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Cumulant-Based Probabilistic Optimal Power Flow
(P-OPF) With Gaussian and Gamma Distributions

Antony Schellenberg, William Rosehart, and José Aguado

Abstract—This paper introduces the cumulant method for the
probabilistic optimal power flow (P-OPF) problem. By noting that
the inverse of the Hessian used in the logarithmic barrier interior
point can be used as a linear mapping, cumulants can be computed
for unknown system variables.

Results using the proposed cumulant method are compared
against results from Monte Carlo simulations (MCSs) based on a
small test system. The Numerical Results section is broken into
two sections: The first uses Gaussian distributions to model system
loading levels, and cumulant method results are compared against
four MCSs. Three of the MCSs use 1500 samples, while the fourth
uses 20 000 samples. The second section models the loads with a
Gamma distribution. Results from the proposed technique are
compared against a 1000-point MCS.

The cumulant method agrees very closely with the MCS results
when the mean value for variables is considered. In addition, the
proposed method has significantly reduced computational expense
while maintaining accuracy.

Index Terms—Cumulants, optimal power flow (OPF), proba-
bilistic optimization.

I. INTRODUCTION

OPTIMAL POWER FLOW (OPF) is a tool that has been

commonly used within the power systems industry for

many years [1] and has generally been addressed as a deter-

ministic optimization problem. However, it is becoming increas-

ingly important that solution methods to the optimal power flow

problem be developed to address probabilistic quantities and,

thus, transform the optimal power flow problem into the proba-

bilistic optimal power flow (P-OPF) problem [2].

Probabilistic programming, or probabilistic optimization, is

concerned with the introduction of probabilistic randomness

or uncertainty into conventional linear and nonlinear programs

[3]. However, the randomness introduced tends to have some

structure to it, and this structure is generally represented with

a probability density function (PDF) [4]. The goal of the

P-OPF problem is to determine the PDFs for all variables in

the problem. These PDFs are the distributions of the optimal

solutions. A typical example of an uncertain or probabilistic

parameter in a P-OPF problem is bus loading.

The cumulant method for probabilistic power flow was dis-

cussed in [5] and [6]. The present paper briefly outlines the fun-

damentals of the cumulant method and presents the adaptation
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of the method in [5] to the P-OPF problem using a logarithmic

barrier interior point method (LBIPM) [7]-type solution.

This paper is structured in the following manner. Section II

presents information related to the Edgeworth form of the

Gram–Charlier A series. It includes the A series itself, in addi-

tion to some background information on Tchebycheff–Hermite

polynomials and computation of A series coefficients. Next, in

Section III, an overview of the pure Newton step in the LBIPM

for numerical programming is provided. In Sections IV and V,

the cumulant method is presented, in addition to the proposed

application to the P-OPF problem. Numerical results from a

system based on the Matpower 9-bus system [8] using normally

(Gaussian) and Gamma distributed independent random loads

with the proposed cumulant method for P-OPF are detailed in

Section VI. Finally, conclusions are presented in Section VII.

Two appendixes are included to provide background infor-

mation in probability and statistics, focusing on moments and

cumulants, as well as information on Gaussian and Gamma dis-

tributions.

II. GRAM–CHARLIER A SERIES

The Gram–Charlier A Series allows many PDFs, including

Gaussian and Gamma distributions, to be expressed as a series

composed of a standard normal distribution and its derivatives.

As a part of the proposed P-OPF method, distributions are re-

constructed with the use of the Gram–Charlier A Series. Addi-

tional information can be found in [9]. The series can be stated

as follows:

(1)

where is the PDF for the random variable is the th

series coefficient, is the th Tchebycheff–Hermite, or

Hermite, polynomial, and is the standard normal distribu-

tion function (see Appendix I-A).

The Gram–Charlier form uses moments to compute series co-

efficients, while the Edgeworth form uses cumulants. Since the

work presented in this paper is based on cumulants, only Edge-

worth’s form of the A series is discussed.

Throughout this section, the operator is defined as the

derivative with respect to to simplify notation.

The remainder of this section is devoted to discussion of the

Hermite polynomials and the computations of A series coeffi-

cients in (1).

0885-8950/$20.00 © 2005 IEEE
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A. Tchebycheff–Hermite Polynomials

There are two different forms for Hermite polynomials [10].

The first is based on and the second on . The

second form is the same as the PDF for a standard normal dis-

tribution and is more convenient for this application. To avoid

confusion, the notation is used in this paper to denote the

use of the second type of Hermite polynomial.

Since the PDF for a normal distribution is an exponential

term, taking derivatives successively returns the original func-

tion with a polynomial coefficient multiplier. These coefficients

are referred to as Tchebycheff–Hermite, or Hermite, polyno-

mials.

To illustrate how the Hermite polynomials are generated, the

first four derivatives of the standard unit normal distribution are

taken as follows:

(2)

(3)

(4)

(5)

(6)

where is the th derivative.

The Tchebycheff–Hermite polynomials are the polynomial

coefficients in the derivatives. Using the results of the first four

derivatives in (2)–(6), the first five Tchebycheff–Hermite poly-

nomials are written as follows:

(7)

(8)

(9)

(10)

(11)

Because of the structure of (2)–(6), the highest power coef-

ficient of the odd derivatives, i.e., the third, fifth, seventh, etc.,

are negative. Equations (7)–(11) have been formed following

the convention that the equations relating to the odd derivatives

are multiplied by negative one, such that the coefficient of the

highest power is positive [9].

Therefore, the th Tchebycheff–Hermite polynomial can be

symbolically written as

(12)

In addition, a recursive relationship is available to determine

third-order and higher polynomials

(13)

B. Edgeworth A-Series Coefficients

Given the cumulants for a distribution in standard form, i.e.,

zero mean and unit variance, the coefficients for the Edgeworth

form of the A series can be computed. In order to find the equa-

tions for the A series coefficients, an exponential representation

of the PDF is broken into its series representation and equated

with the Gram–Charlier A series (1).

The PDF, as an exponential, is written in the following form

using cumulants [9]:

(14)

where is the th derivative of the unit normal distribution,

is the th cumulant, and is the standard unit normal

PDF. A complete derivation of (14) can be found in [9].

Expanding (14) as an exponential series yields

(15)

If each of the terms are expanded individually and grouped

based on powers of , the following result is obtained:

(16)

Using the relationship for Hermite polynomials in (12) to re-

place the powers of in (16) gives

(17)

Returning to the definition for the Gram–Charlier A series in

(1) and expanding the summation yields

(18)

Comparing (17) and (18), the values for the coefficients can

be determined. Based on the equations presented, the first seven

terms of the Edgeworth form of the A series are presented in

Table I.

III. INTRODUCTION TO THE LBIPM

The LBIPM has been used in a wide variety of applications.

It is a method for the solution of constrained optimization prob-

lems and makes use of a variety of techniques from many con-

tributors. Detailed information for the LBIPM can be found in

[7], [11], and [12].
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TABLE I
A SERIES COEFFICIENT EQUATIONS

The algorithm proposed in this paper uses some matrices and

components computed as part of the Newton step in the LBIPM.

Therefore, a very brief outline of the Newton step and its com-

putation in an LBIPM framework is included.

A. Gradient, Hessian, and Newton Direction

Any optimal solution must satisfy the condition that the gra-

dient of the Lagrangian is zero. This condition is known as

the Karush–Kuhn–Tucker (KKT) first-order condition for op-

timality.

A Newton–Raphson-based solver can be used to solve

this system of nonlinear equations. In this case, the

Newton–Raphson method attempts to solve the system using

the following relationship:

(19)

where is a vector of primal and dual variables in the optimiza-

tion problem, and and are the Hessian and the gra-

dient of the Lagrangian, respectively, evaluated for the variable

values at the current iteration. The update step is computed

from the Newton–Raphson method and is known as the Newton

step or, alternatively, the Newton direction if magnitude is nor-

malized. System variables are updated via the following equa-

tion:

(20)

Step lengths are chosen to ensure that the resulting point remains

within the feasible space.

IV. CUMULANT METHOD

The cumulant method relies on the behavior of random vari-

ables and their associated cumulants when they are combined in

a linear fashion. This section discusses the formation of random

variables from a linear combination of others and the role cu-

mulants play in this combination.

Given a new random variable , which is the linear combina-

tion of independent random variables,

(21)

the moment generating function for the random variable

can be written as follows:

(22a)

(22b)

(22c)

Since are independent

(23a)

(23b)

The cumulants for the variable can be computed using the

cumulant generating function, as defined in Appendix II, in

terms of the component variables as follows:

(24a)

(24b)

(24c)

(24d)

To compute the second-order cumulant, the zero-, first-, and

second-order derivatives of the cumulant generating function for

the random variable are computed as

(25)

(26)

(27)

Evaluating (27) at gives

(28)

Third- and higher order cumulants can be computed following

the same procedure. In general, the th-order cumulant for ,

a linear combination of independent random variables, can be

determined with the following equation:

(29a)

(29b)

where the exponent denotes the th derivative with respect

to .

V. ADAPTATION OF THE CUMULANT METHOD

TO P-OPF PROBLEM

The cumulant method is adapted from the basic derivation

above to accommodate the P-OPF problem when an LBIPM-

type solution is used. The Hessian of the Lagrangian is neces-

sary for the computation of the Newton step in the LBIPM. The
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inverse of the Hessian, however, can be used as the coefficients

for the linear combination of random bus loading variables.

A. Inverse Hessian as Linear MAP

The pure Newton step is computed at iteration of the

LBIPM using the following equation:

(30)

where is the vector of variables, and are Hessian

and gradient of the Lagrangian, respectively, evaluated at ,

and is the pure Newton step. Replacing with

in (30) and rearranging gives

(31)

A general linear equation can be written as

(32)

where is the slope, is the variable, and is the -intercept.

Noting the similarities in the form of (32) and (31), the matrix

, the inverse Hessian, in (31) contains the multipliers

for a linear combination of PDFs for random bus loads. Alterna-

tively stated, the negative inverse Hessian is a linear map from

one variable to another.

B. Including Random Loads

It is necessary to introduce the cumulants related to the

random loads into the system in such a way that the cumu-

lants for all other system variables can be computed. Some

characteristics of the gradient of the Lagrangian are used to

accomplish this.

When the gradient of the Lagrangian is taken, the power flow

equations appear unmodified in this vector. Therefore, cumulant

models in the bus loads map directly into the gradient of the La-

grangian. For the purposes of mapping, the mismatch vector,

in (31), is replaced by a new vector containing the cu-

mulants of the random loads in the rows corresponding to their

associated power flow equations.

C. Generalized Results

The linear mapping information contained in the inverse Hes-

sian can be used to determine cumulants for other variables

when bus loading is treated as a random variable. If

is written in the following form

...
...

...
. . .

...
(33)

then the th cumulant for the th variable in is computed using

the following equation:

(34)

where is the th element in , and is the th cumulant

for the th component variable.

In the proposed cumulant method for P-OPF, the cumulants

for unknown random variables are computed from known

random variables, and PDFs are reconstructed using the

Gram–Charlier/Edgeworth Expansion theory [5].

D. Computation and Use of the Statistical Step

The proposed algorithm makes use of statistical information

during every iteration of the LBIPM.

The statistical step is computed at each iteration in the fol-

lowing fashion.

1) Distributions for system variables are reconstructed

based on computed cumulants and the Edgeworth

form of the A series.

2) The difference between the variable values for the cur-

rent iteration and the peak values of the distributions is

computed.

3) A step, known as the statistical step, is set equal to this

difference.

The statistical step is combined with the pure Newton step in

a linear fashion to produce a step that is applied to system vari-

ables. The emphasis on the Newton step increases as the LBIPM

progresses toward a solution to ensure good convergence be-

havior. The original variable update (20) can be rewritten in the

following fashion to include the linear combination of the pure

Newton and statistical steps:

(35)

where and are the scalar weighting for the linear combina-

tion used to vary the emphasis between the pure Newton step

and the statistical step.

It is particularly noteworthy that when Gaussian distributions

are used, there is no obvious statistical step available since the

mean of the distribution corresponds to the peak in all cases.

Therefore, the statistical step in this case is always zero.

In the case of non-Gaussian distributions, including Gamma

distributions, the peak of the PDF does not generally correspond

to the mean. Consequently, a statistical step is available for use

in the procedure described.

The statistical step is introduced to place greater emphasis

on optimizing around parameter settings that are more likely to

occur. In this paper, the weighting factors for the statistical step

have been arbitrarily chosen, and a range of different weightings

have been tested. However, convergence problems developed

when the statistical step was heavily weighted compared to the

Newton step. It was found, in the simulations, that when the ini-

tial weighting of the statistical step was greater than ,

where , the solution tended to fail. This is expected

since, when using a primal-dual interior point approach, the

Newton step is required to converge to the optimal solution.

For all systems tested in this paper, the program converged to

the same point regardless of values of and , subject to them

being below the threshold discussed above. Therefore, final re-

sults using the statistical step were identical to the results if the

distribution mapping was applied only once after the optimiza-

tion was completed.

VI. NUMERICAL RESULTS

The proposed cumulant method was tested using random

bus loads with the mean value set at the nominal bus loading



SCHELLENBERG et al.: CUMULANT-BASED PROBABILISTIC OPTIMAL POWER FLOW 777

TABLE II
MEAN VALUE COMPARISON TABLE

level. Problems based on the Matpower nine- and 118-bus

systems [8] are used to show general trends and characteristics

under random loading conditions using the proposed cumulant

method. Of particular interest are the optimal distributions for

the decision variables.

Two different and independent sets of results are included.

In the first set, loads are modeled in the nine-bus and 118-bus

systems using Gaussian distributions with variances such that

the 99% confidence interval is equal to % of the nominal

loading value. The second set models loads using Gamma dis-

tributions such that the variance is 15% of the nominal loading

value, and only results for the nine-bus system are presented. For

all problems, the problem converges when the barrier parameter

is less than as computed using the complementary gap.

A. Gaussian Distributions

The results for the Gaussian distributions are divided into

three sections. The first section presents the results for the mean

value of the distributions and includes discussion about these re-

sults. The second section presents and discusses the results for

the variance of the distributions. The first and second sections

use the nine-bus problem, while the third section presents results

using the 118-bus system to illustrate the cumulant method’s

performance as the system size increases.

In all cases, the mean value for bus loading was taken at the

nominal loading value from the Matpower problems, and the

variance is such that the 99% confidence interval is 10% of the

nominal value.

For the nine-bus system, a total of four Monte Carlo simula-

tions (MCSs) are included. Three were run using 1500 samples

and one with 20 000 samples. The raw results are included in

both sections in addition to the comparison between the cumu-

lant method results and the MCS results.

1) Mean Values: Table II contains all results related to the

mean values for system variables. Values for the system vari-

ables are included, in per unit, as well as a comparison between

the cumulant method and each of the four MCSs presented as

an absolute percent difference. Columns labeled “value” are the

actual value of the variable in p.u., while columns titled “differ-

ence” are the absolute percent difference between the cumulant

method and the MCS results.

The results for the mean value of the distributions using the

cumulant method are, in general, well within 1% of the values

found using MCS. With the exception of the reactive power

generation at bus 2, the maximum percent difference between

the mean from any of the MCSs and the cumulant method is

0.4437% and occurred for the angle at bus 8 in the third 1500

sample MCS. The results for reactive power generation at bus

2, however, had a very high percent difference between MCS

and cumulant method. It is noteworthy that the minimum abso-

lute percent difference of 62.3% for reactive power generation

at this bus resulted from a difference of 0.0005 p.u. Similarly,

the maximum difference of 79.17% was from a difference of

only 0.0012 p.u. Although the percent difference is for reactive

power generation at this bus is high, the actual error in per unit

is small. Therefore, the percent error is a somewhat misleading

measure for these situations.

In general, the cumulant method approximation matches very

well with the MCS results with respect to the mean values.

2) Variance Values: The covariances are calculated numer-

ically from the results in the MCSs. The results from the MCSs

are presented in Table III along with the results using the pro-

posed cumulant method to allow for a direct comparison. Again,

columns labeled “value” are the actual value of the variable in

p.u., while columns titled “difference” are the absolute percent

difference between the cumulant method and the MCS results.
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TABLE III
VARIANCE VALUE COMPARISON TABLE

Of particular interest is the fact that the angle at bus 1 has

zero variance for all cases. This phenomenon results from the

fact that bus 1 is used as the angle reference bus and is fixed at

precisely zero.

In most cases, the percent difference between the MCSs and

the cumulant method results is less than 6%. The notable excep-

tion to this statement is the percent difference in variances for

voltage variables, which is substantially higher, in general, than

other system variables. In particular, the variance in bus volt-

ages at buses 1, 4, 6, and 8 is much higher than 6%. Although

the percent difference is much higher for voltage, the difference

in the actual variance value is not. The worst absolute percent

difference for all variance results occurred for the voltage mag-

nitude at bus 6. However, the actual value of the variance for this

bus voltage is extremely small, i.e., less than . Therefore,

this variable is almost deterministic, compared to others in the

problem, and can be treated as such without any significant loss

in statistical information.

3) 118-Bus System: For the 118-bus system, the results are

aggregated since the number of buses and variables is too high

to present them individually. The results presented in Table IV

provide an illustration of how the proposed cumulant performs

when applied to larger systems. Results have been tabulated in

terms of mean and variance values since the number of variables

in the system exceeds 300. The cumulant method is compared

against a MCS consisting of 1500 samples.

The column in Table IV labeled MPE denotes the mean per-

cent error, that is, the average error with the sign considered.

In contrast, the column labeled MAPE (mean absolute percent

error) takes the absolute value of the individual percent errors

prior to computing the average. As in the nine-bus system and

discussed in Section VI-A2, several variables are effectively de-

terministic and are, therefore, not analyzed as probabilistic. In

TABLE IV
118-BUS SYSTEM GAUSSIAN DISTRIBUTION RESULTS SUMMARY:

MPE—MEAN PERCENT ERROR, MAPE—MEAN ABSOLUTE PERCENT ERROR

general, the difference in the absolute mean values for system

variables are less than 1.5% compared to the MCSs. The differ-

ence in the variances is between 2% and 8.01%. Fig. 1 shows

the PDF for the objective function in the 118-bus problem. In

this problem, the objective is a linear active power generation

cost function.

B. Gamma Distributions

Results included in this section are based on Gamma-dis-

tributed random loads with the mean at the nominal load and

the variance 15% of the nominal value. MCSs are performed

with 1000 samples, and these results are taken as the reference

solution.

Reconstructions using the Gram–Charlier A series can be per-

formed with any number of cumulants. Results are presented

here for solutions using up to fifth- and ninth-order cumulants.

As the cumulant order increases, the computational expense for

the reconstruction also increases.

One of the benefits of the proposed algorithm is a substantial

reduction in computational expense while maintaining a high

level of accuracy. Table V demonstrates the difference in com-

putation time for several different algorithms. Based on the re-
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Fig. 1. PDF for 118-bus system.

TABLE V
COMPUTATIONAL EXPENSE WITH GAMMA DISTRIBUTIONS

sults presented, the proposed algorithm is several times faster

than an MCS.

MCS run times are highly dependent on the number of points

used. In this case, only 1000 samples are taken, and in general,

a higher number of points results in better solutions. Compar-

atively, the proposed methodology depends only on the cumu-

lant order used. Generally, a higher number of cumulants should

result in better approximations. However, additional complica-

tions can occur as order increases including negative probabili-

ties in the tail sections and multimodal distributions [9].

Figs. 2 and 3 show the reconstructed distribution compared

with the Monte Carlo results. In these figures, the solid black

line is the result using the proposed cumulant method, and the

histogram is the raw MCS results. Non-Gaussian behavior is ev-

ident in both of the figures, and alternative methodologies that

only consider Gaussian distributions would be unable to accu-

rately model the lopsided shape of these distributions.

Of note is the fact that the approximation in Fig. 3 extends far

to the right of the MCS results. This occurs because the proposed

cumulant method returns a continuous result that does not con-

sider operational limitations in the distributions, although oper-

ational limitations are enforced during the optimization process.

In this case, the PDF should be truncated on the right-hand side

to limit the maximum value for the voltage magnitude.

The assumptions made in the proposed system do not change

based on system size. Therefore, larger systems can be analyzed

in the same fashion. It is expected that accuracy would remain

high, and there will be increasing computational performance

gain of the proposed algorithm compared with Monte Carlo. The

computational performance will increase because the individual

optimizations in the MCS will take longer, in addition to the fact

Fig. 2. Bus 2 Active Power Generation—Fifth-Order Reconstruction.
Histogram—Monte Carlo, Line—Cumulant Method.

Fig. 3. Bus 5 Voltage Magnitude—Fifth-Order Reconstruction.
Histogram—Monte Carlo, Line—Cumulant Method.

that more simulations will be required to address uncertainty in

the sampling process.

VII. CONCLUSION

This paper introduces the cumulant method for the P-OPF

problem. By noting that the inverse of the Hessian used in the

logarithmic barrier interior point can be used to perform linear

mapping, cumulants can be computed for unknown system vari-

ables.

Results using the cumulant method are compared against the

results from MCS for nine- and 118-bus systems. The proposed

algorithm has a substantial reduction in computational expense

while maintaining a high level of accuracy.

APPENDIX I

RANDOM VARIABLE DISTRIBUTIONS

The material presented in this paper makes use of two dif-

ferent types of PDFs: Gaussian and Gamma. This appendix
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briefly introduces these distributions and some important prop-

erties of each. Further information is available in [4] and [13].

A. Gaussian Distributions

The Gaussian Distribution, also known as the Normal Distri-

bution [13], is commonly used in a variety of different areas. It

is a simple distribution and is characterized by its mean and

variance , according to the following relationship:

(36)

where is the random variable.

The standard unit normal distribution is defined as the

Gaussian distribution with zero mean and unit variance. In a

Gaussian distribution, the peak of the PDF always occurs at the

mean value.

B. Gamma Distributions

Another frequently used distribution is known as the Gamma

distribution. This distribution is characterized by three vari-

ables: the random variable in addition to two non-negative

shape parameters.

The general formula for the Gamma distribution is as follows

[4]:

otherwise

(37)

where is the random variable, and and are the shape pa-

rameters. The notation stands for the complete Gamma

function, which can be written in the following manner [4]:

(38)

In the case that is an integer, the complete Gamma function

can be written in the following simplified form [4]:

(39)

The Gamma distribution has several important properties.

First, the shape is controlled by two independent non-negative

parameters. The values for these two parameters strongly affect

the shape of the resulting PDF. Second, the PDF can only be

nonzero for positive values of the random variable. In other

words, the PDF is bounded on one side. Third, the mean value

and the peak value of the PDF are generally different.

APPENDIX II

PROBABILITY AND STATISTICS BACKGROUND

This appendix includes an overview of information related to

moments and cumulants for PDFs. More detailed information is

available in [4].

A. Moments and Cumulants

Moments and cumulants are both measures of a PDF. Since

equations related to cumulants are often developed in terms of

moments, this section begins with an introduction to moments

and then uses these results to develop the necessary cumulant

relationships.

The expected value of a random variable is defined as

(40)

where is the PDF of .

The th-order raw moment is defined in the following

manner:

(41)

It is possible to compute the raw moments through the use of the

moment generating function . Mathematically, this func-

tion is stated as [4]

(42)

The th raw moment is computed from the moment generating

function by taking the th derivative with respect to and eval-

uating at . For example, the third raw moment can be

computed as follows:

(43a)

(43b)

(43c)

(43d)

(43e)

The cumulant generating function, denoted by , is often

written in terms of the moment generating function , as

follows [4]:

(44)

The cumulant generating function is employed in the same

manner as the moment generating function; successive deriva-

tives are taken with respect to and evaluated at . The

th cumulant is denoted as .

B. Illustrative Example

Consider the standard normal distribution based on (36) with

zero mean and unit variance. The moment generating function

in (42) can be developed using the definition of expected value

from (40) as follows:

(45a)

(45b)

(45c)

(45d)

(45e)
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(45f)

(45g)

(45h)

Taking the result in (45h) and computing the cumulant gener-

ating function based on (44) yields

(46)

To compute the th cumulant, successive derivatives of the

cumulant generating function are taken and evaluated at .

Suppose the third cumulant for a standard normal distribution is

of interest and needs to be computed. The first three derivatives

of (46) with respect to are taken as follows:

(47)

(48)

(49)

The third cumulant can be found by evaluating (49) at

(50)

For this example, the third cumulant is zero. The same process

can be repeated for any cumulant of interest.

All cumulants of order three and higher are zero in this ex-

ample since the derivative of zero is zero. In fact, this result is

true for any general Gaussian distribution, and all higher order

cumulants, third or greater, are zero. Consequently, cumulants

can, in some sense, be considered as a measure of the departure

from normality.
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