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We describe an approach for calculations of phonon contributions to the electron spectral function,
including both quasiparticle properties and satellites. The method is based on a cumulant expansion
for the retarded one-electron Green’s function and a many-pole model for the electron self-energy.
Pole models are also used for the phonon density of states and the Eliashberg functions. Our
calculations incorporate ab initio dynamical matrices and electron-phonon couplings from the density
functional theory. Illustrative results are presented for several elemental metals and for Einstein
and Debye models with a range of coupling constants. These are compared with experiment and
other theoretical models. Estimates of corrections to Migdal’s theorem are obtained by comparing
with leading order contributions to the self-energy, and are found to be significant only for large
electron-phonon couplings and low temperatures.

PACS numbers: 63.20.dk, 07.05.Tp, 71.45.Gm

I. INTRODUCTION

To first approximation, electronic and vibrational
properties can be treated separately in condensed mat-
ter due to the large mass ratio between electrons and
ions, e.g., within the Born-Oppenheimer approximation.
However, corrections to this approximation, which de-
pend on the strength of the electron-phonon interaction,
are of considerable importance both theoretically and ex-
perimentally. Here we investigate the effects of electron-
phonon interactions on the quasiparticle properties and
inelastic losses of electrons due to coupling to phonons.
Due to such interactions, the electron energy levels εk are
not sharply defined, but have finite lifetimes character-
ized by the electron self-energy Σ, which lead to broad-
ening of the associated spectral function. In addition,
phonon-excitations give rise to inelastic losses. Such ef-
fects are visible experimentally, e.g., in high resolution
ARPES spectra at low temperatures.1

In general, the electron spectral function at energies
near the Fermi-level is dominated by a sharp quasiparti-
cle peak, but it can also exhibit satellites due to phonon
excitations. According to Migdal’s theorem,2 only the
leading order electron-phonon interaction contributions
to the self-energy are important, due to the large mass
ratio between electrons and nuclei. In that case, the elec-
tron self-energy can be approximated by the simplest di-
agram, and vertex corrections can be neglected. We will
refer to this diagram as the Migdal approximation (MA).
The Migdal approximation (MA) is analogous to the GW
approximation of Hedin3 for electrons coupled to plas-
mons, where G is the electron Green’s function and W
the screened Coulomb interaction, by replacing W with
the phonon propagator D. This approximation has been
investigated in detail4–8 and extended to finite tempera-
ture, e.g., by Allen.9 The MA leads to a spectral function
with a quasiparticle peak and two satellite features orig-
inating from single-boson excitations, one on each side
of the quasiparticle peak. However, this leading order

approximation is generally unsatisfactory as the satellite
peaks typically appear at the wrong energies and with
the wrong intensities compared to experiment. Moreover,
systems of electrons coupled to neutral bosonic excita-
tions typically exhibit multiple satellites.10,11 Thus, it is
of interest to investigate possible corrections to Migdal’s
theorem, i.e., the effects of higher order terms in an ex-
pansion in powers of the electron-phonon coupling.12 One
approach to this end is to investigate contributions to the
self-energy from the vertex function Γ, as in the formal
identity Σ = iGDΓ. However, direct calculations of Γ
have been formidably challenging, and there has been
little progress along these lines. An attractive alterna-
tive that overcomes some of the above the shortcomings
is provided by the cumulant expansion,12–14 which is an
exponential representation of the electron Green’s func-
tion in the time domain. The cumulant expansion is ex-
act for the case of a deep core-level coupled to bosons,
and generalizations have been developed for valence elec-
trons coupled to plasmons.15,16 The approach has been
applied with considerable success in cases ranging from
multiple plasmon satellites in photoemission17 to dynam-
ical mean field theory.18 Nevertheless, the conventional
approach based on the time-ordered Green’s function is
only strictly applicable for the hole- or particle-branch
of the spectral function, depending on whether the state
is above or below the Fermi level. This limitation is par-
ticularly problematic in systems with particle-hole sym-
metry, such as electrons coupled to phonons. To over-
come this difficulty, we utilize here the recently devel-
oped retarded cumulant (RC) approach, which is based
on a particle/hole cumulant and a retarded Green’s func-
tion formalism.14 A further goal of the present work is to
develop a practical approach for calculations of phonon
contributions to properties of condensed matter.

The remainder of this paper is organized as follows.
In Sec. II, we describe the retarded cumulant expansion
method and many-pole model self-energy used to calcu-
late phonon contributions to the electron spectral func-
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tion. Sec. III gives details on how this method is imple-
mented computationally with our workflow tool ai2ps.
Finally, our results are presented in Sec. IV, and Sec. V
contains a summary and conclusions.

II. THEORY AND METHODOLOGY

In this section, we briefly summarize the Migdal ap-
proximation (MA and retarded cumulant (RC) methods
used in this work for calculations of the electron spec-
tral function. As usual, the Hamiltonian for the many-
electron system linearly coupled to phonons can be rep-
resented as

H =
∑

k

ε0kc
†
kck+

∑

q

ωqa
†
qaq+

∑

kk′q

V q
kk′ (aq+a

†
q)c

†
kck′ , (1)

where k denotes the electron levels and q the phonon
modes with bare energies ε0k and ωq respectively, V q

kk′

are the electron-phonon matrix elements, and ck (c†k) and

aq (a†q) are the electron and phonon destruction (cre-
ation) operators. In this paper, we use atomic units
e = h̄ = m = 1 and kB = 0.08617 meV/K. At low tem-
peratures, the electrons are nearly degenerate with Fermi
energy εF and ωq ≪ εF ≪ ωp, where ωp is the dominant
plasmon excitation energy (∼ 10 eV) and εF is taken rel-
ative to the bottom of the band. Thus, for our purposes
here, the density of electron states near εF is replaced
by a constant, which we assume is non-vanishing. The
generalization to insulators or molecular systems with
discrete spectra near εF is straightforward, but will not
be treated here.

A. MA spectral function

Briefly, the Migdal approximation for the self-energy is
given by Σ = iGD, where G is the one-electron Green’s
function and D is the phonon propagator. Within MA,
the usual strategy is to calculate the spectral func-
tion Ak(ω) from the imaginary part of the one-electron
Green’s function in frequency space,4

Gk (ω) =
1

ω − ε0k − Σk (ω)

Ak (ω) =
1

π
|ImGk(ω)|

=
1

π

|ImΣk(ω)|

|ω − ε0k − ReΣk(ω)|2 + |ImΣk(ω)|2
.

(2)

The spectral function is comprised of two main features—
a dominant quasiparticle peak at ω = εk = ε0k +Σk with
width ImΣk and phonon satellites at ω = εF ± ωq, con-
sistent with Ref. 4. Other physical properties such as the
quasiparticle lifetime and energy levels can be obtained
from the properties of Ak(ω) and Σk(ω).

B. RC spectral function

As noted in the introduction, the conventional time-
ordered cumulant expansion must be generalized to treat
cases with particle-hole symmetry, such as phonon exci-
tations in metals.12 Our treatment is based on the RC
formalism which is discussed in detail by Kas et al.14

For a degenerate Fermi system in the absence of plas-
mons, the RC representation of the retarded one-particle
Green’s function is

GR
k (t) = G0,R

k (t)eC
R

k
(t)

G0,R
k (t) = −i e−iε0

k
tθ (t) ,

(3)

where CR
k (t) is the cumulant as described below. For-

mally, the spectral function is obtained from the Fourier
transform of GR

k (t)

Ak (ω) = Im

∫ ∞

−∞

dt

π
eiωtGR

k (t) . (4)

The retarded particle/hole cumulant CR
k (t) is then ap-

proximated by the second order (in electron-phonon cou-
pling) cumulant diagram14

CR
k (t) ≈ CR

2,k (t)

= ieiε
0

k
t

∫ ∞

−∞

dω

2π
e−iωt

[

G0,R
k (ω)

]2

ΣR
k (ω) .

(5)

This diagram is conveniently evaluated in frequency
space14 and can be expressed in terms of the imaginary
part of the G0D0 boson excitation spectrum βk(ω) as

CR
k (t) =

∫ ∞

−∞

dω βk(ω)
eiωt − iωt− 1

ω2
, (6)

where βk(ω) is obtained from the MA self-energy

βk(ω) =
1

π

∣

∣ImΣk

(

ω + ε0k
)∣

∣ . (7)

Consequently, the ingredients in the RC are similar to
those in RC spectral function is no more difficult to cal-
culate than the MA spectral function. Since we approxi-
mate the non-interacting Green’s function with that of a
homogeneous electron gas, material-specific band struc-
ture will not be reflected in the resulting spectral func-
tions. In contrast to the conventional time-ordered cu-
mulant expansion, which only contains frequencies within
the particle- or hole branches, the retarded cumulant in
Eq. (6) contains all frequencies, and explicitly builds in
the particle-hole symmetry desired for phonons. Also,
due to the behavior of the self-energy Σk(ω), (Fig. 1),
multiple phonon satellites may exist with the cumulant
expansion, as peaks at integral multiples of ωE on both
sides of the Fermi energy εF . This is in contrast to the
case with plasmons, where the satellites appear at mul-
tiples of ωp from the quasiparticle peak at εk.
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C. Many-pole self-energy

Above we gave the formulae relating the RC and MA
spectral functions to the MA phonon self-energy. We now
focus on a self-energy model appropriate for phonons.
Here we have adapted the finite-temperature Einstein
model for phonons,9,19,20 where the self-energy is repre-
sented as a sum over Einstein modes. For a single mode
with Einstein frequency ω′, the MA self-energy at finite
temperature T (with unit coupling) is given by9,20

ΣE (ω, ω′, T ) = −iπ

[

n (ω′) +
1

2

]

+

+
1

2
Ψ

(

1

2
+ i

ω′ − ω

2πT

)

−
1

2
Ψ

(

1

2
− i

ω′ + ω

2πT

)

,

(8)

where n(ω) is the Bose-Einstein distribution and Ψ(z)
is the digamma function. The electron-phonon coupling
constants in the model are represented in terms of the
Eliashberg function α2Fk. The self-energy is then9,19

Σk (ω, T ) =

∫

dω′ 2ΣE (ω, ω′, T )α2Fk (ω
′) . (9)

We emphasize that the form of the self-energy in Eq. (9)
is strictly appropriate only for cases where the band
width of electron states near the Fermi energy is large
compared to characteristic phonon energies ω, and will
not work for sharp band features. This is the case for
valence states in metals and in many semi-metals, semi-
conductors, and insulators, but becomes questionable in
the case of small molecules and core level states. Thus in
the present work, we focus only on a selection of metallic
systems covering a range of electron-phonon couplings.
As an example, Fig. 1 shows the real and imaginary parts
of the self-energy calculated using Eq. (9) when coupling
to a single Einstein mode, i.e., an Einstein model for the
phonon spectrum in Cu. We also note that the approx-
imation in Eq. (8) neglects Debye-Waller corrections to
the self-energy discussed for example, by Allen and Heine
and others21–23. This correction is found to give temper-
ature dependent shifts in the quasi-particle energies and
a broadening of the energy bands. On the other hand,
this term gives no contribution to the excitation spec-
trum and hence the structure of the spectral function21

which is the main topic of this work.
Generally, the Eliashberg function depends on both

k and k′ through the electron-phonon matrix elements
gqkk′ .25–28 However, since the phonon contributions to
the spectral function involve energies very close to εF ,
it is sufficient for our purposes here to use the Eliashberg
function averaged over the Fermi surface

α2F (ω) =
1

2πN(εF )

∑

q

∑

εk,εk′≈εF

|gqkk′ |
2
δ(ω − ωq)

gqkk′ = 2
∑

〈ψk′ | δV q |ψk〉 ,

(10)

where N(εF ) is the bare density of states at the Fermi
level, δV is the change in potential due to a change in

FIG. 1: (color online) Real (top) and imaginary (bottom)
parts of the self-energy Σk(ω) in Eq. (9) using the Einstein
model for Cu, where ωE = 21.6 meV = 251 K (see text). Pos-
itive ω is not shown, as ReΣ and ImΣ and can be determined
from the odd parity of Σk(ω).

FIG. 2: (color online) Eliashberg function (top) α2F (ω) and
total density of modes (bottom) for Cu at the Fermi level
k = kF obtained from abinit with our many-pole approxima-
tions α2

i , Fi calculated by the Lanczos inversion tools in feff9

(see text). Experimental PDOS taken from Ref. 24. Calcu-
lated frequencies have been scaled using an overall Grüneisen
parameter to match the PDOS peak frequency with experi-
ment.

the nuclear parameters, and the sum over spin states
for non-magnetic systems considered here gives a factor
of 2. Typically, α2F (ω) is rather similar to the total
phonon density of states (PDOS) F (ω) of the system
(See Fig. 2), allowing us to express it as a smooth cou-
pling α2(ω) multiplying the PDOS. Moreover, it is con-
venient to use a many-pole model for the PDOS,4 anal-
ogous to the plasmon-pole self-energy model of Hedin
and Lundqvist.29–32 The integration over the phonon fre-
quencies ω′ in Eq. (9) can then be replaced by a dis-
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crete sum over a sufficiently large number of poles with-
out significant loss of accuracy. To this end, an efficient
many-pole Lanczos representation of the PDOS has been
developed,33

FMP(ω) =
∑

i

Fiδ(ω − ωi). (11)

Thus, a many-pole representation of the Eliashberg func-
tion α2FMP can be constructed similarly,

α2FMP (ω) =
∑

i

α2 (ω)Fiδ (ω − ωi) , (12)

where the strength α2(ω) is obtained from Eq. (10) and
the PDOS F (ω),

α2 (ω) = α2F (ω)/F (ω). (13)

A 16-pole representation of the copper Eliashberg func-
tion is shown in Fig. 2. Finally, an effective or mean
electron-phonon coupling constant λ can be defined,
which is related to the first inverse frequency moment
of the Eliashberg function34

λ = 2

∫ ∞

0

dω

ω
α2F (ω) ≈ 2

∑

i

α2
iFi

ωi

. (14)

This quantity provides a dimensionless characterization
of the strength of electron-phonon coupling in a given
material.

III. IMPLEMENTATION

The calculations of phonon properties presented here
were carried out using ai2ps (ab initio DFT to Phonon
Spectra),35 a workflow tool we have developed that
links density functional theory electronic structure codes,
abinit in this case,36,37 to the vibrational properties
module of real-space Green’s function code feff9.38

ai2ps can be used to calculate phonon properties such
as Debye-Waller factors in x-ray spectra. The modular
interface automatically coordinates the desired workflow.
Briefly, for our purposes here, ai2ps uses abinit to gen-
erate a set of real-space symmetry-inequivalent blocks of
the lattice dynamical matrix (DM), which are used to cal-
culate the many-pole PDOS FMP(ω).33 The code abinit
also yields both F (ω) and α2F (ω), which are used to cal-
culate the couplings α2(ω) using Eq. (13). Since Eq. (9) is
restricted to energies near the Fermi level, this presently
excludes any k-dependent features in the spectral func-
tions presented in the current study. The abinit calcula-
tions used Troullier-Martins LDA pseudopotentials pro-
vided by abinit,39 and an energy cutoff of 50 Hartrees;
for convergence of α2F (ω), a 32×32×32 Monkhorst-Pack
k-point grid was found to be necessary. For the metal-
lic systems discussed here, the occupation numbers were

FIG. 3: (color online) Spectral function for the Einstein model
using the RC method, where ωE is the Einstein energy. Top:
varying quasiparticle energy for low temperature and weak
coupling (T = 0.01 ωE , λ = 0.2), middle: varying tem-
perature near the Fermi energy and with medium coupling
(εk − εF = 0.25 ωE , λ = 1.0), bottom: varying electron-
phonon coupling constant at low temperature near the Fermi
energy (εk − εF = T = 0.01 ωE).

smeared with the Methfessel and Paxton scheme40 with
a broadening parameter of 0.025. To simplify the numer-
ical calculations by removing self-energy shifts, the RC
and MA spectral function expressions were expressed in
terms of the quasiparticle energy εk = ε0k + ReΣk(ε

0
k) as

opposed to ε0k (see Eqs. (2), (3), and (7)).

IV. RESULTS AND DISCUSSION

In this section, we present illustrative results for sev-
eral elemental metals and for Einstein and Debye models
with a range of electron-phonon couplings over a range
of temperatures and energies for both the RC and MA
methods.

A. Einstein model

As a first example, we consider the Einstein model self-
energy ΣE, i.e., using the single-pole (zeroth-order Lanc-
zos) approximation for the Eliashberg function,

α2F (ω) → α2
Eδ (ω − ωE) , (15)

where ωE is the Einstein frequency and α2
E = α2(ωE).

For realistic systems, the value of ωE is taken to be the
centroid of the calculated PDOS. As an example, we
present results for an Einstein model with ωE = 21.6
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FIG. 4: (color online) Spectral function for the Debye model
using the RC method, where ωD is energy corresponding to
the Debye temperature. Top: varying quasiparticle energy for
low temperature and weak coupling (T = 0.01 ωD,λ = 0.2),
middle: varying temperature near the Fermi energy and with
medium coupling (εk − εF = 0.25 ωD, λ = 1.0), bottom:
varying electron-phonon coupling constant at low tempera-
ture near the Fermi energy (εk − εF = T = 0.01 ωD).

meV (251 K), representative of Cu metal, in Fig. 3. Note
that phonon satellites in the spectral function are vis-
ible only for quasiparticle energies small compared to
phonon frequencies εk − εF < ωE , and very low temper-
atures (∼ 10 K), as seen in the top two panels of Fig. 3.
For the Einstein model, the mean coupling constant λ is
simply 2α2

E/ωE, so we artificially ramp up the coupling
by manually setting the value of α2

E . Typically, metals
have coupling constants λ that range from roughly 0.1
to 1.7,28 so we will focus on that range. The satellites
become larger as λ is increased (third panel), and for
λ ≈ 1.6, a weak second phonon satellite becomes appar-
ent at ω = εF ± 2ωE. The relative weakness of the
second satellite even at λ = 1.6 suggests Migdal’s the-
orem is valid to high accuracy for typical metals, apart
from corrections close to the Fermi energy at very low
temperatures.

B. Debye model

For comparison, we show similar results using the De-
bye model PDOS converted to a many-pole form in Fig. 4,
with quantities expressed in terms of the Debye tempera-
ture for copper ΘD = 315 K = 27.1 meV = ωD. Overall,
the Debye model shows trends quite similar to the Ein-
stein model. However, the phonon satellites are not as
sharply peaked, and the satellites at εF ± 2ωD are indis-
cernible at the same scale for large couplings λ ∼ 1.6.

FIG. 5: (color online) Comparison of spectral function from
the RC and MAmethods using the Einstein and Debye models
at strong coupling (i.e., λ = 1.6) near the Fermi level (εk =
εF + 0.01 ωE) for various temperatures, where ωD ≈ 1.3 ωE .
Inset: enlarged view of phonon satellites seen in the top panel.
Note the satellite centroid for the MA method is further out.

Note that artifacts of the many-pole model can be seen
in the spectral functions as small peaks near the Fermi
energy (third panel), though these effects are negligible
compared to the phonon satellites.

C. Comparison of RC and MA

We note that the electron spectral function near the
Fermi level εF is generally nearly symmetrical due to
particle-hole symmetry, and is sensitive to phonon corre-
lations beyond MA at strong electron-phonon coupling,
as illustrated by the significant deviation of RC from MA
seen in Fig. 5. Thus, it is useful to compare the RC and
MA methods in this limit, especially since the differences
characterize corrections to the Migdal approximation due
to vertex effects. Fig. 5 shows that the two methods
differ significantly at strong couplings and low temper-
atures compared to the Debye or Einstein temperature
(see Table I for distribution of spectral weight). The
RC method gives larger satellite weights, with a stronger
first satellite peak closer to the expected εF ± ωE (see
Inset to Fig. 5). However, the differences between the
two methods diminish as the temperature is increased
towards room temperature. Neither method shows a no-
ticeable two phonon satellite peak.
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TABLE I: Comparison of weights for the quasiparticle peak,
hole satellite, and particle satellite (Zk, wh, wp respectively)
using the RC and MA methods, done for the Einstein/Debye
models at large coupling (λ = 1.6) and several elemen-
tal metals near the Fermi level at low temperature (εk =
εF + 0.01 ωE,Cu = 0.216 meV, T = 0.1 ωE,Cu = 25.1 K).

Zk wh wp λ

RC

Einstein 0.19 0.39 0.42 1.60
Debye 0.18 0.39 0.43 1.60
V 0.29 0.34 0.37 1.17
Nb 0.31 0.33 0.36 1.08
Pb 0.35 0.31 0.34 0.95
Ta 0.37 0.30 0.33 0.91
Cu 0.85 0.07 0.08 0.16

MA

Einstein 0.38 0.31 0.31 1.60
Debye 0.37 0.31 0.32 1.60
V 0.45 0.27 0.28 1.17
Nb 0.46 0.27 0.27 1.08
Pb 0.49 0.25 0.26 0.95
Ta 0.50 0.24 0.26 0.91
Cu 0.86 0.07 0.07 0.16

D. Selected metals: Cu, Nb, Pb, Ta, and V

Next, we present results for the spectral function for
a few elemental solids (Fig. 6) representative of a range
of electron-phonon couplings (See Table II). To obtain
the full spectral function for these materials, we use the
Lanczos many-pole representation of Eq. (12) as shown in
Fig. 2 for copper. The results for these metals follow simi-

FIG. 6: (color online) Comparing the spectral functions of
the RC and MA methods for select metals at low tempera-
ture and three quasiparticle energies εk for (εk − εF )/ωE =
0.01, 0.5, 1.25 (bottom, middle, top vertically offset curves re-
spectively in each panel, with arrows indicating corresponding
location along the horizontal axis). For Cu, Ta, and V, ωE =
21.6, 15.0, 24.1 meV respectively and T = 0.15 ωE = 37.65,
17.4, 42.0 K respectively. The spectral function for Cu with
εk − εF = 1.25 ωE has been scaled vertically, as indicated.

lar trends with the RC andMAmethods that we saw with
our results for the Einstein and Debye models. Copper,
which has a relatively weak coupling (λ ∼ 0.1), displays
near agreement between the RC and MA methods. Tan-
talum and vanadium, on the other hand, have medium
to strong couplings, respectively, and show significant dif-
ferences between the two methods. Most noticeably, for
increasing quasiparticle energies, both the distribution
of weight between the quasiparticle and satellites and
the location of these peaks disagree significantly, possibly
enough to be noticeable experimentally. However, these
differences can only be seen at low temperatures (∼ 50
K). Even with the strongest coupling, vanadium does not
show multiple phonon satellites, indicating Migdal’s the-
orem is valid to high accuracy for phonons in these ma-
terials.

E. Comparison with experiment

Evidence for electron-phonon effects in the spectral
function have been measured in a number of cases. For
instance, the value of the mean coupling constant λ can
be obtained experimentally from the slope of the quasi-
particle linewidth Γ ∼ 2πλkBT versus temperature.19

Thus, calculations of quasiparticle linewidths character-
ize the phonon-contributions to the quasiparticle broad-
ening. Our calculated quasiparticle peak FWHM (Fig. 7)
are comparable to those measured experimentally.45–47

As an example, we find a slope of 0.0680 meV/K for
copper at large εk (top panel Fig. 7), corresponding to
λ = 0.126. Due to the redistribution of spectral weight
from the quasiparticle peak to the phonon satellites for

FIG. 7: (color online) Quasiparticle peak width versus tem-
perature at the Fermi energy εk = εF (bottom), and at mod-
erate quasiparticle energy εk = εF + 1.0 eV (top) for Cu, Ta,
and V. The linear relationship, given by Γ ∼ 2πλkBT , gives
an estimate of the electron-phonon coupling strength λ. Table
II shows λ derived from the εk = εF +1.0 eV calculations, to
limit any skewing of the quasiparticle widths due to phonon
satellites.
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TABLE II: Calculated electron-phonon coupling constants
using two methods—the inverse moment of the many-pole
α2F (ω) (Eq. 14) and the temperature dependence of the
quasiparticle linewidth taken from the spectral functions at
large εk—and experimental results for comparison.

λ(MP) λΓ λexpt

V 1.174 0.899 0.82b 1.09c 0.80d

Nb 1.079 0.897 1.04b 1.06c 1.16d

Pb 0.946 0.955 1.55b 1.48c 1.45d

Ta 0.909 0.809 0.78b 0.87c

Cu 0.155 0.126 0.10a 0.13c 0.08d

aRef. 41 bRef. 42 cRef. 43 dRef. 44

εk ∼ εF (lower panel Fig. 7), the temperature trends are
significantly steeper, resulting in inflated λ values. The λ
taken from the large εk calculations are more consistent
with experimental observations, and are listed in Table
II. The calculated λ for the metals using Eq. (14) are
given as well in Table II, along with several experimental
results for comparison. Overall, there is decent agree-
ment with experiment. The heavier metals show more
discrepancy, which is likely an effect of the absence of
spin-orbit coupling in our simulations.48,49

V. SUMMARY AND CONCLUSIONS

We have implemented a retarded cumulant (RC) ex-
pansion approach to calculate phonon contributions to

electron spectral function. This approach goes beyond
the standard Migdal approximation (MA) to include ef-
fects of phonon excitation satellites in the electron spec-
tral function. Our calculations show that the phonon-
contribution to the quasiparticle peak is linearly depen-
dent on temperature. We verify that Migdal’s theorem
is generally satisfied for phonons to high accuracy. Thus
the effects of vertex corrections leading to deviations be-
tween the MA and RC approaches and multiple satellites
in the spectral function and are generally negligible ex-
cept at very low T (T <

∼ 50 K) and very strong electron-
phonon couplings (λ >

∼ 1), and would require roughly
meV resolution to discern experimentally. With an ap-
propriate self-energy, the method presented here can also
be extended to treat insulators and molecular systems.
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