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ABSTRACT : In this paper, “least squares” and recursive methodsfor simultaneous idemt$ication 
of four nonminimum phase linear, time-invariant FIR systems are presented. The methods 
utilize the second- and fourth-order cumulants of outputs of the four FIR systems of which 
the common input is an independent, identically distributed (i.i.d.1 non-Gaussian process. The 
new methods can be extended to the general problem of simultaneous iden@cation of three 

or more FIR systems by choosing the order of the utilized cumulants to be equal to the number 
of systems. To illustrate the eflectiveness of our methods, two simulation examples are 

included. 

I. Introduction 

Nonminimum phase system (or signal) identification is an important problem 
in many signal and image processing applications including data communication, 
seismic signal processing and optical imaging (14). 

In this paper, we address the problem of simultaneous reconstruction of the 
impulse responses of four minimum or nonminimum phase FIR systems using 
the power spectrum and cross-trispectrum of the output sequences. We present 
parametric multichannel system identification methods. 

f Portions of this paper were presented at the IEEE Signal Processing 
Higher-Order Statistics, California, U.S.A., June 1993. This work is 
TUBITAK, Turkey. 
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Recent work (58) on nonminimum phase multichannel system identification 
includes the work by Brooks and Nikias (5) who showed that three nonminimum 
phase systems driven by an independent and identically distributed (i.i.d.) non- 
Gaussian process can be reconstructed simultaneously from their output cross- 

bispectrum. Their method is a nonparametric cepstral technique which computes 
the complex cepstra of the impulse response sequences of the unknown systems 
from the third-order cross-cumulants of output sequences. Higher order statistical 
identification schemes which utilize complex cepstrum have been widely used in 
practical applications (5, 9913). These schemes have some disadvantages when 
poles and zeros come close to the unit circle. Our parametric methods do not suffer 
from this limitation. However, they require exact knowledge of systems’ orders 
and a theoretical analysis shows that they yield consistent parameter estimation 
only in a class of additive colored Gaussian noise, as well as in the additive white 
Gaussian noise. Experimental verification of the methods by means of simulation 
examples has been provided for the case of white Gaussian noise only. 

The organization of the paper is as follows. In Section II we define the problem 
and introduce the basic concepts. In Section III we develop a least squares-type 
method which is based on solving a system of linear equations obtained from a 
relationship derived in Section II. We prove the uniqueness of the least squares 
solution in Section IV by devising a recursive method to determine the unknown 
impulse response parameters. We investigate the robustness of the new methods 
to additive noise in Section V. In Section VI we present simulation examples, 

II. Problem Definition 

In this section, we describe the multichannel system identification problem. 
Consider the following signal model : 

vi(H) = Z;(n) + W,(n) 

= i h,(k)x(n-k)+w,(n) i= 1,2,3,4 (1) 
k=O 

where y,(n) is the output of the ith FIR system of which the impulse response is 
h,(n) ; q, is the order of the ith system; w,(n) is an additive zero-mean Gaus- 
sian noise; and z!(n) is the output of the ith system in the absence of noise. 
For convenience, the impulse responses, h,(n), i = 1,2,3,4, are numbered 
such that q, < q2 d q3 < q4. The input sequence x(n) is assumed to be an i.i.d. 
non-Gaussian process with J+(n)} = 0, E{x(n)x(n+r,)) = B*&r,), 
E(x(n)x(n+s,)x(n+z2)f = /j36( rI,r2) and c.ArI,rZ,rj) = B4@rI,r2,rj) where 
c,(t ,, r2, r3) denotes the fourth-order cumulants of the input x(n). 

In most digital communication applications the system input, x(n), is derived 
from a signal constellation which is symmetric around the origin. Therefore the 
third-order cumulants of x(n) are identically zero (p, = 0). In such a case we use 
the fourth-order cumulants of the system outputs. The methods developed in this 
paper can be extended to the general problem of simultaneous reconstruction of 
an even number of FIR systems by choosing the order of the required cumulants 
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to be equal to the number of systems. If the input sequence x(n) is asymmetric 
around the origin, an odd number of systems can also be identified by using our 
algorithm. 

Let us define c, 234 (z ,, TV, z3) as the fourth-order cross-cumulant sequence of the 
processes {y,(n)}~, , , i.e. 

By using the fact that the fourth-order cumulants of zero-mean Gaussian noise 

processes areidenticallyzero, ~,~~~(r,, z?, zj) can be related to the unknown impulse 
responses (hi(n)],!=, as shown below : 

The cross-trispectrum, CIZj4 (o,,w>, w3), of the output processes, {yj(n)}~= ,, is 
defined as the three-dimensional Fourier transform of the cross-cumulant sequence, 
~,~~~(r,,r~,r~). From (3), it follows that 

C,,,,(W,,%,@,) = P4HI(OI)HZ(WZ)H3(W3)H4(_0, -wz-oJ (4) 

where Hi(w) is the Fourier transform of the system impulse response hi(n). 
We also need the second-order cumulant sequence, s(z) = E(z4(n)z4(n+ r)}, of 

the noise free output sequence, z4(n). The power spectrum, S(o), of z4(n) is 

S(w) = 82H4(W)H4(-0). (5) 

2.1. A fundamental relationship 

In this subsection, we derive a relationship between the second- and fourth-order 
cumulants. This relationship is the basis of our multichannel system identification 
method. 

By multiplying both sides of Eq. (4) by H,(w, +w2+03) and using (5) we get 

N,(o, +%+03)C1234 (WI,%,~X) = &H,(OI)HZ(O*)H3(0j)S(OI+W*+03) 

(6) 

where E = fi4/fi2. By taking the inverse Fourier transform of both sides of (6) we 
obtain the following relationship : 

z h4G)c1234(~1 - z,z,-i,z,-ii) =E $ h,(i)hz(~~-~,+i)hj(t3-~,+i)~(~,-i) 
I= 0 i=O 

(7) 

which relates the impulse responses, {h,(n)},?, ,, to the second-order cumulants, 
s(n), of the sequence z4(n) and the fourth-order cross-cumulants, c, 234(t ,, r2, r,), 
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of the output sequences, {yi(n)},?= , . This relationship is the four-channel version 
of an equation used in some parametric system identification techniques (11, 14). 
Equation (7) is very important because it allows us to estimate the impulse 
responses, {h,(n)},~~ , , by solving an overdetermined system of linear equations. 

III. Least Squares (LS) Solution 

In this section, we develop a least squares method for reconstructing the impulse 
response sequences, (h,(n))!= ,, from the second-order cumulants and the fourth- 
order cross-cumulants by using Eq. (7). First, we assume without loss of generality 
that (hi(n)},!, , is scaled such that hi(O) = 1, i = 1,2,3,4. Then, Eq. (7) can be 
arranged as follows : 

c12~(r1,r2,23) = s g hl(W2(r2-r1 +i)h3(rj-7, +i)s(r, -i) 
r=O 

-,s, hd(i)c ,*34(2*-i,22-i,~3-i). (8) 

By concatenating (8) for (r ,, TV, zj) E S where S is a region which is described below, 
we obtain the following overdetermined system of linear equations : 

where 

d=Mr (9) 

r = Ml). ..h&&sh,(l). . .Eh,(qd&(l) . . .~hz(qz)Ehdl) . . .Eh3(q3) 

~hz(qz)h~(qd~h,U)h2(l)h3(1). . . Eh,(q,)h,(q,)h,(q,)lT 

is a (q4+(qI+l)(q2+l)(q3+l)) column vector, d = [c~~~~(T~,z~,T~): 
(T~,z~,T~)ES]~ is an N(qlrq2,q3,q4) column vector, and M is a matrix of size 
N(q,,q2,q3,q4)x(q4+(q,+1)(q2+l)(q,+1))ofwhichtheentriesaredetermined 
according to (8). N(q,,q,,q,,q,) is the number of points in the region S 
which is determined as follows. It follows from (3) that c, 2,4(~, , z 2, z ,) is nonzero 
for -q4 d zI < ql, -q4 d z2 dq? and -q4< zj < q3. Hence, the left hand 
side of (7), C:J,h,(.) z c,234(21-i, r,-i, s3-i), is nonzero for -q4 < 2, < q,+q4, 
-q4 ,< 72 < q2+q4, and -q4 d s3 G q3+q4. In addition, we should maintain 
that the h2(r2-T,+i)h3(T3-r,+i) term at the right hand side of (7) is nonzero, 
yielding O<z,-z,+i<q,, O<r,--z,+i<q, for i=O,l,2,...,q,. This leads 
to -ql < s2-7, ,( q2 and -q, < z3-zI < q3. Thus, the region S is defined by 
the following set, 

S= ((Zlrt2r~3): -q4 < 71 d ql+q4, -94 d z2 d q2+q4, -q4 < 73 < q3+q4, 

-_41 d 72-z1 G q,, -91 d z3---sI < q3). (10) 

By counting the number of points in this region, we obtain the size of the column 

vector d, Nq,, q2, q3, q4), as 
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Wq,,q,,q3,q4) = 41(41+1)(2q,+~)P+(qz+q3+2)q,(q,+1) 

+2(q,+l)(q,+l)(q3+1)+(2q,-q,-l)(q,+q*+l)(qI+q~+1). (11) 

The least squares solution of the overdetermined system of linear equations given 
by (9) is 

r = (MTM)-‘MTd. (12) 

h,(l), h,(2), . . . , h4(q4) can then be determined as the first q4 elements of the vector 
r. The other impulse response coefficients {hi(n)},3_, can directly be obtained by 
dividing the corresponding element of r by r(q, + l), which is E. 

However, directly obtained results could be inaccurate due to measurement noise 
and estimation errors. In that case, we identify {h,(n)},3,, by using a method (11) 
that is based on the singular value decomposition (SVD). This method exploits all 
the available information provided by the vector r except the information contained 
in the terms .zhl(i)hZ(j)h3(k). 

We form three matrices R[h,, h2], R[h,, h3], R[h,, h3] from the vector r as follows : 

- 1 h,(l) h,(2) ... hi (qj) 

hi(l) hi(l)hj(l) h,(l)hj(2) . .. hi(l)hj(qj) 

RF,, hj] = E hi(z) h,(2)hj(l) ht(2)hj(2) . . . hz(2)h,(qj) (13) 

. . 

_h,(q;) hi(q . . . . . . hi(q _ 

where i, j = 1,2,3 and i # j. The matrix R[hi, hj] is of rank one and can be written 
in the following form 

R[hi, hj] = E 

1 

hi(l) 

hi(z) 

hi(qi) 

[l h,(l) hj(2) ... h,(q,)l. (14) 

The unknown impulse response sequences h,(n) and hi(n) can be identified from 
R[hi, hj] using the singular value decomposition, i.e. 

R[hi, hj] = ZVUT (15) 

where V is a (qt+ 1) by (qj+ 1) matrix which has a special diagonal form. The 
diagonal elements of V are the singular values of R[hi, hj]. The columns of the 
orthogonal matrix Z, zI,z2,. . . , zqi+ ,, are the left singular vectors of Rbi, hj] and the 
columns of the orthogonal matrix U, ul, u2,. . . , upi+ ,, are the right singular vectors 
of R[hi, hi]. Since R[hi, hj] is of rank one, it has only one nonzero singular value of 
which the corresponding singular vectors determine the impulse responses h,(n) 
and h,(n). From the properties of the SVD, it can be shown that (15) 

and 

h,(n)=k,z,(n) O<ndq, (16) 
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h,(n) = k+,(n) 0 d n < q, (17) 

where k, and kz are constants chosen to scale the singular vectors, z, and u,, so that 
h,(O) = h,(O) = 1. The above step provides two different values for each impulse 
response sequence h,(n), since it is used twice in the matrices R[h,, hJ, R[h,, h3], 
R[h2, h3]. The arithmetic mean of them can be taken as the final result. 

We should mention that the assumption that only one singular value of R[hi, hj] 
is nonzero is only theoretically valid. In practice, due to noise and estimation errors, 
there may be many nonzero singular values, but only a single dominant one. In 
such a case we keep the dominant singular value and its corresponding singular 
vectors. Also, the term “least squares” used in this section does not imply the 
optimality of the method in the sense of minimizing the mean-square estimation 
error. It refers to the least squares solution of Eq. (9). 

IV. Uniqueness of the LS Solution and the Recursive Method 

The least squares method described in the previous section yields a unique (least 
squares) solution if the matrix M has full rank. In order to show that the matrix 
M is of full rank we first show that the elements of the unknown vector, r, can 
uniquely be determined from (7) using a recursive algorithm. From this fact, we 
will be able to derive the unicity of the least squares approach. 

By setting z , = t? = 73 = -q, in (7) and by using the fact that h,(O) = 1, 
i = 1,2,3,4, we obtain 

E _ cl234 -q4r~Iq4, -q4) ( 

SC-_q4) . 
(18) 

Similarly, by setting s, = -q4 only, we obtain 

c1734(-q4,T2,T3) 

EhZ(Z2+q4P3(T3+q4) = --~----s(_q4) 52 = -q,,.. .9q2-q4. 

73 = -q,,...,q3-q,, (19) 

and 

c,,,,(-q4,T2,~3) 
k,(Tz+q,M,(T,+q,) = 

=-q4) 

C1234(-q4,T2rTJ)_~ c201 

= G234(-q4, -q4r -q4) 

We can recover h,(n) and h,(n) by setting zi = -q, and r2 = -q4 in the above 
equation, i.e. 

and 

c,214(-q4, -q4,~3) 
h,(z,+q,) = cm;;;l(zmq m_q 

47 49 

_mym) T3 = -44, 

4 

. . . 3q2-94 

rq3-q4. 

(21) 

(22) 

Setting ri = -q4 in (7) yields 
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Eh,(T, +qdh2(~2+qd = 
C,*34(~,,~2, -q4) 

d--94) 
71 = -94, . . ..q1-q4. 

and 

r2 = -q4,...,q2-q4 (23) 

c,234(zI,z2> -94) 
h,(r, +qhM~2+q4) = c,234(_q 

4, 
_q 

47 
_q ,. 

4 

We can recover h ,(n) by setting r2 = - q4 in the above equation, as 

(24) 

h,(T, +q4) = :!??&_-y4r -q4) 
c,234(-q4, _q4, _q4) 71 = -q‘b...,q1-q4. (25) 

Similarly, we set r2 = -q4 in (7) and we obtain 

-94753) 
Ehl(ZI +q4)h,(t~+q4) = (“i”(:(‘_y~4j~~ 51 = -q4,...rq1-q4, 

73 = -q4,...,q3-q4. (26) 

At this point, we compute h4(n), 1 < n < q4, as follows. We start with the assump- 
tion that h4(0) = 1. For n = 1 to Lq4/2J, L-J denoting the greatest integer smaller 
than the number, we set rl = -q4+n, z2 = q2-q4+n, and r3 = q3-q4+n in (7) 
and we recursively obtain 

n- I 

-,;“A (1 I 1 c1234(-q4+n-ii, q2-q4+n-ii, q3-q4+n-i) . (27) 1 
By setting t I = q1 +q4, z2 = q4, z3 = q4 in (7) 

Eh I (4 I )s(qJ 
h4(q4) = p1234cq,, o, o) . (28) 

Then, for n = 1 to Lq4/2_l, we set rl = q1+q4-n, z2 = q4-n, 73 = q4-n in (7) 
and we recursively obtain 

hk4-n) = c-,23;d~o~ EhI(qI)4q4-n) 
2 9 

I,- I 

- 1 h4(q4-i)c1234(q, -n+i, -n+i, -n+i) . (29) i= 0 1 
We note that Lq4/2 J = q4/2 if q4 is even, and Lq4/2 J = (q4- 1)/2 if q4 is odd. 

Finally, we are ready to recover the unknown parameters 
{Eh,(i)h2(z2_z,+i)h,(23-~,+~)}. F or n = 0 to Lq,/2], we set r, = -q4+n in 
(7) and recursively compute 

Vol. 3318, No. 2, pp. 145~155, 1994 
Printed m Great Britain All rights reserved 151 



M. Tunkut Ozgen et al. 

ch,(n)h,(z,+q,)h,(z3+q4) = & L i h,(i)c,,,,(-q,+n--,Z*--,Z3--) 
i=n 

n- I 

- 1 Eh,(i)h2(5*+q4-n+i)h,(z,+q,-n+i)s(-qqq+n-_) ) (30) 
i= 0 1 

for z2 = -q4,. . . ,q2-q4 and z3 = -q4,. . . , q3 - q4. The above recursive formula 
requires the knowledge of {h,(n)} and (shahs} to compute 

{~h,(i)h2(t2-~,+i)h3(~3--,++)}. N ow,wesetr,=r,=r,=q,+q,in(7): 

CA (q,)h (q )A (q_) = h4(q4)C1234(ql,qZ,q3) 
2 2 3 3 

G4) 
(31) 

Then, we start from &,(ql)h2(q2)h3(q3) by setting t, = q, +q4-n in (7) for n = 0 
to Lq ,/2 J, and we recursively compute 

eh,(q, -@b(~2-q4)h3(~3-q4) = &[ j_ h4G)C,234(ql +q4-fl-->T,r-i, z3-i) 

i YI n 

- ; Eh,(Llh2(z2-q, -q4+n+zpz,(t,-q, -qq4+n+i)s(q,+q,-n-i) , 
r=ylm”+l 1 

(32) 

for z2 = q4,. . . ,q2+q4 and r3 = q,,. . .,q3+q4. 

The recursive algorithm described above uses Eq. (7) only for certain values of 
t ,, zZ, r3 to uniquely determine the unknown vector r. Therefore it is equivalent to 
choosing linearly independent rows of the matrix M and solving the system of 
linear equations formed by these independent rows. It follows then that there are 
q,+(l+q,)(l +q2)(1 +q3) linearly independent rows of M where this number is 
the number of unknowns in the system of linear equations given by (9). Hence the 
rank of the matrix M is q4+(l +q,)(l +q2)(l +q,). Since M has full rank, there is 
a unique least squares solution. 

V. Robustness to Additive Gaussian Noise 

In practical applications, the received signals, {~,(n))p, ,, are usually the noise 
corrupted version of the system outputs, {~,(n)},~_ , In this section, we consider the 
case where the noise terms {w,(Pz)},~=~ are Gaussian noise processes, independent 
of each other and {~,(n)},~_, [see Eq. (l)]. 

For zero-mean Gaussian processes, cumulants of order greater than two are 
identically zero. Hence the fourth-order cumulants of {y~(n)}~= , are not affected 
by additive Gaussian noise. However, the second-order cumulants are affected by 
the presence of Gaussian noise. The methods described in previous sections use the 
second-order cumulant sequence S(Z) of the noiseless case system output z4(y1), 
instead of the second-order cumulant sequence sp4(z) of v,(n). They are related to 
each other as follows : 
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Syq(T) = S(T) +sIv4(4 (33) 

where sW4(r) is the second-order cumulant sequence of wq(n). In practice we can 
only estimate s,,,(r), not s(z). It follows from (27))(29) and (30))(32) that the 
recursive method described in Section IV uses samples of s(z) for which 

q4-Lq4/2_1 d Id d q4. If the second-order cumulants of the additive noise, sWq(r), 
are nonzero for lags in the range Izl d q where q = q4- Lq4/2]- 1 the recursive 
method will not be affected by the presence of noise as sYd(z) = s(r) for q < ITI < q4. 
Consequently, uniqueness and consistency of the LS solution will remain unaffected 
if the rows of the matrix M which contain the samples of s,,,~(z) are removed. Both 
the least squares and recursive solutions are robust to additive white Gaussian 
noise because s,,~(T) is nonzero only for r = 0. 

VI. Simulation Examples 

Consider the following set of systems 

y , (n) = x(n) - 0.6x(n - 1) + w , (n) 

y,(n) = x(n) +0.75x(n- 1) + w*(n) 

y3(n) = x(n)+OSx(n- 1) - 1.25x(n-2)+ w,(n) 

y,(n) = x(n)-0.375x(n- 1)+0.8x(n-2)+w4(n) (34) 

where the input signal, x(n), is a zero mean, i.i.d. sequence with /I1 = 5, j13 = 0 
and /I4 = -34. The noise terms, (w,(n)}:_ ,, are zero-mean, white Gaussian pro- 
cesses with variance 1, and they are uncorrelated with each other and with the 
input signal x(n). 

In our simulation examples the data records (N = 2048), {y;(n)},?, , 
(n = 0, 1, . ,2047), were generated by the above set of systems. The impulse 
response coefficients of the unknown systems were estimated by using the LS 
method for 100 output realizations for the noise-free case where noise processes, 
{wj(n)}P, ,, are eliminated in the signal model, as well as the noisy case. The mean 
value and the standard deviation for each impulse response coefficient were com- 
puted over 100 realizations. For the noisy case, rows of the coefficient matrix M 
which contain the value, sY4(0), were removed. Experimental results are presented 
in Tables I and II. It is observed that the mean values are not significantly different 
for the noise-free and noisy cases. However, standard deviations are slightly larger 
for the noisy case. 

TABLE I 

Reconstructed impulse response co@icients for the noise-free case 

True value 
Mean value 

Stand. dev. 

h,(l) h,(l) 

-0.6 0.75 

-0.6121 0.7307 

0.0422 0.0380 

h,(l) h,(2) h,(l) h,(2) 

0.5 -1.25 -0.375 0.8 

0.4866 - 1.2340 -0.3931 0.7863 

0.0366 0.0421 0.0358 0.0173 
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TABLE II 
Reconstructed impulse response coefJicients,for the noisy case 

h,(l) hdI) h,(l) h,(2) ha(l) h,(2) 

True value -0.6 0.75 0.5 - 1.25 -0.375 0.8 

Mean value -0.6096 0.7319 0.4863 - 1.2391 -0.3970 0.7851 

Stand. dev. 0.0614 0.0586 0.0552 0.0641 0.0456 0.028 1 

Complex-cepstra based system identification methods produce poor results when 
system zeros are close to the unit circle (5, 9, 10). Our parametric methods do not 
suffer from this limitation. For example, in (34) h,(n) and h,(n) have zeros at 
- I .3956, 0.8956 and 0. I875 f i0.8746, respectively. Although the last three zeros 
are close to the unit circle, our LS method produced good estimates of them. 

The new methods require exact knowledge of systems’ orders. In (11) an efficient 
system order determination scheme was developed for single channel system identi- 
fication. This scheme is based on the single channel version of our fundamental 
equation (7). A reliable multichannel system order estimation scheme can be 
developed as in (11). 

A consistent behavior of the new methods has been observed in all the simulation 
examples tried for the case of white Gaussian noise. Numerical stability of 
our algorithms has not been examined in the case of colored Gaussian noise 
disturbance. 

VII. Conclusion 

In this paper new methods for simultaneous identification of four minimum or 
nonminimum phase LTT FIR systems driven by an i.i.d. non-Gaussian process are 
presented. Our methods, a least squares (LS) method and a recursive method, are 
parametric and use the second- and fourth-order cumulants of the system outputs 
in an appropriate domain of support. The recursive method is developed to prove 
the uniqueness of the least squares solution. The new methods can be extended to 
the more general problem of simultaneous identification of three or more systems 
by using second-order cumulants and system output cumulants of order being 
equal to the number of systems to be identified. We experimentally observed that 
the LS method yields consistent parameter estimation in the case of white Gaussian 
noise. 
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