-White 2001). While 362 363 broadly adaptive, this may misfire when the sources of prestige are disconnected from 364 the sources of success (Atkisson et al. 2011), and may lead to runaway selection for 365 excessive indicators of success (Boyd and Richerson 1985). Conformity, meanwhile, has 366 been suggested as a means to maintain between-group cultural variation, given that it forces migrants to adopt the majority behaviour of their new group (Henrich and Boyd 367 368 1998). Some have suggested that selection may then act on these homogenous cultural 369 groups, favouring the emergence of group-level adaptations (Henrich and Boyd 2001). 370

371 Cognitive biases can drive cultural evolution towards cultural attractors

A general principle of biological evolution is that inheritance alone does not cause evolutionary change, except in rare cases such as meiotic drive. This is formalised in the Hardy-Weinberg principle, as well as the Price equation (Price 1970), where for biological systems the component that specifies evolutionary change due to transmission is typically set to zero.

377

In cultural evolution, however, transmission is not necessarily unbiased in this manner.
People typically transform cultural information they receive from others in non-random
directions due to the structure and function of cognition. This was formalised by Boyd

381 and Richerson (1985) in their models of 'guided variation', where an individual acquires a cultural trait from another individual, then modifies that trait in some non-random manner, 382 383 before passing it on to another individual. The same process has been modelled using a Bayesian framework, where cognitive (or 'inductive') biases form the priors that people 384 385 use when making inferences about culturally acquired information (Griffiths et al. 2008; Kirby et al. 2007). A group of cognitive anthropologists led by Dan Sperber (Boyer 1998; 386 387 Claidière and Sperber 2007; Sperber 1996) have also emphasised the importance of this 388 individual transformation due to cognitive biases, with Sperber coining the term 'cultural 389 attractor' to describe a representation that is particularly likely to result from this individual 390 transformation².

391

392 Closely related, but formally distinct, are content biases (Henrich and McElreath 2003). 393 These occur not via the transformation of information by individuals, but when individuals 394 preferentially select certain cognitively appealing traits, without any modification or 395 transformation. Content biases are therefore selection-like, because they change trait frequencies rather than the traits themselves. Both content biases and guided variation 396 397 are likely to involve the same cognitive operations, but as Boyd and Richerson (1985) 398 showed, they have different evolutionary dynamics: the strength of selection-like content 399 biases, like selection in general, depends on the amount of variation in the population, while the strength of guided variation depends only on individual features of cognition 400 401 rather than populational characteristics.

2 Some of this latter school (e.g. Claidiere, Scott-Phillips and Sperber 2014) have argued that the existence of these transformative processes requires a major revision of the standard approach to cultural evolution presented in this article; I deal with this critique separately in a later section.

A wealth of experimental studies demonstrate the existence of these cognitive biases (incorporating guided variation and content biases). Several studies have used the 'transmission chain' method (Bartlett 1932; Mesoudi and Whiten 2008) which experimentally simulates the transmission of cultural information along a chain of individuals, much like the children's game Telephone. In the case of written material, for example, each person reads and recalls from memory what the previous person recalled, the new recall is given to the next person to remember, and so on along the chain.

411 Transmission chain studies have shown that certain kinds of information are preferentially 412 transmitted. A result replicated by several independent labs is that information about 413 social relationships is transmitted with higher fidelity than equivalent non-social 414 information (McGuigan and Cubillo 2013; Mesoudi et al. 2006; Reysen et al. 2011; 415 Stubbersfield et al. 2014), as predicted by social brain theories of the biological evolution 416 of primate cognition (Dunbar 2003). There is also experimental support for a bias for 417 emotionally salient disgust-inducing information (Eriksson and Coultas 2014; Heath et al. 418 2001). Xu et al. (2013), meanwhile, found that initially random colour terms transmitted 419 along chains of people gradually converged on those colour terms commonly seen across 420 actual societies, arguing that the innate features of our perceptual system makes certain 421 colours more salient and thus more likely to emerge through repeated transmission. 422 These would all be examples of biases in cultural evolution that have roots in biologically-423 evolved features of individual human cognition and perception, resulting from naturally 424 selected adaptations for living in complex groups (social bias), protecting against disease 425 (disgust bias), and innate features of our perceptual systems (colour perception).

402

Other transmission chain studies have shown how the structure of cognition shapes 427 428 culturally transmitted information as a result of repeated transmission. Mesoudi and 429 Whiten (2004) showed that detailed descriptions of events become systematically 430 'schematized' during transmission, i.e. low-level details such as names and dates are lost 431 as material is transformed into more generic higher-level knowledge. Similar effects have 432 been found for gender and racial stereotypes (Kashima 2000; Martin et al. 2014), with 433 stereotype-inconsistent information gradually transformed into simpler, stereotype-434 consistent information. Kirby et al. (2008) showed how a similar process can shape 435 grammatical features of languages, by demonstrating that artificial languages transmitted 436 along chains of people gradually become more learnable, and in so doing come to 437 possess features of actual languages, such as compositionality, that are typically thought of as innate. 438

439

Transmission chain experiments have also been performed with non-human species
(Whiten and Mesoudi 2008). Interestingly, similar inductive biases to those observed by
Kirby et al. (2008) have been shown in songbirds, where repeated learning constraints
generate structure in songs in the same way that repeated learning constraints generate
structure in languages (Feher et al. 2009).

445

As noted previously, Darwinian population thinking allows us to link individual-level biases
to population-level patterns. The cognitive biases discussed in this section are consistent
with certain patterns of cultural diversity observed in ethnographic and historical records
(Sperber and Hirschfeld 2004). An individual-level disgust bias may therefore explain the

450 prevalence of disgusting information in real-life urban legends (Heath et al. 2001), while 451 near-universal aspects of grammar and colour terminology can be explained in terms of 452 repeated transmission constraints (Kirby et al. 2008; Xu et al. 2013). A key finding of many 453 of these studies is that weak individual biases can be easily magnified at the population 454 level, in a way that could not be anticipated by focusing on individual cognition alone.

455

456 Demography can influence the evolution of cultural complexity

457 Cavalli-Sforza and Feldman (1981) explored how demographic factors such as population
458 size and migration can influence cultural evolution just as they can influence biological
459 evolution. In the last decade this has been pursued further, primarily in the
460 historical/archaeological study of past cultural change, where the influence of changing
461 demography can be observed over long time periods.

462

Henrich (2004) presented Tasmania as an example of the influence of demography on 463 cultural evolution. When Tasmanian settlers became cut off from the Australian mainland 464 around 10,000 years ago, they lost many complex tools and skills including winter 465 clothing, fishing spears and boomerangs. Henrich (2004) argued that this loss of complex 466 467 culturally-transmitted traits was due to the reduced effective population size that occurred 468 following isolation from the mainland population. In smaller populations, there are fewer 469 skilled individuals from whom to learn, and fewer individuals to make rare beneficial 470 modifications.

471

To formalise this, Henrich (2004) introduced an influential model linking population size to
cultural complexity. The latter he defined in abstract terms designed to represent a

474 guantitative measure of skill in some task, such as basket-weaving ability or stone tool 475 production accuracy. In the model, each new generation acquires the skill of the most-476 skilful member of the previous generation (i.e. they exhibit payoff biased social learning) 477 with some error. This error has two components, one that determines the loss of skill due to imperfect copying, and one that represents attempts to improve the skill. Complexity 478 479 increases with population size because the more individuals there are, the more likely 480 someone is to make an improvement without significant transmission error (see also 481 Kobayashi and Aoki 2012; Mesoudi 2011c; Vaesen 2012).

482

483 Shennan (2001) and Powell et al. (2009) applied similar models directly to archaeological 484 data regarding Palaeolithic Europe, showing that the appearance and disappearance of 485 complex technological and social traits such as abstract art, the bow and musical 486 instruments all coincide with changes in population density. Other studies have used 487 repeated founder effect models to explain declining diversity in Acheulean handaxes with 488 distance from an East African origin (Lycett and von Cramon-Taubadel 2008), shown that 489 island population size predicts the size and complexity of fishing technology in the Pacific 490 (Kline and Boyd 2010), and found that across Polynesian languages new words are more 491 likely to be gained by larger populations and existing words are more likely to be lost in 492 smaller populations (Bromham et al. 2015). Not all studies have found a link between 493 population size and cultural complexity, however: Collard et al. (2013), for example, did 494 not find a link in populations of North American hunter gatherers. More mobile hunter-495 gatherers may experience fewer cultural benefits from large population sizes than 496 sedentary agriculturalists.

497

498 Recently, the link between population size and cultural complexity has been explored experimentally. Henrich's (2004) original model contained certain assumptions concerning 499 500 the micro-level link between demography and complexity (e.g. payoff-biased social 501 learning), but large-scale archaeological studies such as Powell et al. (2009) can only test 502 the outcome of this model, not the validity of the mechanisms. Derex et al. (2013), 503 Muthukrishna et al. (2014) and Kempe and Mesoudi (2014) all found that, as predicted, 504 larger groups containing more individuals from whom to learn supported higher levels of 505 cultural complexity in various tasks, including designing computerised fishing nets, knot-506 tying, and completing jigsaw puzzles. While Derex et al. (2013) and Muthukrishna et al. 507 (2014) showed that Henrich's (2004) payoff-biased mechanism works, Kempe and Mesoudi (2014) showed that the effect can also be seen when people integrate the 508 509 solutions of other people into a single solution (a kind of 'blending inheritance'). Further 510 work is needed to delineate the precise micro-evolutionary mechanisms that support the 511 macroevolutionary link between population size and cultural complexity.

512

513 Phylogenetic methods can reconstruct language macroevolution

As noted previously, another major strand of cultural evolution research has applied 514 515 phylogenetic methods to reconstruct the evolutionary relationships between culturally-516 transmitted traits, based on the principle of inheritance. Much of this work has focused on 517 reconstructing language evolution (Pagel 2009). While historical linguists before Darwin 518 were constructing language family trees based on the assumption of common descent, 519 this endeavour continued largely separately from evolutionary science throughout the 520 20th century, resulting in trees based on the subjective judgement of linguists as to what languages were most similar, and what changes were most likely (McMahon and 521

522 McMahon 2003).

523

524 In the last decade, sophisticated phylogenetic methods developed in evolutionary biology have been applied to the many language datasets already assembled by linguists, in 525 many cases resulting in significant advances in our understanding of language evolution. 526 A good example is the origin of the Indo-European language family, described as "the 527 528 most intensively studied, yet still the most recalcitrant, problem of historical linguistics" 529 (Diamond and Bellwood 2003, p. 601). Two major hypotheses proposed by linguists are 530 the "steppe hypothesis", that Indo-European languages originated in the Pontic-Caspian 531 steppe region (modern Kazakhstan) with the expansion into Europe of seminomadic Kurgan horsemen around 5000-6000 years ago, and the "Anatolian hypothesis", which 532 533 posits an older origin around 8000-9500 years ago in Anatolia (modern Turkey) and a 534 spread associated with farming. Both hypotheses are consistent with the archaeological record, and are fiercely argued over amongst historical linguists (Diamond and Bellwood 535 2003). 536

537

538 Building on an earlier phylogenetic analysis (Gray and Atkinson 2003), Bouckaert et al. (2012) used spatially-explicit Bayesian phylogenetic (i.e. phylogeographic) methods to 539 540 test these hypotheses. Cognates (homologous words) from 103 extinct and extant Indo-541 European languages were used to infer the most likely phylogeny given known past and 542 present geographic ranges, with language range modelled as evolving over time along the branches of the phylogeny. Bouckaert et al. (2012) found strong support for the Anatolian 543 544 hypothesis: the estimated posterior distribution of the root of the Indo-European 545 phylogeny was located in Anatolia and dated to 7,000-10,500 years ago. This conclusion

was robust to several different assumptions about the spread of the languages, such as
the likelihood of migration across water bodies (although see Chang et al. (2015) for an
alternative conclusion).

549

550 Similar phylogenetic analyses have been applied to the spread of Austronesian languages 551 across the Pacific (Gray et al. 2009; Gray and Jordan 2000). These suggest an origin 552 around 5,500 years ago in Taiwan with a subsequent series of rapid expansion pulses 553 interspersed by settlement pauses (the "pulse-pause" hypothesis), rather than an 554 alternative "slow-boat" hypothesis that posits an earlier origin in Wallacea (modern-day 555 Sulawesi) around 13-17,000 years ago. Moreover, internal branch lengths were used to identify the specific pulses and pauses in the Austronesian expansion, which were then 556 557 linked to the emergence of specific technologies such as outrigger canoes that allowed 558 migration from Taiwan to the Philippines (Gray et al. 2009).

559

560 The comparative method can test functional hypotheses about cultural evolution

Biologists typically use phylogenies not simply to reconstruct the past, but also to test 561 562 functional hypotheses about evolution by comparing traits across different species. This 563 comparative method (Felsenstein 1985; Harvey and Pagel 1991) uses phylogenies to 564 correct for the non-independence of data due to shared descent when comparing across 565 species. The comparative method can also be used in cultural evolution, comparing traits across different societies and using language phylogenies to control for non-566 567 independence due to descent (Mace and Pagel 1994). Although anthropologists have 568 long been aware of this problem of non-independence (known as 'Galton's Problem', after 569 Francis Galton pointed it out in 1889), during the 20th century socio-cultural

anthropologists abandoned the practice of comparing across societies in order to test
functional hypotheses, preferring to describe individual societies within interpretivist or
post-modern frameworks.

573

574 Galton's problem was therefore left for biologists to solve, but since Mace and Pagel 575 (1994) the comparative method as developed in biology has also been applied to cultural 576 datasets. For example, Holden and Mace (2003) showed that, in 68 Bantu-speaking sub-Saharan African societies, the introduction of cattle-keeping in formerly horticulturalist 577 578 societies led to a shift from matrilineal to patrilineal wealth inheritance. This shift makes 579 functional sense because, in these societies, cows are more useful to sons than 580 daughters, and therefore lead to more male-biased parental investment. Cows are more 581 useful to sons because grooms must pay bridewealth to the bride's family in order to marry. Once cows are being kept, then wealth can be accumulated in the form of herd 582 583 size, and families with larger herds can offer a larger bridewealth.

584

585 A similar comparative phylogenetic analysis was conducted by Currie et al. (2010) for 586 changes in political complexity in Austronesian-speaking societies in the Pacific over the last 5,500 years, given the newly available Austronesian language phylogenies discussed 587 588 above (Gray et al. 2009). Ethnographic data was used to classify societies based on the 589 number of hierarchical decision-making levels, from one (an egalitarian society with no 590 leaders), to more than two levels (what ethnographers define as 'states'). Currie et al. 591 showed that the best-fitting model of political evolution is one where complexity 592 increases incrementally by one level at a time (precluding leaps from, say, one level to three), but with the possibility of sudden collapses from any level down to one³. 593

3 Earlier I discussed 19th century progressive Spencerian theories of cultural evolution.

594

595 Controversies, criticisms and challenges Despite the growth in cultural evolution research, the theory has also been much criticised 596 597 by both social and evolutionary scientists. In this section I explore these criticisms, 598 beginning with what I consider to be relatively minor issues of misunderstanding that have been addressed in the literature, then moving on to more substantive challenges and 599 600 ongoing debates. 601 602 Misunderstandings and clarifications 603 The following criticisms, in my view at least, have been addressed earlier in the article or elsewhere in the literature, but it is worth highlighting them again as they represent 604 605 continued sources of misunderstanding. 606 607 Cultural evolution is not progressive: As noted above, many social scientists still identify cultural evolution with progressive Spencerian theories, and reject modern 608 609 cultural evolution by rejecting the notion of inevitable progress (e.g. Fracchia and 610 Lewontin 1999). As noted, this represents a misunderstanding of modern cultural Currie et al.'s (2010) analysis presents an interesting empirical test of a version of those claims that societies increase in complexity, although it should be noted that (i) Currie et al.'s analysis is an empirical test, whereas Tylor and Morgan offered little empirical support for their progressive schemes; (ii) Currie et al. precisely defined 'complexity' in terms of political hierarchy, whereas Tylor and Morgan were vague and conflated social organisation, technology and many other traits into a single scheme; and (iii) Currie et al. showed that cultural evolution is not *inevitably* progressive, in that societies often lost

26

social hierarchical levels.

611 evolution theory, which is not Spencerian or progressive.

Culture is too complex for simple models: Modern cultural evolution research is 612 often criticised on the grounds that the population-genetic-style models at the core 613 614 of the field are inappropriate for capturing the complexity of cultural phenomena 615 (Fracchia and Lewontin 1999). Largely this represents a misunderstanding of the use of formal models. Just as in biology (Servedio et al. 2014), models are not 616 617 intended to simulate all aspects of reality, nor are they arguments that the real 618 world really is simple; they are used to formalise the logic of verbal arguments 619 about a complex world (Richerson and Boyd 1987).

Culture cannot be divided into memes: It is common for cultural evolution to be
 rejected on the grounds that culture cannot be divided into discrete units of
 inheritance (e.g. Bloch 2000). As noted above, this again rests on a
 misunderstanding: Darwinian evolution does not require discrete replicators, and
 many cultural evolution models assume the blending inheritance of continuously
 varying cultural traits (Henrich and Boyd 2002).

626 Biological evolution branches, cultural evolution blends: A critique of cultural ٠ 627 phylogenetics is that while biological macroevolution is a process of population 628 fissioning into distinct lineages, cultural macroevolution frequently involves cross-629 lineage exchange via migration or trade, thus invalidating phylogenetic methods (Moore 1994). This distinction is unfounded: biological systems also feature cross-630 631 lineage exchange in the form of horizontal gene transfer (Syvanen 2012), and 632 empirical tests demonstrate that many cultural datasets show just as strong 633 phylogenetic signal as biological datasets (Collard et al. 2006). Moreover, 634 Bayesian-MCMC methods can explicitly detect and handle cross-lineage

635

borrowing (Matthews et al. 2011).

636

637 Is culture proximate or ultimate?

638 Cultural evolution researchers are sometimes accused of making overblown claims about 639 the causal role of culture in explaining human behaviour (Dickins and Rahman 2012; El 640 Mouden et al. 2014; Scott-Phillips et al. 2011). This is typically placed within the context of the proximate-ultimate distinction (Mayr 1961; Tinbergen 1963). Proximate (or "how") 641 642 causes of biological phenomena are immediate mechanisms and triggering stimuli, while 643 ultimate (or "why") causes concern the evolutionary history and function of a trait. For 644 example, proximate causes of birdsong might include the anatomical features that allow 645 birds to sing, or the presence of a rival bird. Ultimate causes of birdsong might include 646 descent from an ancestral lineage in which birdsong was present, and the selection 647 pressures that gave rise to and maintain birdsong. Biological phenomena can be 648 simultaneously explained at both proximate and ultimate levels.

649

650 How does culture fit into this scheme? Researchers coming from sociobiology and 651 evolutionary psychology have typically argued that culture is proximate: a mechanism set 652 up by genes to maximise inclusive fitness (Dickins and Rahman 2012; El Mouden et al. 653 2014; Scott-Phillips et al. 2011). There is merit in this argument: after all, the capacity for 654 culture evolved genetically because it increased inclusive fitness, as explored by 655 numerous gene-culture coevolution analyses (Boyd and Richerson 1985, 1995). Moreover, 656 many of the cognitive biases discussed above have putative inclusive fitness benefits, 657 such as keeping track of social relationships (Mesoudi et al. 2006) and learning about 658 disease-carrying substances (Eriksson and Coultas 2014).

Others (myself included) have argued that non-genetic forms of inheritance such as 660 661 cultural evolution can additionally constitute ultimate causes of behaviour and thus 662 require a rethinking of the original proximate-ultimate scheme (Danchin et al. 2011; Laland et al. 2011; Mesoudi et al. 2013). For a non-cultural species, the original scheme is fairly 663 664 straightforward: ultimate historical causes involve genetic lineages connected via genetic descent, and ultimate selective causes involve the natural selection of genetic variation. 665 666 For a cultural species such as ours, however, ultimate historical causes may also involve 667 cultural lineages connected via cultural descent, and ultimate selective causes may also 668 involve the cultural selection of cultural variation.

669

670 For example, the question "why does a person living in England speak English, and a person living in France speak French?" cannot satisfactorily be answered in terms of 671 672 genetic differences or natural selection; it must be answered in terms of cultural descent (being descended from a cultural lineage of English or French-speakers on the tips of the 673 674 Indo-European language phylogeny), and in terms of cultural selection (the 675 microevolutionary processes that caused the languages to change and diversify over 676 time, which might include both selection-like social learning biases and cultural drift). In cases of gene-culture coevolution, culturally transmitted traits such as dairy farming have 677 678 caused the spread of genes such as lactose tolerance (Laland et al. 2010), again blurring 679 a simple framework in which natural selection of genes is the ultimate cause of 680 evolutionary change.

681

682 While to some extent these issues are merely semantic (i.e. how different researchers

define 'proximate' and 'ultimate'), definitional and theoretical frameworks are important because they guide the research questions that are asked. At the heart of this debate is the extent to which culture is under genetic control: if culture is proximate then it should be under tight genetic control, always (or almost always) resulting in behaviour that maximises inclusive genetic fitness. If cultural evolution can also play an ultimate role, then it may drive behaviour to novel equilibrium that are not necessarily genetically optimal, or predictable from evolutionary models containing purely genetic inheritance.

691 The relative influence of transformative and selective processes

Earlier I noted that cultural evolution differs from biological evolution in that whereas genetic inheritance does not in itself generate evolutionary change (except in unusual cases such as meiotic drive or imprinting), cultural inheritance (i.e. social learning) itself may do so, through the individual transformation of information. This difference has inspired some researchers to suggest an alternative framework for modelling and understanding cultural change, one based on 'cultural attraction' (Claidière et al. 2014; Claidière and Sperber 2007; Sperber 1996).

699

Two definitions of 'cultural attraction' exist in the writings of Sperber and colleagues (Acerbi and Mesoudi in press). In some publications (e.g. Claidière and Sperber 2007), cultural attraction equates to individual transformation, and seems equivalent to guided variation as modelled by Boyd and Richerson (1985). Claidiere and Sperber (2007), for example, present a model in which a cultural trait - cigarette smoking - is influenced by both cultural attraction, where people are individually more likely to decide to either smoke zero or 25 cigarettes a day due to the initial unpleasantness and addictiveness of

smoking, and cultural selection, which takes the form of a model-based bias wherein
people are more likely to copy 10-cigarette-a-day smokers. As one might expect, the final
distribution of cigarette smoking depends on the relative strength of cultural attraction
(guided variation) and cultural selection (model-based bias).

711

712 As noted, this sense of cultural attraction seems synonymous with Boyd and Richerson's 713 (1985) guided variation, and transformative processes have been much studied in the field 714 using transmission chain methods. There does not seem to be any major disagreement 715 here, and indeed Sperber and colleagues have made a valuable contribution in 716 highlighting the importance of transformative processes. One might argue about the 717 relative strength of transformative and selective processes in cultural evolution, and this is 718 an empirical question that cannot be addressed through modelling alone. Experimental 719 studies are beginning to examine this (Eriksson and Coultas 2014), but more field and 720 historical studies are needed. It is likely that for certain domains where there are strong 721 cognitive constraints or biases, then individual transformation will dominate, such as the 722 case of colour terminology studied by Xu et al. (2013). In other domains, particularly those 723 involving complex, novel or rapidly changing cultural traits, there are unlikely to be any 724 innate cognitive or perceptual biases operating, and cultural traits may be so 'cognitively opaque' (Csibra and Gergely 2009) - i.e. cannot be easily reconstructed or understood -725 726 that individual transformation would be unlikely to result in beneficial modification any more than chance (Boyd et al. 2011). This likely includes complex technologies that have 727 728 accumulated over multiple generations and that were shown above to appear and 729 disappear with demography, such as fishing hooks, bows, and modern technology such 730 as computers and spacecraft. Here, selection-like processes such as payoff-biased social

731 learning, plus random cultural mutation, are likely to be more important than individual732 transformation.

733

734 Elsewhere (e.g. Claidière et al. 2014), cultural attraction appears to become synonymous with the broad process of cultural evolution. Claidiere et al. (2014), for example, argue that 735 736 "cultural evolution is best described in terms of a process called cultural attraction ..., 737 which is populational and evolutionary, but only selectional under certain circumstances." 738 (Claidière et al. 2014, p. 2). Here, cultural selection is described as a "special case" of 739 cultural attraction, which subsumes both transformative and selective processes. This 740 broader sense of cultural attraction seems to be redundant, and confusingly redefines the 741 notion of cultural attraction (Acerbi and Mesoudi in press). Claidiere et al. (2014) present 742 evolutionary causal matrices, a modelling scheme which they argue better represents 743 cultural change compared to existing 'selectional' models, but it is unclear how useful 744 these are compared to the already established models of Cavalli-Sforza and Feldman 745 (1981), Boyd and Richerson (1985) and many others, which as we have seen are not, in 746 fact, exclusively selectional and also include transformative processes.

747

748 What underlies cumulative cultural evolution?

Many species possess social learning, defined as the transmission of information nongenetically from one individual to another (Galef and Laland 2005). Many species also
exhibit cultural traditions, defined as group differences generated by social learning
(Lycett et al. 2007; Whiten et al. 1999). Only humans, however, appear to possess *cumulative* cultural evolution, defined as the accumulation of beneficial modifications over
successive generations (Dean et al. 2014). Different groups of chimpanzees may differ in

their nut-cracking behaviour (Whiten et al. 1999), but there is no sense in which nutcracking has accumulated over successive generations such that it is beyond the inventive capacity of a single chimp. Aspects of human culture, such as spacecraft, quantum physics, and financial markets, are the cumulative product of countless individuals over many generations.

760

761 There is ongoing comparative, experimental and modelling work trying to explain this 762 difference between humans and other species. An initial suggestion that non-human 763 species lack high-fidelity imitation, i.e. the copying of motor actions (Tomasello et al. 764 1993), failed to find support when chimpanzees were shown able to faithfully transmit 765 behaviours through captive groups (Horner et al. 2006). Recent work has instead 766 implicated multiple factors as being jointly necessary. A recent experimental study 767 pointed to a suite of socio-cognitive abilities, including imitation, verbal instruction and 768 cooperation, that permitted human children to solve cumulative tasks that chimpanzees 769 and capuchins failed (Dean et al. 2012). Theoretical models linked to comparative data 770 suggest that transmission fidelity and population size are jointly necessary for cumulative 771 cultural evolution (Kempe et al. 2014). Certainly, if the confluence of multiple social, cognitive and demographic factors was necessary for the evolution of cumulative cultural 772 773 evolution, then this may well explain its rarity in nature. Future comparative work will 774 provide a better understanding of these factors.

775

776 The evolution of large-scale human cooperation

A fiercely debated question across the biological sciences concerns the evolutionary
basis of cooperation (Abbot et al. 2011; Nowak et al. 2010). Human large-scale

779 cooperation between unrelated individuals has come under particularly intense scrutiny. 780 Boyd and Richerson (1985), alongside their general models of cultural evolution, also 781 presented a theory of cultural group selection to explain human cooperation. In their 782 original formulation, social learning biases such as conformity generate within-group cultural homogeneity and between-group cultural variation. If this group-level cultural 783 784 variation persists in the face of migration, if groups vary in altruistic cultural traits which 785 benefit the group but are costly to the individual, and if selection acts at the level of the 786 group such as via their differential extinction, then this process of cultural group selection 787 may favour altruistic cultural norms (Boyd and Richerson 2009). Empirical support for the 788 cultural group selection hypothesis includes behavioural economic games which show 789 cooperation in one-shot, anonymous interactions with no possibility of reciprocity, and 790 between-group cultural variation in the extent of this cooperative behaviour (Henrich et al. 791 2005).

792

Cultural group selection has been criticised along with other theories of group (or
multilevel) selection (e.g. Wilson and Wilson 2007) by proponents of kin selection (West et
al. 2007, 2011). The latter argue that all human cooperation, like non-human cooperation,
ultimately has selfish benefits to the individual, even if these benefits also occur to those
individuals' groups. Cooperation in one-shot anonymous games is argued to be an
artifact of the unfamiliarity of such situations (West et al. 2007).

799

800 Cultural group selection is an elegant theory that fits with many findings from across the 801 social and behavioral sciences (Richerson et al. 2015). Of the few empirical studies that 802 have aimed to directly test its underlying assumptions, some have found support (Bell et

al. 2009) while others have not (Lamba 2014; Lamba and Mace 2011). It is also worth

804 noting that prominent cultural evolution researchers remain sceptical of the specific

theory of cultural group selection (Lehmann et al. 2008). No doubt future empirical tests

806 will further clarify the nature of human cooperation.

807

808 Are social learning biases learned or innate?

Many gene-culture coevolutionary models have looked at the evolution of social learning, and of different social learning biases such as payoff or conformist biases. These models typically assume that such capacities are genetically-specified, and examine when each would be favoured by natural selection. To pick one example of many, Enquist et al. (2007) assume in a model of the evolution of social learning that "Which [learning]

814 strategy is used is genetically determined for each individual" (p.6).

815

816 It is possible, however, that the degree of social learning employed by an individual is 817 itself learned, either individually or socially. To an extent, models such as those of Enguist 818 et al. (2007) do not require social learning to be genetically-specified in order for the 819 insights of their models to be valid: social learning could equally be acquired from others 820 culturally, without perhaps altering the results of the model. On the other hand, given the 821 known differences between the dynamics of genetic and cultural inheritance, this may not 822 necessarily be the case. In subsequent models, Enguist and colleagues explored this 823 further (Acerbi et al. 2009; Ghirlanda et al. 2006), showing that when the tendency to 824 engage in social learning can itself be socially learned, this gradually reduces individuals' 825 reliance on social information. This is because while social learners may learn from nonsocial learners to become non-social learners, the reverse is less likely: non-social 826

learners do not learn from social learners because, by definition, they do not learn
socially. While this specific result may or may not be broadly applicable, it highlights the
possibility that cultural dynamics may be significantly altered when one assumes that
social learning can itself be socially learned.

831

832 Empirically, Mesoudi et al. (2015) showed that the tendency to engage in social learning in 833 an experimental artifact-design task varies cross-culturally, with participants from 834 mainland China more likely to use social information than participants from the UK and 835 Hong Kong, as well as Chinese immigrants living in the UK. Although further studies are 836 needed to explore the precise determinants of human social information use, these 837 results suggest that social learning tendencies are themselves learned from others; the 838 Western-style learning of Chinese immigrants and Hong Kong residents in particular 839 count against any genetic basis for learning style.

840

841 In the non-human literature, too, it has been argued that social learning can be explained 842 in terms of simple associative learning mechanisms, rather than dedicated genetically-843 specified, domain-specific mechanisms (Heyes 2012; Heyes and Pearce 2015; 844 Leadbeater 2015). Recent studies have shown that social learning in rats can be 845 influenced by early developmental cues such as maternal care (Lindever et al. 2013), and 846 in bees by past learning histories (Dawson et al. 2013). However, while similar processes 847 may well operate in humans (Heyes 2012), it is difficult to explain the species differences 848 in cumulative cultural evolution described above without positing some kind of genetic 849 adaptation in the human lineage, perhaps involving the extent of imitation during 850 childhood (Lyons et al. 2007) or theory of mind (Tomasello et al. 2005).

851

852 Conclusions

853 In this paper I have provided an overview of contemporary cultural evolution research. 854 The details of cultural micro-evolution are becoming increasingly better understood 855 through a combination of theoretical models, lab experiments and field studies. These 856 focus on pathways and biases in social learning, examining who people learn from, what 857 they learn, and how learning transforms transmitted information. Macro-evolutionary 858 studies are also proliferating, with sophisticated analyses of the evolution of languages, 859 technology and social organisation giving valuable insights into broad patterns of cultural 860 change through human history and prehistory.

861

862 Major progress is likely to occur through the linking of cultural micro and macroevolution, 863 just as occurred in biology during the evolutionary synthesis. This is greatly facilitated by the quantitative models of cultural evolution that lie at the heart of the field, as the large-864 865 scale, population-level consequences of individual-level learning processes can be 866 explored in a manner that verbal models do not allow. Thus we have seen links made from payoff bias and demography to patterns of cumulative cultural evolution, from 867 868 transformative cognitive biases to cross-cultural universals such as colour terminologies 869 and grammatical structure, and from conformist bias to large-scale cooperation.

870

Much of the work presented here is consistent with existing findings in the nonevolutionary social sciences: language phylogenies are broadly consistent with informal trees constructed by linguists, for example, while social learning biases such as conformity have precedent in the work of social psychologists. The added value of

37

875 viewing cultural change as an evolutionary process lies in (i) the application to cultural datasets of quantitative methods already developed by biologists, such as phylogenetic 876 877 methods in linguistics, where previously inferences were subjective; (ii) the grounding of human behaviour within a broader evolutionary framework, such as the use of formal 878 879 models to explore the adaptiveness of different social learning biases; and (iii) the linking 880 of micro- and macro-levels of explanation, which is inherent in Darwinian population 881 thinking but represents a perennial problem in the social sciences due to the lack of 882 quantitative methods for making this link, and the lack of communication between 883 disciplines that focus on the micro (e.g. psychology) and those that focus on the macro 884 (e.g. history or archaeology).

885

886 For evolutionary biologists, cultural evolution is significant for several reasons. First, the 887 existence of a second major evolutionary process that resembles genetic evolution but 888 differs from it in important ways may well provide valuable insights into the processes of 889 genetic evolution. Phylogenetic methods, for example, are now being developed in parallel for both cultural and genetic data (Pagel 2009), and phenomena common to 890 891 cultural datasets such as cross-lineage borrowing is just as much a challenge for 892 biologists facing phenomena such as horizontal gene transfer. Second, social learning is 893 now recognised to be common across multiple taxa, not just humans. The existence of a 894 second inheritance system - and potentially a third, if one also includes transgenerational 895 epigenetic inheritance - means that standard explanations for phenotypic variation in 896 terms purely of the natural selection of genetically-inherited variation will not be sufficient 897 (Danchin et al. 2011). Finally, when considering explanations for human behaviour, 898 biologists sometimes consider 'culture' to be a vague and imprecise notion, instead

38

- 899 defaulting to explaining patterns of human behaviour in terms of genes and natural
- 900 selection even where this is inappropriate. The work reviewed here should hopefully put
- 901 rest to that feeling, by presenting a coherent evolutionary science of culture that is just as
- 902 rigorous as evolutionary biology.

References

- Abbot, P., Abe, J., Alcock, J., Alizon, S., Alpedrinha, J. A. C., Andersson, M., et al. (2011). Inclusive fitness theory and eusociality. *Nature*, *471*(7339), E1–E4.
- Acerbi, A., Enquist, M., & Ghirlanda, S. (2009). Cultural evolution and individual development of openness and conservatism. *Proceedings of the National Academy of Sciences*, *106*(45), 18931–18935.
- Acerbi, A., & Mesoudi, A. (in press). If we are all cultural Darwinians what's the fuss about? Clarifying recent disagreements in the field of cultural evolution. *Biology & Philosophy*.
- Aoki, K., & Feldman, M. W. (2014). Evolution of learning strategies in temporally and spatially variable environments: A review of theory. *Theoretical Population Biology*, *91*, 3–19. doi:10.1016/j.tpb.2013.10.004
- Aplin, L. M., Farine, D. R., Morand-Ferron, J., Cockburn, A., Thornton, A., & Sheldon, B.
 C. (2014). Experimentally induced innovations lead to persistent culture via conformity in wild birds. *Nature*, *advance online publication*.
 doi:10.1038/nature13998
- Atkisson, C., O'Brien, M. J., & Mesoudi, A. (2011). Adult learners in a novel environment use prestige-biased social learning. *Evolutionary psychology*, *10*(3), 519–537.
- Aunger, R. (2000). The life history of culture learning in a face-to-face society. *Ethos*, *28*, 1–38.
- Barbrook, A. C., Howe, C. J., Blake, N., & Robinson, P. (1998). The phylogeny of The Canterbury Tales. *Nature*, *394*(6696), 839–839.

Bartlett, F. C. (1932). *Remembering*. Oxford: Macmillan.

- Beheim, B. A., Thigpen, C., & McElreath, R. (2014). Strategic social learning and the population dynamics of human behavior: the game of Go. *Evolution and Human Behavior*, 35(5), 351–357. doi:10.1016/j.evolhumbehav.2014.04.001
- Bell, A. V., Richerson, P. J., & McElreath, R. (2009). Culture rather than genes provides greater scope for the evolution of large-scale human prosociality. *Proceedings of the National Academy of Sciences*, *106*(42), 17671–17674.

Bloch, M. (2000). A well-disposed social anthropologist's problems with memes. In R. Aunger (Ed.), *Darwinizing Culture* (pp. 189–204). Oxford: Oxford University Press.

Boas, F. (1940). Race, language and culture. New York: Macmillan.

- Bouckaert, R., Lemey, P., Dunn, M., Greenhill, S. J., Alekseyenko, A. V., Drummond, A. J., et al. (2012). Mapping the origins and expansion of the Indo-European language family. *Science*, *337*(6097), 957–960.
- Boyd, R., & Richerson, P. J. (1985). *Culture and the evolutionary process*. Chicago, IL: Univ. Chicago Press.
- Boyd, R., & Richerson, P. J. (1995). Why does culture increase human adaptability? *Ethology and Sociobiology*, *16*(2), 125–143. doi:10.1016/0162-3095(94)00073-G
- Boyd, R., & Richerson, P. J. (2009). Culture and the evolution of human cooperation. *Philosophical Transactions of the Royal Society B*, *364*(1533), 3281.
- Boyd, R., Richerson, P. J., & Henrich, J. (2011). The cultural niche: Why social learning is essential for human adaptation. *Proceedings of the National Academy of Sciences*, *108*, 10918–10925.
- Boyer, P. (1998). Cognitive tracks of cultural inheritance: How evolved intuitive ontology governs cultural transmission. *American Anthropologist*, *100*(4), 876–889.
- Bromham, L., Hua, X., Fitzpatrick, T. G., & Greenhill, S. J. (2015). Rate of language evolution is affected by population size. *Proceedings of the National Academy of Sciences*, *112*(7), 2097–2102. doi:10.1073/pnas.1419704112
- Campbell, D. T. (1965). Variation and selective retention in socio-cultural evolution. In H.
 R. Barringer, G. I. Blanksten, & R. W. Mack (Eds.), *Social change in developing* areas (pp. 19–49). Cambridge, MA: Schenkman.
- Cavalli-Sforza, L. L., & Feldman, M. W. (1981). *Cultural transmission and evolution*. Princeton: Princeton Univ. Press.
- Chang, W., Cathcart, C., Hall, D., & Garrett, A. (2015). Ancestry-constrained phylogenetic analysis supports the Indo-European steppe hypothesis. *Language*, *91*(1), 194–244. doi:10.1353/lan.2015.0005

Claidière, N., Scott-Phillips, T. C., & Sperber, D. (2014). How Darwinian is cultural

evolution? *Philosophical Transactions of the Royal Society B: Biological Sciences*, 369(1642), 20130368. doi:10.1098/rstb.2013.0368

- Claidière, N., & Sperber, D. (2007). The role of attraction in cultural evolution. *Journal of Cognition and Culture*, 7(2), 89–111.
- Collard, M., Buchanan, Briggs, & O'Brien, M. J. (2013). Population size as an explanation for patterns in the Paleolithic archaeological record: More caution is needed. *Current Anthropology*, *54*(S8), S388–S396. doi:10.1086/673881
- Collard, M., Shennan, S., & Tehrani, J. J. (2006). Branching, blending, and the evolution of cultural similarities and differences among human populations. *Evolution and Human Behavior*, *27*, 169–184.
- Csibra, G., & Gergely, G. (2009). Natural pedagogy. *Trends in Cognitive Sciences*, *13*(4), 148–153.
- Currie, T. E., Greenhill, S. J., Gray, R. D., Hasegawa, T., & Mace, R. (2010). Rise and fall of political complexity in island South-East Asia and the Pacific. *Nature*, 467(7317), 801–804. doi:10.1038/nature09461
- Danchin, E., Charmantier, A., Champagne, F. A., Mesoudi, A., Pujol, B., & Blanchet, S. (2011). Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. *Nature Reviews Genetics*, *12*, 475–486.
- Darwin, C. (1871). The descent of man. London: Gibson Square, 2003.
- Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.
- Dawson, E. H., Avarguès-Weber, A., Chittka, L., & Leadbeater, E. (2013). Learning by observation emerges from simple associations in an insect model. *Current Biology*, 23(8), 727–730. doi:10.1016/j.cub.2013.03.035
- Dean, L. G., Kendal, R. L., Schapiro, S. J., Thierry, B., & Laland, K. N. (2012). Identification of the social and cognitive processes underlying human cumulative culture. *Science*, 335(6072), 1114–1118.
- Dean, L. G., Vale, G. L., Laland, K. N., Flynn, E., & Kendal, R. L. (2014). Human cumulative culture: a comparative perspective. *Biological Reviews*, *89*(2), 284–301.
- Derex, M., Beugin, M.-P., Godelle, B., & Raymond, M. (2013). Experimental evidence for

the influence of group size on cultural complexity. Nature, 503(7476), 389-391.

- Diamond, J., & Bellwood, P. (2003). Farmers and their languages: the first expansions. *Science*, *300*(5619), 597–603.
- Dickins, T. E., & Rahman, Q. (2012). The extended evolutionary synthesis and the role of soft inheritance in evolution. *Proceedings of the Royal Society B*. doi:10.1098/rspb.2012.0273

Dunbar, R. I. M. (2003). The social brain. Annual Review of Anthropology, 32, 163–181.

- Dunn, M., Greenhill, S. J., Levinson, S. C., & Gray, R. D. (2011). Evolved structure of language shows lineage-specific trends in word-order universals. *Nature*, 473(7345), 79–82.
- El Mouden, C., André, J.-B., Morin, O., & Nettle, D. (2014). Cultural transmission and the evolution of human behaviour: a general approach based on the Price equation. *Journal of Evolutionary Biology*, *27*(2), 231–241. doi:10.1111/jeb.12296
- Enquist, M., Eriksson, K., & Ghirlanda, S. (2007). Critical social learning: A solution to Rogers' paradox of nonadaptive culture. *American Anthropologist*, *109*(4), 727– 734.
- Enquist, M., & Ghirlanda, S. (2007). Evolution of social learning does not explain the origin of human cumulative culture. *Journal of Theoretical Biology*, *246*(1), 129–135. doi:10.1016/j.jtbi.2006.12.022
- Enquist, M., Ghirlanda, S., & Eriksson, K. (2011). Modelling the evolution and diversity of cumulative culture. *Philosophical Transactions of the Royal Society B*, 366, 412–423.
- Eriksson, K., & Coultas, J. C. (2014). Corpses, maggots, poodles and rats: emotional selection operating in three phases of cultural transmission of urban legends. *Journal of Cognition and Culture*, *14*(1-2), 1–26. doi:10.1163/15685373-12342107
- Feher, O., Wang, H., Saar, S., Mitra, P. P., & Tchernichovski, O. (2009). De novo establishment of wild-type song culture in the zebra finch. *Nature*, 459(7246), 564– 568.

Feldman, M. W., & Laland, K. N. (1996). Gene-culture coevolutionary theory. Trends in

43

Ecology and Evolution, 11(11), 453–457.

- Felsenstein, J. (1985). Phylogenies and the comparative method. *American Naturalist*, *125*, 1–15.
- Fracchia, J., & Lewontin, R. C. (1999). Does culture evolve? *History and Theory*, 38(4), 52–78.
- Freeman, D. (1974). The evolutionary theories of Charles Darwin and Herbert Spencer. *Current Anthropology*, *15*(3), 211–237.
- Galef, B. G., & Laland, K. N. (2005). Social learning in animals: Empirical studies and theoretical models. *BioScience*, *55*(6), 489–499.
- Ghirlanda, S., Enquist, M., & Nakamaru, M. (2006). Cultural evolution develops its own rules: the rise of conservatism and persuasion. *Current Anthropology*, *47*(6), 1027–1034.
- Gray, R. D., & Atkinson, Q. D. (2003). Language-tree divergence times support the Anatolian theory of Indo-European origin. *Nature*, *426*(6965), 435–439.
- Gray, R. D., Drummond, A. J., & Greenhill, S. J. (2009). Language phylogenies reveal expansion pulses and pauses in Pacific settlement. *Science*, *323*(5913), 479–483. doi:10.1126/science.1166858
- Gray, R. D., & Jordan, F. M. (2000). Language trees support the express-train sequence of Austronesian expansion. *Nature*, *405*, 1052–1055.
- Griffiths, T. L., Kalish, M. L., & Lewandowsky, S. (2008). Theoretical and empirical evidence for the impact of inductive biases on cultural evolution. *Philosophical Transactions of the Royal Society B*, *363*, 3503–3514.
- Harris, J. R. (1995). Where is the child's environment? A group socialization theory of development. *Psychological Review*, *102*, 458–489.
- Harvey, P. H., & Pagel, M. D. (1991). *The comparative method in evolutionary biology*. Oxford: Oxford University Press.
- Heath, C., Bell, C., & Sternberg, E. (2001). Emotional selection in memes: The case of urban legends. *Journal of Personality and Social Psychology*, *81*(6), 1028–1041. doi:10.1037/0022-3514.81.6.1028

- Henrich, J. (2001). Cultural transmission and the diffusion of innovations. *American Anthropologist*, *103*(4), 992–1013.
- Henrich, J. (2004). Demography and cultural evolution: How adaptive cultural processes can produce maladaptive losses The Tasmanian case. *American Antiquity*, 69(2), 197–214.
- Henrich, J., & Boyd, R. (1998). The evolution of conformist transmission and the emergence of between-group differences. *Evolution and Human Behavior*, *19*(4), 215–241.
- Henrich, J., & Boyd, R. (2001). Why people punish defectors: weak conformist transmission can stabilize costly enforcement of norms in cooperative dilemmas. *Journal of Theoretical Biology*, 208(1), 79–89.
- Henrich, J., & Boyd, R. (2002). On modeling cognition and culture: why cultural evolution does not require replication of representations. *Journal of Cognition and Culture*, *2*(2), 87–112.
- Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., et al. (2005).
 "Economic man" in cross-cultural perspective: Behavioral experiments in 15 small-scale societies. *Behavioral and Brain Sciences*, 28(06), 795–815.
 doi:10.1017/S0140525X05000142
- Henrich, J., & Gil-White, F. J. (2001). The evolution of prestige: freely conferred deference as a mechanism for enhancing the benefits of cultural transmission. *Evolution and Human Behavior*, *22*(3), 165–196. doi:10.1016/S1090-5138(00)00071-4
- Henrich, J., & Henrich, N. (2010). The evolution of cultural adaptations: Fijian food taboos protect against dangerous marine toxins. *Proceedings of the Royal Society B*, 277, 3715–3724.
- Henrich, J., & McElreath, R. (2003). The evolution of cultural evolution. *Evolutionary Anthropology*, *12*(3), 123–135. doi:10.1002/evan.10110
- Hewlett, B. S., Fouts, H. N., Boyette, A. H., & Hewlett, B. L. (2011). Social learning among Congo Basin hunter–gatherers. *Philosophical Transactions of the Royal Society of London B: Biological Sciences*, 366(1567), 1168–1178. doi:10.1098/rstb.2010.0373

- Heyes, C. (2012). What's social about social learning? *Journal of Comparative Psychology*, *126*(2), 193–202. doi:10.1037/a0025180
- Heyes, C., & Pearce, J. M. (2015). Not-so-social learning strategies. Proceedings of the Royal Society of London B: Biological Sciences, 282(1802), 20141709. doi:10.1098/rspb.2014.1709
- Holden, C. J., & Mace, R. (2003). Spread of cattle led to the loss of matrilineal descent in Africa: a coevolutionary analysis. *Proceedings of the Royal Society B*, *270*(1532), 2425–2433.
- Horner, V., Whiten, A., Flynn, E., & de Waal, F. B. M. (2006). Faithful replication of foraging techniques along cultural transmission chains by chimpanzees and children. *Proceedings of the National Academy of Sciences*, *103*(37), 13878.
- Kandler, A., & Steele, J. (2009). Social learning, economic inequality and innovation diffusion. In M. O'Brien & S. J. Shennan (Eds.), *Innovation and Evolution*. MIT Press.
- Kashima, Y. (2000). Maintaining cultural stereotypes in the serial reproduction of narratives. *Personality and Social Psychology Bulletin*, 26(5), 594–604.
- Kempe, M., Lycett, S. J., & Mesoudi, A. (2014). From cultural traditions to cumulative culture: Parameterizing the differences between human and nonhuman culture. *Journal of Theoretical Biology*, 359, 29–36. doi:10.1016/j.jtbi.2014.05.046
- Kempe, M., Lycett, S., & Mesoudi, A. (2012). An experimental test of the accumulated copying error model of cultural mutation for Acheulean handaxe size. *PLOS ONE*, 7(11), e48333.
- Kempe, M., & Mesoudi, A. (2014). An experimental demonstration of the effect of group size on cultural accumulation. *Evolution and Human Behavior*, *35*, 285–290.
- Kirby, S., Cornish, H., & Smith, K. (2008). Cumulative cultural evolution in the laboratory:
 An experimental approach to the origins of structure in human language.
 Proceedings of the National Academy of Sciences, *105*(31), 10681–10686.
- Kirby, S., Dowman, M., & Griffiths, T. L. (2007). Innateness and culture in the evolution of language. *Proceedings of the National Academy of Sciences*, *104*(12), 5241–5245.

- Kline, M. A., & Boyd, R. (2010). Population size predicts technological complexity in Oceania. *Proceedings of the Royal Society B: Biological Sciences*, 277(1693), 2559–2564.
- Kobayashi, Y., & Aoki, K. (2012). Innovativeness, population size and cumulative cultural evolution. *Theoretical Population Biology*, 82(1), 38–47. doi:10.1016/j.tpb.2012.04.001

Labov, W. (1972). Sociolinguistic patterns. Oxford: University of Pennsylvania Press.

- Laland, K. N. (2004). Social learning strategies. *Animal Learning & Behavior*, *32*(1), 4–14. doi:10.3758/BF03196002
- Laland, K. N., & Galef, B. G. (2009). *The question of animal culture*. Harvard University Press.
- Laland, K. N., Odling-Smee, J., & Myles, S. (2010). How culture shaped the human genome: bringing genetics and the human sciences together. *Nature Reviews Genetics*, *11*(2), 137–148.
- Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W., & Uller, T. (2011). Cause and effect in biology revisited: Is Mayr's proximate-ultimate dichotomy still useful? *Science*, *334*(6062), 1512–1516.
- Lamba, S. (2014). Social learning in cooperative dilemmas. *Proceedings of the Royal Society of London B: Biological Sciences*, 281(1787), 20140417. doi:10.1098/rspb.2014.0417
- Lamba, S., & Mace, R. (2011). Demography and ecology drive variation in cooperation across human populations. *Proceedings of the National Academy of Sciences*, *108*(35), 14426–14430.
- Leadbeater, E. (2015). What evolves in the evolution of social learning? *Journal of Zoology*, 295(1), 4–11. doi:10.1111/jzo.12197
- Lehmann, L., Aoki, K., & Feldman, M. W. (2011). On the number of independent cultural traits carried by individuals and populations. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *366*(1563), 424–435.

Lehmann, L., Feldman, M. W., & Foster, K. R. (2008). Cultural transmission can inhibit the

evolution of altruistic helping. *The American Naturalist*, *172*(1), 12–24. doi:10.1086/587851

- Lewis, H. M., & Laland, K. N. (2012). Transmission fidelity is the key to the build-up of cumulative culture. *Philosophical Transactions of the Royal Society B*, 367, 2171–2180.
- Lewis, H. S. (2001). Boas, Darwin, science, and anthropology. *Current Anthropology*, *42*(3), 381–406. doi:10.1086/320474
- Lewontin, R. C. (1970). The units of selection. *Annual Review of Ecology and Systematics*, *1*, 1–18.
- Lieberman, E., Michel, J. B., Jackson, J., Tang, T., & Nowak, M. A. (2007). Quantifying the evolutionary dynamics of language. *Nature*, *449*(7163), 713–716.
- Lindeyer, C. M., Meaney, M. J., & Reader, S. M. (2013). Early maternal care predicts reliance on social learning about food in adult rats. *Developmental Psychobiology*, *55*(2), 168–175. doi:10.1002/dev.21009
- Lipo, C. P., O'Brien, M. J., Collard, M., & Shennan, S. J. (Eds.). (2006). Mapping our ancestors: Phylogenetic approaches in anthropology and prehistory. New York: Aldine.
- Lycett, S. J. (2009). Understanding ancient hominin dispersals using artefactual data: a phylogeographic analysis of Acheulean handaxes. *PLoS ONE*, *4*(10), 1–6.
- Lycett, S. J., Collard, M., & McGrew, W. C. (2007). Phylogenetic analyses of behavior support existence of culture among wild chimpanzees. *Proceedings of the National Academy of Sciences*, *104*(45), 17588.
- Lycett, S. J., & von Cramon-Taubadel, N. (2008). Acheulean variability and hominin dispersals: a model-bound approach. *Journal of Archaeological Science*, *35*(3), 553–562.
- Lyons, D. E., Young, A. G., & Keil, F. C. (2007). The hidden structure of overimitation. *Proceedings of the National Academy of Sciences*, *104*(50), 19751–19756.
- Mace, R., & Pagel, M. D. (1994). The comparative method in anthropology. *Current Anthropology*, 35(5), 549–564.

- Marshall-Pescini, S., & Whiten, A. (2008). Chimpanzees (Pan troglodytes) and the question of cumulative culture: an experimental approach. *Animal Cognition*, *11*(3), 449–456.
- Martin, D., Hutchison, J., Slessor, G., Urquhart, J., Cunningham, S. J., & Smith, K. (2014). The spontaneous formation of stereotypes via cumulative cultural evolution. *Psychological Science*, *25*(9), 1777–1786. doi:10.1177/0956797614541129
- Matthews, L. J., Tehrani, J. J., Jordan, F. M., Collard, M., & Nunn, C. L. (2011). Testing for divergent transmission histories among cultural characters: A study using Bayesian phylogenetic methods and Iranian tribal textile data. *PLoS ONE*, 6(4), e14810. doi:10.1371/journal.pone.0014810
- Mayr, E. (1961). Cause and effect in biology: Kinds of causes, predictability, and teleology are viewed by a practicing biologist. *Science*, *134*(3489), 1501–1506. doi:10.1126/science.134.3489.1501
- Mayr, E. (1982). *The Growth of Biological Thought*. Cambridge, MA: Harvard University Press.
- McElreath, R., Bell, A. V., Efferson, C., Lubell, M., Richerson, P. J., & Waring, T. (2008).
 Beyond existence and aiming outside the laboratory: estimating frequencydependent and pay-off-biased social learning strategies. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 363(1509), 3515–3528. doi:10.1098/rstb.2008.0131
- McElreath, R., & Henrich, J. (2006). Modeling cultural evolution. In R. I. M. Dunbar & L. Barrett (Eds.), *Oxford handbook of evolutionary psychology*. Oxford: Oxford University Press.
- McGuigan, N., & Cubillo, M. (2013). Cultural transmission in young children: When social information is more important than non-social information. *The Journal of Genetic Psychology*, (just-accepted).
- McMahon, A., & McMahon, R. (2003). Finding families: Quantitative methods in language classification. *Transactions of the Philological Society*, *101*, 7–55.

Mesoudi, A. (2011a). Cultural evolution. Chicago, IL: Univ. Chicago Press.

- Mesoudi, A. (2011b). An experimental comparison of human social learning strategies: payoff-biased social learning is adaptive but underused. *Evolution and Human Behavior*, 32(5), 334–342. doi:10.1016/j.evolhumbehav.2010.12.001
- Mesoudi, A. (2011c). Variable cultural acquisition costs constrain cumulative cultural evolution. *PLOS One*, *6*(3), e18239.
- Mesoudi, A., Blanchet, S., Charmantier, A., Danchin, E., Fogarty, L., Jablonka, E., et al. (2013). Is non-genetic inheritance just a proximate mechanism? A corroboration of the extended evolutionary synthesis. *Biological Theory*, 7(3), 189–195.
- Mesoudi, A., Chang, L., Murray, K., & Lu, H. (2015). Higher frequency of social learning in China than in the West shows cultural variation in the dynamics of cultural evolution. *Proceedings of the Royal Society B*, 282, 20142209.
- Mesoudi, A., & Whiten, A. (2004). The hierarchical transformation of event knowledge in human cultural transmission. *Journal of Cognition and Culture*, *4*(1), 1–24.
- Mesoudi, A., & Whiten, A. (2008). The multiple roles of cultural transmission experiments in understanding human cultural evolution. *Philosophical Transactions of the Royal Society B*, 363, 3489–3501.
- Mesoudi, A., Whiten, A., & Dunbar, R. (2006). A bias for social information in human cultural transmission. *British Journal of Psychology*, *97*(3), 405–423. doi:10.1348/000712605X85871
- Mesoudi, A., Whiten, A., & Laland, K. N. (2004). Is human cultural evolution Darwinian? Evidence reviewed from the perspective of The Origin of Species. *Evolution*, 58(1), 1–11. Accessed 27 May 2014
- Molleman, L., van den Berg, P., & Weissing, F. J. (2014). Consistent individual differences in human social learning strategies. *Nature Communications*, 5. doi:10.1038/ncomms4570
- Moore, J. H. (1994). Putting anthropology back together again: The ethnogenetic critique of cladistic theory. *American Anthropologist*, *96*, 925–948.
- Morgan, L. H. (1877). Ancient society. New York: Henry Holt.
- Morgan, T. J. H., Rendell, L. E., Ehn, M., Hoppitt, W., & Laland, K. N. (2011). The

evolutionary basis of human social learning. *Proceedings of the Royal Society B: Biological Sciences*, 279, 653–662. doi:10.1098/rspb.2011.1172

- Muthukrishna, M., Shulman, B. W., Vasilescu, V., & Henrich, J. (2014). Sociality influences cultural complexity. *Proceedings of the Royal Society B: Biological Sciences*, *281*(1774), 20132511.
- Nowak, M. A., Tarnita, C. E., & Wilson, E. O. (2010). The evolution of eusociality. *Nature*, *466*(7310), 1057–1062.
- O'Brien, M. J., Boulanger, M. T., Buchanan, B., Collard, M., Lee Lyman, R., & Darwent, J. (2014). Innovation and cultural transmission in the American Paleolithic: Phylogenetic analysis of eastern Paleoindian projectile-point classes. *Journal of Anthropological Archaeology*, *34*, 100–119.
- O'Brien, M. J., Darwent, J., & Lyman, R. L. (2001). Cladistics is useful for reconstructing archaeological phylogenies: Palaeoindian points from the Southeastern United States. *Journal of Archaeological Science*, *28*(10), 1115–1136.
- O'Brien, M. J., & Lyman, R. L. (2003). *Cladistics and archaeology*. Salt Lake City: University of Utah Press.
- Pagel, M. (2009). Human language as a culturally transmitted replicator. *Nature Reviews Genetics*, *10*(6), 405–415.
- Pike, T. W., Kendal, J. R., Rendell, L. E., & Laland, K. N. (2010). Learning by proportional observation in a species of fish. *Behavioral Ecology*, *21*(3), 570–575. doi:10.1093/beheco/arq025
- Pike, T. W., & Laland, K. N. (2010). Conformist learning in nine-spined sticklebacks' foraging decisions. *Biology Letters*, rsbl20091014. doi:10.1098/rsbl.2009.1014
- Pitt-Rivers, A. L. (1875). On the evolution of culture. *Journal of the Anthropological Institute*, *4*, 293–308.
- Powell, A., Shennan, S. J., & Thomas, M. G. (2009). Late Pleistocene demography and the appearance of modern human behavior. *Science*, *324*(5932), 1298–1301.
- Price, G. R. (1970). Selection and covariance. *Nature*, 227(5257), 520–521.
- Reyes-Garcia, V., Broesch, J., Calvet-Mir, L., Fuentes-Pel·ez, N., McDade, T. W., Parsa,

S., et al. (2009). Cultural transmission of ethnobotanical knowledge and skills: an empirical analysis from an Amerindian society. *Evolution and Human Behavior*, *30*(4), 274–285.

- Reysen, M. B., Talbert, N. G., Dominko, M., Jones, A. N., & Kelley, M. R. (2011). The effects of collaboration on recall of social information. *British Journal of Psychology*, *102*(3), 646–661. doi:10.1111/j.2044-8295.2011.02035.x
- Richerson, P. J., Baldini, R., Bell, A., Demps, K., Frost, K., Hillis, V., et al. (2015). Cultural group selection plays an essential role in explaining human cooperation: a sketch of the evidence. *Behavioral and Brain Sciences*. doi:10.1017/S0140525X1400106X
- Richerson, P. J., & Boyd, R. (1987). Simple models of complex phenomena: The case of cultural evolution. In J. Dupre (Ed.), *The latest on the best: Essays on evolution and optimality* (pp. 27–52). Cambridge, MA: MIT Press.
- Richerson, P. J., & Boyd, R. (2005). Not by genes alone. Chicago: Univ. Chicago Press.
- Richerson, P. J., & Christiansen, M. H. (2013). *Cultural evolution: Society, technology, language, and religion*. Cambridge MA: MIT Press.
- Rogers, A. R. (1988). Does biology constrain culture? *American Anthropologist*, *90*(4), 819–831.
- Rogers, E. (1995). The diffusion of innovations. New York: Free Press.
- Ross, R. M., Greenhill, S. J., & Atkinson, Q. D. (2013). Population structure and cultural geography of a folktale in Europe. *Proceedings of the Royal Society of London B: Biological Sciences*, 280(1756), 20123065. doi:10.1098/rspb.2012.3065
- Ryan, B., & Gross, N. (1943). The diffusion of hybrid seed corn in two lowa communities. *Rural Sociology*, 8, 15–24.
- Schlag, K. H. (1998). Why imitate, and if so, how? A boundedly rational approach to multiarmed bandits. *Journal of Economic Theory*, 78(1), 130–156.
- Scott-Phillips, T. C., Dickins, T. E., & West, S. A. (2011). Evolutionary theory and the ultimate–proximate distinction in the human behavioral sciences. *Perspectives on Psychological Science*, *6*(1), 38–47.

Servedio, M. R., Brandvain, Y., Dhole, S., Fitzpatrick, C. L., Goldberg, E. E., Stern, C. A.,

et al. (2014). Not just a theory—the utility of mathematical models in evolutionary biology. *PLoS Biol*, *12*(12), e1002017. doi:10.1371/journal.pbio.1002017

- Shennan, S. J. (2001). Demography and cultural innovation: a model and its implications for the emergence of modern human culture. *Cambridge Archaeological Journal*, *11*(01), 5–16.
- Shennan, S. J. (2002). Genes, memes and human history. London: Thames and Hudson.
- Sperber, D. (1996). *Explaining culture: a naturalistic approach*. Oxford: Oxford University Press.
- Sperber, D., & Hirschfeld, L. A. (2004). The cognitive foundations of cultural stability and diversity. *Trends in Cognitive Sciences*, 8(1), 40–46. doi:10.1016/j.tics.2003.11.002
- Stubbersfield, J. M., Tehrani, J. J., & Flynn, E. G. (2014). Serial killers, spiders and cybersex: Social and survival information bias in the transmission of urban legends. *British Journal of Psychology*, n/a–n/a. doi:10.1111/bjop.12073
- Syvanen, M. (2012). Evolutionary implications of horizontal gene transfer. *Annual Review of Genetics*, *46*(1), 341–358. doi:10.1146/annurev-genet-110711-155529
- Tehrani, J. J. (2013). The phylogeny of little red riding hood. *PLoS ONE*, 8(11), e78871. doi:10.1371/journal.pone.0078871
- Tehrani, J. J., & Collard, M. (2002). Investigating cultural evolution through biological phylogenetic analyses of Turkmen textiles. *Journal of Anthropological Archaeology*, *21*, 443–463.
- Tinbergen, N. (1963). On aims and methods of ethology. *Zeitschrift fuer Tierpsychologie*, *20*, 410–433.
- Tomasello, M. (1999). *The cultural origins of human cognition*. Cambridge, MA: Harvard Univ. Press.
- Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. *Behavioral and Brain Sciences*, *28*(5), 675–691.
- Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. *Behavioral and Brain Sciences*, *16*(3), 495–552.

Turchin, P. (2008). Arise "cliodynamics." Nature, 454, 34–35.

Turchin, P., Currie, T. E., Turner, E. A. L., & Gavrilets, S. (2013). War, space, and the evolution of Old World complex societies. *Proceedings of the National Academy of Sciences*, *110*(41), 16384–16389. doi:10.1073/pnas.1308825110

Tylor, E. B. (1871). *Primitive culture*. London: John Murray.

- Vaesen, K. (2012). Cumulative cultural evolution and demography. *PLoS ONE*, 7(7), e40989. doi:10.1371/journal.pone.0040989
- Van Leeuwen, E. J. C., & Haun, D. (2013). Conformity in nonhuman primates: fad or fact? *Evolution and Human Behavior*, *34*(1), 1–7.
- Van Wyhe, J. (2005). The descent of words: evolutionary thinking 1780-1880. *Endeavour*, *29*(3), 94–100.
- West, S. A., El Mouden, C., & Gardner, A. (2011). Sixteen common misconceptions about the evolution of cooperation in humans. *Evolution and Human Behavior*, *32*, 231– 262. doi:doi:10.1016/j.evolhumbehav.2010.08.001
- West, S. A., Griffin, A. S., & Gardner, A. (2007). Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. *Journal of Evolutionary Biology*, 20(2), 415–432.
- Whiten, A. (2005). The second inheritance system of chimpanzees and humans. *Nature*, *437*, 52–55.
- Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., et al. (1999). Cultures in chimpanzees. *Nature*, *399*(6737), 682–685.
- Whiten, A., Horner, V., & de Waal, F. B. M. (2005). Conformity to cultural norms of tool use in chimpanzees. *Nature*, *437*, 737–740.
- Whiten, A., & Mesoudi, A. (2008). An experimental science of culture: animal social diffusion experiments. *Philosophical Transactions of the Royal Society B*, 363, 3477–3488.
- Wilson, D. S., & Wilson, E. O. (2007). Rethinking the theoretical foundation of sociobiology. *The Quarterly Review of Biology*, 82(4), 327–348. doi:10.1086/522809
- Xu, J., Dowman, M., & Griffiths, T. L. (2013). Cultural transmission results in convergence

towards colour term universals. *Proceedings of the Royal Society B: Biological Sciences*, 280(1758).

Yamamoto, S., Humle, T., & Tanaka, M. (2013). Basis for cumulative cultural evolution in chimpanzees: Social learning of a more efficient tool-use technique. *PLOS One*, 8(1), e55768.