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Abstract—Increasing needs in efficient storage management
and better utilization of network bandwidth with less data
transfer lead the computing community to consider data
compression as a solution. However, compression introduces an
extra overhead and performance can suffer. The key elements
in making the decision to use compression are execution time
and compression ratio. Due to negative performance impact,
compression is often neglected.

General purpose computing on graphic processing units
(GPUs) introduces new opportunities where parallelism is
available. Our work targets the use of the opportunities in GPU
based systems by exploiting the parallelism in compression
algorithms. In this paper we present an implementation of
Lempel-Ziv-Storer-Szymanski(LZSS) lossless data compression
algorithm by using NVIDIA GPUs Compute Unified Device
Architecture (CUDA) Framework. Our implementation of the
LZSS algorithm on GPUs significantly improves the perfor-
mance of the compression process compared to CPU based
implementation without any loss in compression ratio which
can support GPU based clusters to solve bandwidth problems.
Our system outperforms the serial CPU LZSS implementation
by up to 18x, the parallel threaded version up to 3x and
the BZIP2 program by up to 6x in terms of compression
time, showing the promise of CUDA systems in lossless data
compression. To give the programmers an easy to use tool, our
work also provides an API for in memory compression without
the need for reading from and writing to files, in addition to
the version involving I/O.
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I. INTRODUCTION

Making the best use of the expensive resources is crucial

in high performance computing. Resources like memory,

network bandwidth, or processing units are the key elements

in achieving good performance and consumption of those

resources needs to be carefully planned. Data compression

helps to utilize space limited resources more efficiently.

There are several algorithms on data compression; data

deduplication, run-length encoding, dictionary coders [1],

[2], Burrows-Wheeler Transform [3], statistical encoding

[4], and others being used by programs to alleviate space

usage. As nothing comes free, there are also some tradeoffs

on the decision of using compression. One of the main

issues is increase in running time. Obviously, additional

computation results in longer total execution times.

The promising performance-per-dollar and performance-

per-power ratios on non-graphic computations of GPUs has

gotten the attention of many of those who were looking for

affordable performance gains on data-parallel computations.

General purpose GPUs (GPGPU) provide hundreds of cores

that are programmable with NVIDIA’s CUDA (Compute

Unified Device Architecture) framework. This framework

provides an API for programmers that exposes the under-

lying GPU architecture, which is a collection of virtualized

SIMD processors and capable of efficiently switching be-

tween thousands of threads [5].

Since the advent of general purpose usage of GPUs, med-

ical computing [6], [7], energy sciences [8], image/video

processing [9], [10], finance [11] and many other problems

in different areas have been ported on to GPU platforms

in order to gain performance. In this paper we propose

an implementation of Lempel-Ziv-Storer-Szymanski(LZSS)

lossless data compression on NVIDIA GPUs (CULZSS).

Our redesigned implementation for the CUDA framework

aims to reduce the effect of compression time compared

to CPU based compression implementations. Our work lets

accelerators exploit the architectural strengths of GPUs.

The paper is divided into 8 sections: Section 2 gives

background for the LZSS algorithm and GPU architecture.

Section 3 describes the parallelism available in the algorithm

and our implementation details. The performance analysis

with benchmark setup details and results are represented in

Section 4. Section 5 discusses the results and limitations.

Section 6 describes the related work. Future work is in

Section 7, and finally Section 8 concludes the paper.

II. BACKGROUND

A. LZSS algorithm

The LZSS algorithm is a widely used compression algo-

rithm which is implemented in several popular compression

programs like PKZip, ARJ, LHArc, ZOO etc. with minor

changes to the original algorithm. It is a variant of LZ77

[1] and a dictionary encoding technique with two buffers:

a sliding window search buffer and an uncoded lookahead

buffer [2]. Storer and Szymanski extended the work of

Lempel and Ziv by using flags to indicate a coded or an

uncoded character. This solution eliminated the redundancy
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of LZSS which outputs an explicit character after each

pointer, either coded or uncoded. This algorithm yields better

compression ratio than LZ77 with the same computational

complexity. The general algorithm is given in the following

subsection.

1) Compressing strings: After initializing the buffers,

characters are read from the input data to the uncoded

data buffer. For every character in the uncoded buffer, the

searching process looks for the longest substring in the

search buffer that matches the lookahead buffer, starting with

the first input character. If the match is long enough, then the

program encodes the location and length of that substring

into the output. If there is not enough match starting with

the given input character, that character is written directly

to output with a flag indicating no encoding was performed.

The algorithm follows these steps until no characters are

left. The minimum number of match is depending on the

encoding of bits and in our case it is three. The encoding of

two character match requires the same amount bytes if we

directly output the two characters.

Here is an example to illustrate the encoding process:

 0:  I meant what I said
20:  and I said what I meant
44:
45:  From there to here
64:  from here to there
83:  I said what I meant

Total characters 102

 0:  I meant what I said
20:  and(12,7)(7,8)(2,5)
30: 
31:  From there to (51,4)
47:  f(46,4)(51,8)(50,5)
55:  (24,19)

Total characters 56

Figure 1. LZSS Encoding Example

The left side is the original text with the total characters

up to that line given in numbers at the beginning of each

line. The encoded version of the text is on the right side.

Encoding is shown with two numbers in parentheses. The

first number in the parentheses is the offset and the second

one is the length of the match.

2) Decompressing Strings: The decompression process is

a straightforward decoding that involves read and write with-

out any search. The encoding flags are read to find out which

characters are being encoded. If a flag indicates encoded, the

number of the characters and the starting position is gathered

from the encoded part. Then the number of characters with

the given position is written from the sliding window to the

output file or memory. If it is not encoded, the character

is output directly. Decompression consumes less memory

resources and computing time compared to compression.

B. GPU architecture

GPUs are massively parallel computing units that offer

high parallelism and memory bandwidth in a low cost,

energy efficient platform [12]. GPUs employ significant

multithreading. This is achieved by a set of multiprocessors,

called streaming multiprocessors (SMs), that exist in GPU

architecture. Each SM contains a set of SIMD processing

units called streaming processors (SPs).

Within the new series of NVIDIA CUDA family called

Fermi, there are up to 512 CUDA cores, which are orga-

nized in 16 streaming multiprocessors of 32 cores in each

GPU [13]. There is barrier synchronization for inter-thread

communication and a threading unit to schedule warps of

threads. This enhanced multithreaded platform gives many

opportunities for parallel computation.

NVIDIA GPU architectures implement a hierarchy of

memory types; including global, constant, texture, shared

memory and registers. Global memory, texture memory, and

constant memory are accessible by all threads. Threads in

the same thread block share the shared memory, and each

thread has private registers and local memory. Because of

the limited amount of shared resources (register and shared

memory usages per thread block), it can be a limiting factor

for CUDA programs and needs special attention to fully

utilize the GPUs. [14]

Any code that needs to run on CUDA architecture is called

kernel. Before and after the kernel execution, the memory

needs to be explicitly copied to the GPU memory. There is

an API with special function calls to communicate between

the separate address spaces of host CPU and the GPU device.

CUDA allows developers to use C as a high-level pro-

gramming language with the benefit of ease of program-

ming in a familiar environment rather than learning a new

programming language. This gives a motivation for porting

already written programs in CUDA with minimal extensions

and makes researchers curious about exploiting the massive

parallel environment.

III. IMPLEMENTATION DETAILS

The LZSS algorithm has been implemented in different

versions. The serial CPU implementation of LZSS was

mainly adapted from Dipperstein’s work [15]. To be fair

to the CPU implementation and give the opportunity to use

parallelism, we also implemented a CPU threaded version of

the LZSS algorithm using the POSIX threads. The CUDA

version is adapted from the serial implementation. There are

two different versions implemented in CUDA which differ

in the distribution of the work on the computing units. We

will discuss in detail further in this section.

Both CPU and CUDA versions are implemented consider-

ing only in-memory or with I/O capabilities. The in-memory

compression is meant to work in applications that perform

compression on the fly without involving any I/O. To be

able to compare the results with well known compression

utilities, an I/O version is also included.

In-memory compression gives a simple abstraction for

users. The interfaces in Figure 2 are part of our compression

library that take advantage of the installed GPU hardware

and can be dynamically loaded. The library gets initialized
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when loaded, detects GPUs, and determines capabilities on

the system. Then, when Gpu compress() is called, it takes

the given buffer pointer and copies it to the GPU, compresses

it into the given memory region, and returns the calling

process a pointer to the compressed data and its length.

The last parameters for the functions are compression pa-

rameters. Currently these parameters only include CULZSS

version selection. In the future, window size and number of

threads per block can be added. These parameters give the

programmer the ability to find the best configurations for

his/her dataset and work load.

Gpu_compress( *buffer, buf_length,

**compressed_buffer,
&comp_length,
compression_parameters);

Gpu_decompress(*buffer, buf_length,

**decompressed_buffer,
&decomp_length,
compression_parameters);

Figure 2. API Interface

From an application perspective, such as in a network

application, the input data resides in a memory buffer that

needs to be compressed at one gateway of the network and

decompressed at the egress gateway, so the data looks the

same going in as coming out.

The other version is the I/O version which is a standalone

compression program. It follows the same flow except

reading from and writing to the given files.

A. CPU implementation

The serial CPU implementation is a straightforward im-

plementation of the algorithm. The algorithm is described

in the background section. The threaded version exploits

parallelism by using the independent behavior of the data

processing in the algorithm. Each thread is given with

some chunk of the file and the chunks are compressed

concurrently. After each thread compresses the given data,

individual compressed chunks are reassembled to form the

final output. For this version, we used POSIX Threads.

B. CUDA Implementation

In the CUDA implementation we have decided to explore

two different approaches. In the first version, the idea is

very similar to Pthread implementation. It offloads the work

into each thread in each block by giving them a small

piece to work. In the second approach, we exploit the

algorithm’s SIMD nature to enhance parallelism suitable

for CUDA architecture. The work that is distributed among

block threads is the matching phase of the compression for

a single block (Figure 3).

block Nblock 0

Version 1 Version 2

block 0 block N

CPU 

GPU 
Uncompressed Data

Empty Space in Bucket

Compressed Data
Thread

Data is moved into GPU

Syncronization

Figure 3. Overview of the two CULZSS Versions

1) CULZSS Version 1 : In the background section, LZSS

algorithm steps show that the compression of characters is

not dependent if the two starting characters of the substrings

are not in the range of the same search buffer length.

Because of this independent character of the algorithm, we

can divide the input data into several blocks, and compress

them in parallel.

The data is divided into chunks and distributed among

blocks. Each block then splits this chunk into even smaller

pieces. Each thread in the thread block receives a small

portion of the input data and works on its own to compress

that piece. This approach is used in parallelizing BZIP2

(PBZIP2) [16]. The compressed data is being overwritten

onto each given chunk. After the compression is done, all

the compressed chunks are combined sequentially and given

back to CPU.

2) CULZSS Version 2 : In the second version we look into

the algorithm to exploit parallelism if we can fully utilize the

threads available on the GPU. CULZSS Version 1 makes use

of the independent computational behavior among chunks.

In this version, we observed that there is also independent

computation in every single matching of the characters

inside each chunk. The search for a substring match starts
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with reading from the uncoded buffer and checks one by

one with the window items. If there is a match, it checks

the consequent items from each buffer to find a substring

match. This process traces the whole window and the longest

match is returned with the encoding information, length of

substring and match offset. Item matching for each character

does not depend on each other. Therefore, the matching

computation can be done in parallel for each character in

the uncoded lookahead buffer.

In the matching process each character is searched by a

single thread throughout the window buffer. The search is

linear, and each thread starts the search in the window buffer

by an offset determined by the given thread id. This also

gives an opportunity to avoid accesses with bank conflict

to the shared memory by setting each thread with an offset

of 4 characters(32 bytes) distance. After matching phase,

uncoded lookahead buffer is needed to offload the encoded

characters into the window buffer and load more from input

data which resides in global memory. Loading to those

buffers can also be done in parallel where each thread moves

one item of the buffer. Coalescing access to global memory

is also granted in this scenario.

In the serial implementation, the characters that are part of

a substring matched before do not need to be searched again.

They will be encoded and the uncoded head pointer will

jump over them. However, in this second CUDA version,

we don’t have the information before ahead about which

character is part of a substring. Thus we need to search

for all characters and record the encoding information. One

can argue that redundant searched characters may introduce

more execution time. However, it is also a fact that all the

threads spawn for matching at the same starting point and

they do the search through the same size of buffer in parallel.

All the threads compare the same number of characters.

Therefore the redundant search for a character is being

hidden by the work of other threads. In the performance

analysis section we argue the effects of this argument.

There are several issues that arise with CULZSS Version

2’s approach. One of the most difficult to overcome is that

the window is sliding, meaning that after the match is done,

the matched character from the uncoded buffer is moved to

the end of window. The following character needs to see a

window where the window head is incremented to one more

than the previous point, and the last character checked for

matching needs to be visible at the end of the window. In

the serial, threaded and CULZSS Version 1 implementations,

this is not an issue since the matching process is serial.

However in this approach the matching accesses are parallel.

As a solution, we extended both search window and uncoded

buffers with the expected data for each thread. This way each

thread sees a window that it is supposed to see in a serial

implementation and a consequent buffer of uncoded items

to match. Fortunately, this still grants us coalescing access

to the buffers.

3) CPU steps: There are a couple of additional steps

needs to be handled by CPU in both CULZSS versions. After

distributing the parts of the input data, the threads doing

the compression process in GPU writes the compressed data

on to its given bucket, returning partial full buckets. After

all the threads finished, there is a final separate process

to concatenate only the compressed data into a continuous

stream of data by getting rid of the empty parts of the bucket.

Through our tests we observe a very little overhead of doing

this process in sequential so we leave this part serial.

In the second version of CUDA implementation, CPU

handles more work than the CULZSS Version 1. In Version

1, CPU only moves the compressed data from each half

full bucket, and combines them into one file. In Version 2,

the matching phase is done in parallel for each character in

input, therefore the previously described redundant searches

needs to be eliminated from the encoded output. Because this

is a data depended work, it follows a serial path and needs to

be done on CPU. Since the output encodings are not known

in advance, the flags for encoding will also be generated

through this process. In Version 1, GPU handles this work.

Separating the work between GPU and CPU actually brings

an opportunity for CPU - GPU computation overlap, rather

than performance degradation. This opportunity is described

in detail in the optimization section.

C. Decompression

The decompression process is identical in both versions.

Each character is read, decoded, and written into the output

location, either in memory or in a file, according to the

given encoding. The same independent behavior exists in the

decompression process that lets us to make use of the data

parallelism in CUDA. To distribute the work across the GPU

cores, we need to identify which block of compressed data

needs to be decompressed into the corresponding decom-

pressed data block. To achieve this, we keep a list of block

compression sizes that are recorded during compression

process along with the compression data. The length of the

list depends on the number of blocks that we distribute on

CUDA threads. In our tests, we observe that this number is

very small compared to compressed data size. Therefore it

does not hurt the compression ratio.

D. Optimizations

There are a couple of optimizations and configurations

we applied on the CUDA implementations to exploit the

potential in GPU cards. We first looked at the global memory

usage of the GPUs.

Global memory is accessed via 32, 64, or 128 byte

memory transactions and for maximum performance, mem-

ory accesses must be coalesced as with accesses to global

memory [5]. Anytime an access is needed to an address

from a block, the entire block must be transferred. Coalesced

accesses that fit into a block can be done by just one memory
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Table I
COMPRESSION BENCHMARK AVERAGE RUNNING TIMES (IN SECONDS)

Serial LZSS Pthread LZSS BZIP2 CULZSS V1 CULZSS V2

C files 50.58 9.12 20.97 7.28 4.26

DE Map 30.75 6.25 9.14 4.69 15.00

Dictionary 56.91 9.35 20.18 7.13 3.22

Kernel tarball 50.49 9.16 20.45 7.08 4.79

Highly Compr. 4.23 1.2 77.82 0.49 3.40

transaction. In the compression, the input data resides in the

global memory after copied from CPU. Each CUDA block is

responsible for a fixed sized chunk of that input data residing

in global memory. Our implementation uses a 4KB block

size. In the First Version each thread in a block is responsible

for its chunk, resulting number of threads of chunks per

block. In the Second Version each block is consuming

one single 4KB chunk. To utilize the memory transactions

from global to shared memory, we synchronize the threads.

The access to the global memory is needed before each

matching process. After the matchings are recorded, new

data is moved into the uncoded buffer from global memory.

In the second version each thread reads 1 byte of memory,

where each thread reads subsequent bytes. In a 128 thread

configuration it makes a block size of 128 bytes, a coalescing

access to a one block size of 128 bytes and results in only

one memory transaction in Fermi architectures.

A second important memory optimization is shared mem-

ory usage of the GPUs. In CUDA architecture shared

memory can be accessed faster than global memory and in

parallel if there is no bank conflicts. The shared memory

is divided into banks and each bank can only address one

dataset request at a time. If the thread requests are on differ-

ent banks, all accesses are satisfied in parallel. If there are

conflicts, the accesses are serialized [5]. In our first CUDA

version, we moved the buffers to shared memory that we use

repeatedly for searching substring match. This allowed us a

30% speed up over the global memory implementation. The

second version’s access pattern gives us more opportunities

for better utilization of the shared memory. The access to the

buffers are synchronized and organized such that successive

accesses to the buffers are resulting in no bank conflict. The

speed up analysis of the second version and first version is

given in the performance section.

Other than memory access optimizations we also looked

at configuration parameters, specifically the thread number

per block. The shared memory region per block is a very

limited resource in GPUs; therefore the thread count directly

affects the available resources. However, choosing a smaller

number of threads leads into a loss of performance because

of having not enough working elements to exploit the power

of GPUs.

In the tests, we see that 128 threads per block configura-

tion is giving the best performance. Another configuration

item is window size of the compression algorithm. The size

affects the search time. Wider window size takes longer to

search but increases the chance of having a better substring

match. In our tests we get the best performance with the

window buffer size of 128 bytes. This also gives us just

enough number of bits to encode in a 16 bit encoding space

with extended offset for Version Two. With the window

buffer size of 128 bytes, possible offsets are upto 256 that

leads to 8 bits for the match offset and 8 bits for the match

length starting from that offset. A bigger buffer requires

more bits to encode both for the match offset and encoding

length.

IV. PERFORMANCE ANALYSIS

A. Testbed Configurations

To evaluate how well the CUDA implementations works,

we used a GeForce GTX 480 card with CUDA version 3.2

installed on a machine with Intel(R) Core(TM) i7 CPU 920

running at 2.67GHz. The CPU LZSS implementations are

also tested on the same testbed. There are 5 sets of data used

to test the programs.

B. Datasets

There are five sets of data chosen to test the programs.

Each data set is 128 MB in size. The first set is a collection

of C files. This dataset is chosen for a collection of text

based input. The second set is taken from Delaware State

Digital Raster Graphics and Digital Line Graphs Server. The

DRGs and DLGs are produced by the United States Geo-

logical Survey (USGS) to represent images of topographic

sheets, boundaries, hydrography, vegetative surface cover,

non-vegetative features, roads and trails, railroads, pipe and

trans lines, and manmade features which commonly used

as basemaps for georeferencing and visual analysis [17].

The third data is English dictionary. It is chosen for none

repeating text, since it is a list of alphabetically ordered not

repeating words. The fourth data is part of the linux kernel

tarball. Finally, we tested with a highly compressible, custom

data set. It contains repeating characters in substrings of 20.

It is chosen to see how well our program can run given the

opportunity to compress in an optimal data for LZSS.
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Figure 4. Compression speed up against the serial LZSS implementation compared to all other implementations

C. Compression results

This section shows several test results with compression

and decompression. We measure these results by running on

the five data sets, 10 times for each set. The results on Table I

shows the average running results of the serial and Pthread

LZSS, BZIP2 and two CULZSS versions on the data sets.

Our first version achieve up to 7x to 9x speed up compared

to serial LZSS and 20-30% speed up against Pthread LZSS.

Second version achieve up to 18x to 12x speed up for the

three data sets compared to serial LZSS and 2x to 3x against

Phtread LZSS. For the other two sets of data(Delaware map

and highly compressible) version 2 does better than serial

implementation but do not achieve any speed up compared

to Pthreaded (Figure 4). Compared to BZIP2 the speed up

we get from first version is 2x to 3x on the first data set, but

for the last data set which is highly compressible data, we

get an enormous speed up of 160x. Version 2 gives a 5x to

6x speed up for the three data sets (C files, dictionary, and

kernel tarball), a 25x speed up on highly compressible data,

and no speed for Delaware map (Figure 4).

The compression ratios are very similar with the serial

LZSS and the CULZSS Version 1 which shows that the

limitation in the window size in CUDA implementation is

not really a big concern on the compression ratio (Table II).

For version 2, compression ratio increased by 5% to 8% on

the three data sets where it is performing average of 2x times

better. It is a result of limited shared memory and limited

encoding space that avoids us to hold a bigger buffer and

better compression ratio on version two.

It is expected that the poorest ratio is received on the

English dictionary data set which was chosen for none

repeating behavior. The BZIP2 is doing a better job on

Table II
COMPRESSION RATIOS (SMALLER IS BETTER)

Serial BZIP2 V1 V2

C files 54.80% 15.60% 55.70% 63.49%

DE Map 33.90% 11.80% 34.20% 33.35%

Dictionary 61.40% 34.50% 61.80% 65.09%

Kernel tarball 55.10% 16.90% 56.50% 62.59%

Highly Compr. 13.50% 0.40% 13.90% 6.34%

compression ratios by producing smaller compressed data

in size. Bzip2 compressed data is two to three times smaller

compared to first four data sets of serial LZSS and CUDA

implementation. On the last highly compressible data set,

it is 33 times smaller. Compared to time it takes 160x

times slower for the last data set to compress and the

33x smaller comparison ratio, the bzip2 is five times less

efficient compared to CULZSS Version 1. Although CUDA

implementation produces larger compressed files compared

to BZIP2, the performance gain in execution time is a lot

better. On the other sets there is a proportional increase in the

time with the decrease of the compressed file size between

CUDA implementation and BZIP2.

D. Decompression results

Decompression results are shown in the Table III. Both of

the CULZSS versions use the same decompression imple-

mentation. These results are obtained from the in-memory

decompression performance without I/O on the previous

data sets. According to our results, we achieve 2.5X to

3.5X speed up for the decompression process compared to

serial LZSS implementation. The speed up is lower than

the speed up we gain from the compression phase. One
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possible reason for that is decompression is not compu-

tation intensive process, instead mainly reading from and

writing to memory. The potential in GPUs depend on the

computational overload. The memory dominated work didn’t

give enough opportunities for the CUDA implementation

to achieve better performance. Even in this case, CUDA

implementation outperformed the serial implementation.

Compression ratios are very similar between the serial

and CUDA implementations, especially for version one.

It is important to keep the same (or very similar) level

of compression ratios with a better running time. This

indicates that using CUDA framework for compression does

not introduce an additional storage and does not drop the

compression ratios.

Table III
DECOMPRESSION BENCHMARK AVERAGE RUNNING TIMES (IN

SECONDS)

Serial LZSS CULZSS

C files 1.79 0.53

DE Map 1.21 0.49

Dictionary 2.02 0.55

Kernel tarball 1.77 0.56

Highly Compr. 0.71 0.27

V. DISCUSSION - LIMITATIONS

Our work shows a promising speed up for the lossless data

compression on CUDA platform. However there are some

limitations that prevents us from achieving better perfor-

mance. One of the limitations is the limited size of the shared

memory per block that is available in CUDA architecture.

The global accesses are very expensive compared to shared

memory region. There is a 16KB shared memory space for

all the threads in a block. In our implementation, mostly

visited memory regions are the buffers in which we perform

search for a matching substring. In the first version the

limited space limits us to put the whole buffers into the

shared memory regions in configurations where 256 to 512

threads are used per block.

Another limitation is the nature of LZSS algorithm. It is

not explicitly data parallel algorithm which includes portions

of code that cannot be parallelizable. In the first version,

that limitation pushes us to look for parallelism in dividing

the input data into chunks. The data blocks that are far

enough between each other can be treated as independent.

The decision on the length of the blocks is a configuration

parameter. Making it smaller or larger only changes the

number of CUDA blocks. The possibility of finding a better

match depends on the size of sliding window and lookahead

buffer, not directly to the size of blocks. We decided 4KB is

a reasonable choice for an average size of a network packet.

In the second version we manage to port the matching part

into CUDA. As a consequence some of the work left to

CPU after the kernel run, however this is more than an

obstacle. This gives the opportunity to overlap CUDA and

CPU computation.

In our tests we achieve a better execution time compared

to both serial LZSS and BZIP2 implementations. The main

goal being achieving a speed up against CPU based LZSS,

BZIP2 is also used to compare our results with a well

known, widely used program. Pthread implementation is

also used to fully utilize CPU as well. The execution times

are promising and outperforming both of them. However, in

compression ratios BZIP2 is doing a better job, especially

on highly compressible data suitable for LZSS algorithm.

The CULZSS versions, especially the first version is doing

a terrific job with speed up of 160x. One can argue the

custom made file is not a representation of a real life

dataset; however, it is added for completeness to show

the capability of CUDA implementation in scenarios of

compressing highly repeating data.

Except for the Delaware map and highly compressible

data, CUDA version 2 is giving the best performance. Main

reason for the better performance is better utilization of

CUDA platform; coalescing accesses to global memory and

efforts on avoiding bank conflicts to shared memory usage.

The reason version 2 is performing poorly on the other two

data sets is the nature of the data. As shown on Table II both

data sets are highly compressible with LZSS algorithm. The

matching is being done for all the characters in the input

which cannot take advantage of skipping over the already

encoded data. The other implementations save computation

time from a match. This version is suitable and gives best

performance gain mainly on files that are around 50%

compressible data or less (Table II).

The two versions give us the opportunity to satisfy any

data types, highly compressible or not. Users of our library

can specify the version on the API call and the compression

will be done by the specified implementation. This feature

gives the ability to use the best matching implementation,

instead of having on one implementation that suits for certain

data types.

VI. RELATED WORK

The related work can be grouped into two sub groups;

CPU based and GPU based.

A. CPU based

There are several works on parallelizing data compression

on thread level to improve the performance of the com-

pression. Similar to our first version of CUDA implemen-

tation, Gilchrist’s work parallelizes the BZIP2 program by

dividing the input data into chunks and distributing them

to threads [16]. PGIZ is another parallel implementation of

compression tool, GZIP, which makes use of the multi cores

in systems [18], [19]. Distributed computing techniques

are also used to increase the performance for compression
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process [20]. For high bandwidth and low latency on high

speed networks, Franaszek et al. [21] proposes a parallel

compression where multiple compressors jointly construct

a dictionary to achieve compression performance similar to

the sequential implementation.

B. GPU based

Lossy data compression is a field that has been investi-

gated by GPU community. NVIDIA CUDA SDK has sample

codes, utilities and, whitepapers on Image/Video Processing

[22] and DirectX Texture Compressor (DXTC) for real-time

hardware decompression of textures [23]. Using run-length

encoding to improve the performance of remote rendering

for interactive applications with the use of GPUs has been

explored [24].

On lossless data compression recently O’Neil et al. [25]

gives a CUDA implementation of specialized compression

algorithm targeted specifically for double-precision floating-

point data called GFC. These floating-point compressors

aims for high performance data process for certain speed

rates. On a prior work Balevic proposes a data parallel algo-

rithm for variable length encoding with the new availability

of atomic operations on GPGPUs [26]. This approach brings

a 35x to 50x speed up over serial implementation.

Porting lossless data compression algorithms on CUDA is

a field that has not been fully investigated yet. Our work aims

for a better performing lossless compression program on not

only specific well suited data but any data. Unlike previous

attempts, our work gives promising performance compared

to CPU implementations. Scientific applications can often

be extremely data intensive. Many applications write to

a file every few timesteps for subsequent visualization.

Other long-running applications checkpoint their state to

disk for restarting. Compression is also used in fields like

Bioinformatics, where partial DNA repeats and palindromes

are compressible [27]. This work shows potential benefits of

GPUs for those kind of applications running on clusters.

VII. FUTURE WORK

For future work, we will investigate generalizing the

implementation to operate on any size data set. To support

any size, we need to divide the input data into chunks

of powers of two sizes. The smallest part can be padded.

The concurrent execution and streaming feature of new

Fermi GPUs can be used to process those chunks. Another

improvement can be a more detailed tuning configuration

API that gives the ability to adjust the program for the

needs of the user. If better compression ratio is required, an

adjustable configuration of increased window size can help.

For a faster execution but lesser compression ratio can be

achieved by again playing with the buffer and bucket sizes.

Further, a combined CPU and GPU heterogeneous imple-

mentation can give benefits for the execution time. Since

the chip designers are already looking into putting both

in a die, for example AMD Fusion and Intel Nehalem

processors, it can be a future proof application for the new

trend. Although we could not receive any gains in our

attempt to use multiple GPUs in a distributed fashion on

a machine, a multi GPU implementation can also increase

the performance. We could not have a chance to investigate

the problem in detail, but we suspect the division of the

GPUs by threads introduced thread overhead. There are also

further improvement opportunities on the LZSS algorithm,

like improved searching with better search algorithms, data

structures suitable for CUDA implementation, etc. Last but

not least, there are improvements to be made on the clumsier

of partial work left on CPU. Both CULZSS versions leave

the work of removing the half full buckets from the GPU

generated data to CPU. Version 2 has additional encoding

work left on CPU. These can be ported to GPU or hidden

by overlapping computation with GPU kernel in a pipelining

fashion.

VIII. CONCLUSION

In this paper we examined the feasibility to use CUDA

framework for LZSS lossless data compression algorithm.

Our main target was to outperform the CPU based im-

plementation by using NVIDIA GPUs without losing any

compression ratio. Our implementation is tested on several

data sets and compared with the serial implementation. Tests

showed that our work outperforms the serial LZSS by up

to 18x and the Pthread LZSS by up to 3x in compression

time and shows the promising usage of CUDA systems in

lossless data compression. The compression ratios between

the serial and CUDA implementations are very similar which

concludes the CUDA implementation doesn’t introduce any

additional storage and doesn’t drop the compression ratio.
This work, to our best knowledge, is first implementation

of general purpose lossless data compression algorithm

on CUDA that shows speed up. We also compared our

results with a well known compression program, BZIP2, and

outperformed up to 6x times on the general data sets, and

160x times on the custom made highly compressible data

suitable for LZSS.
The implementation gives programmers an option for

using either the in memory compression API or a standalone

program which is accepting files as input and writing the

compressed file back to the output file. The API also

provides an option for CULZSS Version selection to choose

the best performance for the given data set.
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